1
|
Roskoski R. Targeted and cytotoxic inhibitors used in the treatment of lung cancers. Pharmacol Res 2024; 209:107465. [PMID: 39426470 DOI: 10.1016/j.phrs.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Lung cancer is the leading cause of cancer deaths in the United States and the world. It is divided into two major types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In the tumor-node-metastasis (TNM) cancer-staging classification system (Stages I/II/III/IV), the severity of neoplastic growth is characterized by the size of the tumor (T1 to T4), the extent of lymph node involvement (N0 to N3), and whether (M1) or not (M0) distant metastasis has occurred. Surgery is the treatment of choice for medically fit patients with Stage I/II NSCLC. Combination chemoradiotherapy and immune checkpoint inhibitor therapy are used across all NSCLC types. Oncogene-addicted tumors with sensitizing EGFR or BRAF mutations or activating ALK, ROS1 or NTRK translocations are treated with their cognate orally active small molecule protein kinase blockers. On the order of 20 % of NSCLCs bear activating mutations in EGFR and are treated with osimertinib and other kinase antagonists. SCLC, which accounts for approximately 15 % of lung cancer cases, is a deadly high-grade neuroendocrine carcinoma with a poor prognosis. Limited-stage SCLC is confined to one hemi-thorax and one radiation port and extensive-stage disease signifies those cancers that do not meet the criteria for limited-stage disease. Local treatment options to control thoracic disease include radiotherapy and surgery. In patients with extensive-stage disease, a platinum agent (cisplatin or carboplatin) combined with etoposide and an anti-PDL1 inhibitor (atezolizumab or durvalumab) for four cycles followed by anti-PDL1 maintenance therapy is the recommended first-line regimen.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
2
|
Kim H, Liu M, Park CH, Lee BI, Jang H, Choi Y. Activatable near-infrared fluorescence probe for real-time imaging of PD-L1 expression in tumors. J Mater Chem B 2024; 12:10877-10885. [PMID: 39206756 DOI: 10.1039/d4tb01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In clinical practice, determining programmed death-ligand 1 (PD-L1) expression is crucial for selecting patients and monitoring immune checkpoint blockade therapies. Currently, PD-L1 expression is quantified using immunohistochemistry (IHC). However, IHC-based methods do not capture the heterogeneous and dynamic nature of PD-L1 expression. Thus, there is a pressing need for a rapid and efficient method for monitoring PD-L1 expression both in vitro and in vivo, which would considerably aid in prognosis and treatment selection. In this study, we present for the first time an activatable near-infrared (NIR) fluorescence imaging probe (Q-Atezol) for the real-time monitoring of PD-L1 expression in vitro and in vivo. The ability of Q-Atezol to detect PD-L1 expression quickly and in real-time was evaluated in both tumor spheroid and lung cancer xenograft models. An always-on optical probe (ON-Atezol) was synthesized and tested for comparison. In vivo NIR fluorescence imaging studies were conducted on A549 and H1975 tumor-bearing mice, and their tumor-to-background ratios (TBRs) were analyzed. The quenched NIR fluorescence of Q-Atezol is activated upon binding to PD-L1 proteins on the surface of cancer cells, thereby enabling PD-L1 detection in the three-dimensional (3D) tumor spheroids without a washing step. Notably, PD-L1-positive H1975 tumors were clearly visualized with a high TBR 6 hours after Q-Atezol injection, whereas ON-Atezol treatment could not detect H1975 tumors even 24 hours post-injection. The activatable fluorescence probe Q-Atezol demonstrated great potential as an exceptional sensor for assessing PD-L1 expression in 3D cell structures and for in vivo applications.
Collapse
Affiliation(s)
- Hyunjin Kim
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| | - Maixian Liu
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| | - Chan Hyeok Park
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Byung Il Lee
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Hyonchol Jang
- Division of Rare and Refractory Cancer, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea
| | - Yongdoo Choi
- Division of Technology Convergence, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi-Do, 10408, Republic of Korea.
| |
Collapse
|
3
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
4
|
Rizzo A, Brunetti O, Brandi G. Hepatocellular Carcinoma Immunotherapy: Predictors of Response, Issues, and Challenges. Int J Mol Sci 2024; 25:11091. [PMID: 39456872 PMCID: PMC11507510 DOI: 10.3390/ijms252011091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as durvalumab, tremelimumab, and atezolizumab, have emerged as a significant therapeutic option for the treatment of hepatocellular carcinoma (HCC). In fact, the efficacy of ICIs as single agents or as part of combination therapies has been demonstrated in practice-changing phase III clinical trials. However, ICIs confront several difficulties, including the lack of predictive biomarkers, primary and secondary drug resistance, and treatment-related side effects. Herein, we provide an overview of current issues and future challenges in this setting.
Collapse
Affiliation(s)
- Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
5
|
Zhong X, Zheng H, Zhao S, Wang Z, Su Y, Zhong K, Wang M, Shi Y. Effects and mechanisms of Helicobacter pylori on cancers development and immunotherapy. Front Immunol 2024; 15:1469096. [PMID: 39434880 PMCID: PMC11491387 DOI: 10.3389/fimmu.2024.1469096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Tumor immunotherapy has been widely used in clinical treatment of various cancers. However, some patients of these cancers do not respond to immunotherapy effectively. And H. pylori infection has been considered to be related to the efficacy of immunotherapy. This review aims to summarize the different effects and mechanisms of H. pylori infection on immunotherapy in different kinds of cancers. We searched the relevant literature on H. pylori and tumor immunotherapy, and summarized to form a review. Generally, H. pylori infection plays a role in affecting kinds of cancers' development, besides gastric cancer. Current evidence suggests that H. pylori infection may reduce the efficacy of immunotherapy for colorectal cancer, non-small cell lung cancer and melanoma, but due to the lack of sufficient evidence, more data is needed to prove that. While for gastric cancer, the effects remain controversial. The H. pylori regulation effects and metabolisms involved in systematic related cancers should be paid attention to. Whether H. pylori should be eradicated when immunotherapy performed may be a critical consideration for some kinds of tumors.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mopei Wang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Masse M, Chardin D, Tricarico P, Ferrari V, Martin N, Otto J, Darcourt J, Comte V, Humbert O. [ 18F]FDG-PET/CT atypical response patterns to immunotherapy in non-small cell lung cancer patients: long term prognosis assessment and clinical management proposal. Eur J Nucl Med Mol Imaging 2024; 51:3696-3708. [PMID: 38896129 PMCID: PMC11457717 DOI: 10.1007/s00259-024-06794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
AIM To determine the long-term prognosis of immune-related response profiles (pseudoprogression and dissociated response), not covered by conventional PERCIST criteria, in patients with non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICPIs). METHODS 109 patients were prospectively included and underwent [18F]FDG-PET/CT at baseline, after 7 weeks (PETinterim1), and 3 months (PETinterim2) of treatment. On PETinterim1, tumor response was assessed using standard PERCIST criteria. In the event of PERCIST progression at this time-point, the study design provided for continued immunotherapy for 6 more weeks. Additional response patterns were then considered on PETinterim2: pseudo-progression (PsPD, subsequent metabolic response); dissociated response (DR, coexistence of responding and non-responding lesions), and confirmed progressive metabolic disease (cPMD, subsequent homogeneous progression of lesions). Patients were followed up for at least 12 months. RESULTS Median follow-up was 21 months. At PETinterim1, PERCIST progression was observed in 60% (66/109) of patients and ICPI was continued in 59/66. At the subsequent PETinterim2, 14% of patients showed PsPD, 11% DR, 35% cPMD, and 28% had a sustained metabolic response. Median overall survival (OS) and progression-free-survival (PFS) did not differ between PsPD and DR (27 vs 29 months, p = 1.0; 17 vs 12 months, p = 0.2, respectively). The OS and PFS of PsPD/DR patients were significantly better than those with cPMD (29 vs 9 months, p < 0.02; 16 vs 2 months, p < 0.001), but worse than those with sustained metabolic response (p < 0.001). This 3-group prognostic stratification enabled better identification of true progressors, outperforming the prognostic value of standard PERCIST criteria (p = 0.03). CONCLUSION [18F]FDG-PET/CT enables early assessment of response to immunotherapy. The new wsPERCIST ("wait and see") PET criteria proposed, comprising immune-related atypical response patterns, can refine conventional prognostic stratification based on PERCIST criteria. TRIAL REGISTRATION HDH F20230309081206. Registered 20 April 2023. Retrospectively registered.
Collapse
Affiliation(s)
- Mathilde Masse
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France.
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France.
| | - David Chardin
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Pierre Tricarico
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Victoria Ferrari
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Nicolas Martin
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Josiane Otto
- Centre Antoine Lacassagne, Oncology Department, 33 Avenue de Valombrose, 06100, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- TIRO-UMR E 4320, UCA/CEA, 28 Avenue de Valombrose, 06100, Nice, France
| | - Victor Comte
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| | - Olivier Humbert
- Centre Antoine Lacassagne, Nuclear Medicine Department, 33 Avenue de Valombrose, 06100, Nice, France
- Université Côte D'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
7
|
Zhang Y, Sun D, Han W, Yang Z, Lu Y, Zhang X, Wang Y, Zhang C, Liu N, Hou H. SMARCA4 mutations and expression in lung adenocarcinoma: prognostic significance and impact on the immunotherapy response. FEBS Open Bio 2024. [PMID: 39322625 DOI: 10.1002/2211-5463.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
The switch/sucrose non-fermenting (SWI/SNF) complex family includes important chromatin-remodeling factors that are frequently mutated in lung adenocarcinoma (LUAD). However, the role of one family member, SMARCA4, in LUAD prognosis and immunotherapy sensitivity remains unclear. In the present study, 6745 LUAD samples from the cBioPortal database were used to analyze the relationships between SMARCA4 mutations and patient prognoses and clinical characteristics. Additionally, we examined the correlation between SMARCA4 mutations and prognosis in patients treated with immunotherapy using two immune-related datasets. SMARCA4 mutations and low expression were associated with shorter survival, and mutations were associated with a high tumor mutational burden and high microsatellite instability. SMARCA4 mutations were accompanied by KRAS, KEAP1, TP53 and STK11 mutations. No significant difference was observed in the immunotherapy response between patients with and without SMARCA4 mutations. When KRAS or STK11 mutations were present, immunotherapy effectiveness was poorer; however, when both SMARCA4 and TP53 mutations were present, immunotherapy was more effective. Furthermore, low SMARCA4 expression predicted a higher immunophenoscore, and SMARCA4 expression was correlated with certain immune microenvironment features. Taken together, our results suggest that SMARCA4 mutations and low expression might be associated with poor LUAD prognosis. Additionally, immunotherapy efficacy in patients with SMARCA4 mutations depended on the co-mutant genes. Thus, SMARCA4 could be an important factor to be considered for LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, China
| | - Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weizhong Han
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, China
| | - Zhen Yang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao University, China
| | - Yongzhi Lu
- Department of Oncology, Qingdao Municipal Hospital, China
| | - Xuchen Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliation Hospital of Qingdao University, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, China
| | - Ning Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, China
| |
Collapse
|
8
|
Li J, Wang J, Cao B. Exploring the impact of HDL and LMNA gene expression on immunotherapy outcomes in NSCLC: a comprehensive analysis using clinical & gene data. Front Oncol 2024; 14:1448966. [PMID: 39381047 PMCID: PMC11458371 DOI: 10.3389/fonc.2024.1448966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Objectives Analyzing the impact of peripheral lipid levels on the efficacy of immune checkpoint inhibitor therapy in non-small cell lung cancer (NSCLC) patient populations and exploring whether it can serve as a biomarker for broadening precise selection of individuals benefiting from immunotherapy. Methods We retrospectively collected clinical data from 201 cases of NSCLC patients receiving immune checkpoint inhibitor therapy. The clinical information included biochemical indicators like total cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). We utilized machine learning algorithms and Cox proportional hazards regression models to investigate independent predictors for both short-term and long-term efficacy of immunotherapy. Additionally, we concurrently developed a survival prediction model. Analyzing the Genes of Patients with Treatment Differences to Uncover Mechanisms. Results Correlation analysis revealed a significant positive association between HDL and ORR, DCR, and PFS. T-test results indicated that the high-HDL group exhibited higher DCR (81.97% vs. 45.57%) and ORR (61.48% vs. 16.46%). Kruskal-Wallis test showed that the high-HDL group had a longer median PFS (11 months vs. 6 months). Utilizing six machine learning algorithms, we constructed models to predict disease relief and stability. The model built using the random forest algorithm demonstrated superior performance, with AUC values of 0.858 and 0.802. Furthermore, both univariate and multivariate Cox analyses identified HDL and LDL as independent risk factors for predicting PFS. In patients with poor immunotherapy response, there is upregulation of BCL2L11, AKT1, and LMNA expression. Conclusion HDL and LDL are independent factors influencing the survival prognosis of NSCLC patients undergoing immune checkpoint inhibitor therapy. HDL is expected to become new biomarkers for predicting the immunotherapy efficacy in patients with NSCLC. In patients with poor immunotherapy response, upregulation of the LMNA gene leads to apoptosis resistance and abnormal lipid metabolism.
Collapse
Affiliation(s)
| | | | - Banwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Wei Y, Zhang R, Yin R, Wang S, Han J, Chen R, Fu Z. Immunotherapy Improves the Survival of Stage 4 Non-Small Cell Lung Cancer Patients at the US Population Level: The Real-World Evidence. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70000. [PMID: 39275901 PMCID: PMC11399776 DOI: 10.1111/crj.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Immunotherapy has revolutionized the management of lung cancer and improved lung cancer survival in trials, but its real-world impact at the population level remains unclear. METHODS Using data obtained from eight Surveillance, Epidemiology, and End Results (SEER) registries from 2004 through 2019, we addressed the long-term trends in the incidence, incidence-based mortality (IBM), and survival of lung cancer patients in the United States. RESULTS The incidence and IBM of both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) all significantly decreased steadily from 2004 to 2019. The 1-year survival (1-YS) of both NSCLC and SCLC improved over time, with the best improvement observed for Stage 4 NSCLC. Two significant turning points of Stage 4 NSCLC 1-YS were observed over the years: 0.63% (95% confidence interval [CI]: 0.33%-0.93%) from 2004 to 2010, 0.81% (95% CI: 0.41%-1.21%) from 2010 to 2014 and a striking 2.09% (95% CI: 1.70%-2.47%) from 2014 to 2019. The same two turning points in 1-YS were pronounced for Stage 4 NSCLC in women, which were coincident with the introduction of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and immunotherapy. However, for Stage 4 NSCLC in men, only one significant turning point in the 1-YS starting in 2014 was found, which might only correspond to immunotherapy. Significant period effects in reduced IBM were also observed for both Stage 4 AD and Stage 4 SQCC during the period. CONCLUSION This SEER analysis found that immunotherapy improved the survival of Stage 4 NSCLC patients at the population level in the United States. This real-world evidence confirms that immunotherapy has truly revolutionized the management of lung cancer.
Collapse
Affiliation(s)
- Yuxuan Wei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Zhang
- College of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Ruikang Yin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shijie Wang
- Radiation Oncology Department, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianglong Han
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruyan Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenming Fu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Morimoto K, Hamashima R, Yamada T, Yokoyama T, Kobayashi T, Tsuyuguchi K, Kanematsu T, Tamiya N, Tsuji T, Nakamura R, Katayama Y, Nishioka N, Iwasaku M, Tokuda S, Takayama K. Clinical significance of chronic pulmonary aspergillosis in lung cancer patients undergoing anticancer drug therapy. Thorac Cancer 2024; 15:1882-1888. [PMID: 39090758 PMCID: PMC11462945 DOI: 10.1111/1759-7714.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Advances in anticancer drugs for lung cancer (LC) have improved the prognosis of LC. Chronic pulmonary aspergillosis (CPA) is a progressive and often exacerbating respiratory disease with a poor prognosis. To date, the prognosis of LC complicated by CPA has not been elucidated. This study investigated the clinical implications of concomitant CPA in patients with LC undergoing anticancer drug treatment. METHODS Between January 2010 and May 2020, we consecutively enrolled patients with LC complicated with CPA at five different institutions in Japan. We analyzed patients with LC complicated by CPA who received anticancer drug treatment. RESULTS A total of 10 patients with LC complicated by CPA received anticancer drug treatment. The median overall survival (OS) was 14.57 months (95% confidence interval [CI]: 5.37-21.67). The cause of death in all patients was LC. Six of the seven patients with LC did not show worsening pulmonary aspergillosis lesions during the anticancer drug treatment. Although two patients discontinued anticancer drug treatment due to pneumonitis, CPA complications did not interfere with the continuation of anticancer drug treatment. In univariate analyses, squamous histology (p = 0.01) and body mass index (<18.5 kg/m2) (p = 0.0008) were significantly associated with poorer OS. CONCLUSIONS This study demonstrated that the cause of death in LC patients with concomitant CPA who received anticancer drug treatments and effective antifungal treatment was LC progression. Further large-scale studies are needed to identify the effect of CPA in patients with LC.
Collapse
Affiliation(s)
- Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Ryosuke Hamashima
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Toshihide Yokoyama
- Department of Respiratory MedicineOhara Healthcare Foundation, Kurashiki Central HospitalOkayamaJapan
| | | | | | - Takanori Kanematsu
- Department of Respiratory MedicineJapanese Red Cross Matsuyama HospitalMatsuyamaJapan
| | - Nobuyo Tamiya
- Department of Respiratory MedicineRakuwakai Otowa HospitalKyotoJapan
| | - Taisuke Tsuji
- Department of Respiratory MedicineJapanese Red Cross Kyoto Daiichi HospitalKyotoJapan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
11
|
Xu Z, Zhang H, Ma G, Meng W, Du J, Wu X, Yang B, Wang N, Ding Y, Zhang Q, Li N, Zhang X, Yu G, Liu S, Li Z. Real‑world evidence of advanced non‑small cell lung carcinoma treated with an immune checkpoint inhibitor plus chemotherapy. Oncol Lett 2024; 28:405. [PMID: 38983127 PMCID: PMC11228919 DOI: 10.3892/ol.2024.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Immunotherapy is an effective treatment strategy for patients with advanced non-small cell lung cancer (NSCLC). Although clinical trials on immunotherapy have provided promising results, real-world research in clinical practice is needed to assess the effectiveness and safety of immunotherapy. The present study aimed to characterize real-world outcomes in patients with advanced NSCLC treated with immune checkpoint inhibitor (ICI)-based regimens. The medical records of patients with advanced NSCLC, who were treated with programmed cell death protein-1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) inhibitors, were reviewed for data collection. The primary objectives were to evaluate progression-free survival (PFS) and overall survival (OS). Therefore, multiple Cox regression models were used to investigate the predictive factors for survival outcomes. Furthermore, survival curves for PFS and OS were created using Kaplan-Meier estimates and compared using the log-rank test. The present study included a total of 133 patients with advanced NSCLC who received therapy with ICIs between January 1, 2019 and December 31, 2022. The final follow-up date was August 24, 2023. The median PFS and OS times were 9.8 and 27.2 months, respectively. Univariate Cox regression analysis demonstrated that sex, clinical stage, PD-L1 status, previous systemic therapy, and brain and liver metastases were associated with PFS, while Eastern Cooperative Oncology Group (ECOG) status, clinical stage, PD-L1 status and brain metastasis were associated with OS. Furthermore, multivariate Cox regression analysis demonstrated that a PD-L1 tumor proportion score (TPS) of ≥50% was an indicator of favorable PFS and OS. An ECOG performance status score of ≥1 was also associated with poor OS but not with PFS. Furthermore, brain metastasis was an indicator for poor PFS and OS, while liver metastasis was only associated with a poor PFS. Finally, the results of the present study demonstrated that PD-L1 status was an independent predictor for PFS and OS in patients with advanced NSCLC, especially adenocarcinoma, who were treated with ICIs plus chemotherapy. The results also suggested that patients with a PD-L1 TPS of ≥50% could benefit when the aforementioned regimens were administrated as a first-line or later-line therapy.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
- Department of Pneumology, Sunshine Union Hospital, Weifang, Shandong 261000, P.R. China
| | - Huien Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Guikai Ma
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Wenjuan Meng
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Junliang Du
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Xin Wu
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Baohong Yang
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Ningning Wang
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Yanhong Ding
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Qingyun Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Na Li
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuede Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Guohua Yu
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Shuzhen Liu
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
| | - Zhenhua Li
- Department of Oncology, The First Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261000, P.R. China
- Department of Pathology, Shanghai Clinical Research and Trial Center, Shanghai 201203, P.R. China
| |
Collapse
|
12
|
Camidge DR, Bar J, Horinouchi H, Goldman J, Moiseenko F, Filippova E, Cicin I, Ciuleanu T, Daaboul N, Liu C, Bradbury P, Moskovitz M, Katgi N, Tomasini P, Zer A, Girard N, Cuppens K, Han JY, Wu SY, Baijal S, Mansfield AS, Kuo CH, Nishino K, Lee SH, Planchard D, Baik C, Li M, Ansell P, Xia S, Bolotin E, Looman J, Ratajczak C, Lu S. Telisotuzumab Vedotin Monotherapy in Patients With Previously Treated c-Met Protein-Overexpressing Advanced Nonsquamous EGFR-Wildtype Non-Small Cell Lung Cancer in the Phase II LUMINOSITY Trial. J Clin Oncol 2024; 42:3000-3011. [PMID: 38843488 PMCID: PMC11361350 DOI: 10.1200/jco.24.00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
PURPOSE Telisotuzumab vedotin (Teliso-V) is a c-Met-directed antibody-drug conjugate with a monomethyl auristatin E cytotoxic payload. The phase II LUMINOSITY trial (ClinicalTrials.gov identifier: NCT03539536) aimed to identify the optimal c-Met protein-overexpressing non-small cell lung cancer (NSCLC) population for treatment with Teliso-V (stage I) and expand the selected group for efficacy evaluation (stage II). Stage II enrolled patients with nonsquamous epidermal growth factor receptor (EGFR)-wildtype NSCLC. METHODS Eligible patients had locally advanced/metastatic c-Met protein-overexpressing NSCLC and ≤2 previous lines of therapy (including ≤1 line of systemic chemotherapy). c-Met protein overexpression in nonsquamous EGFR-wildtype NSCLC was defined as ≥25% tumor cells with 3+ staining (high [≥50% 3+]; intermediate [≥25%-<50%]). Teliso-V was administered at 1.9 mg/kg once every 2 weeks. The primary end point was overall response rate (ORR) by independent central review. RESULTS In total, 172 patients with nonsquamous EGFR-wildtype NSCLC received Teliso-V in stages I and II. ORR was 28.6% (95% CI, 21.7 to 36.2; c-Met high, 34.6% [95% CI, 24.2 to 46.2]; c-Met intermediate, 22.9% [95% CI, 14.4 to 33.4]). The median duration of response was 8.3 months (95% CI, 5.6 to 11.3; c-Met high, 9.0 [95% CI, 4.2 to 13.0]; c-Met intermediate: 7.2 [95% CI, 5.3 to 11.5]). The median overall survival was 14.5 months (95% CI, 9.9 to 16.6; c-Met high, 14.6 [95% CI, 9.2 to 25.6]; c-Met intermediate, 14.2 [95% CI, 9.6 to 16.6]). The median progression-free survival was 5.7 months (95% CI, 4.6 to 6.9; c-Met high, 5.5 [95% CI, 4.1 to 8.3]; c-Met intermediate: 6.0 [95% CI, 4.5 to 8.1]). Most common any-grade treatment-related adverse events (AEs) were peripheral sensory neuropathy (30%), peripheral edema (16%), and fatigue (14%); the most common grade ≥3 AE was peripheral sensory neuropathy (7%). CONCLUSION Teliso-V was associated with durable responses in c-Met protein-overexpressing nonsquamous EGFR-wildtype NSCLC, especially in those with high c-Met. AEs were generally manageable.
Collapse
Affiliation(s)
| | - Jair Bar
- Sheba Medical Center, Ramat Gan, Israel
| | | | | | | | - Elena Filippova
- Center of Palliative Medicine De Vita, St Petersburg, Russia
| | - Irfan Cicin
- Istinye University Medical Center, Istanbul, Turkey
| | | | - Nathalie Daaboul
- Centre intégré de cancérologie de la Montérégie (CICM), Charles-LeMoyne Hospital, University of Sherbrooke, Quebec, QC, Canada
| | - Chunling Liu
- The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang, China
| | - Penelope Bradbury
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Mor Moskovitz
- Davidoff Cancer Center, Beilinson, Petah-Tikva, Israel
| | - Nuran Katgi
- Dr Suat Seren Chest Diseases and Chest Surgery Training and Research Hospital, Health Sciences University, Izmir, Yenisehir, Turkey
| | - Pascale Tomasini
- Aix Marseille University, APHM, INSERM, CNRS, CRCM, Hôpital Nord, Multidisciplinary Oncology and Therapeutic Innovations Department, Marseille, France
| | - Alona Zer
- Davidoff Cancer Center, Beilinson, Petah-Tikva, Israel
| | - Nicolas Girard
- Départment d’Oncologie Médicale, Institut Curie, Paris, France
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology, Jessa Hospital, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ji-Youn Han
- National Cancer Center, Goyang-si, Gyeonggi-do, South Korea
| | - Shang-Yin Wu
- Department of Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
- College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shobhit Baijal
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | | | - Chih-Hsi Kuo
- Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | | | - Se-Hoon Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - David Planchard
- Gustave Roussy, Department of Medical Oncology, Villejuif, France
- Faculty of Medicine, Paris-Saclay University, Paris, France
| | - Christina Baik
- Fred Hutchinson Cancer Center, from Seattle Cancer Care Alliance, Seattle, WA
| | | | | | | | | | | | | | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Lai-Kwon J, Jefford M, Best S, Zhang I, Rutherford C. Selecting Immune Checkpoint Inhibitor Side Effects for Real-Time Monitoring in Routine Cancer Care: A Modified Delphi Study. JCO Oncol Pract 2024:OP2400037. [PMID: 39151111 DOI: 10.1200/op.24.00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/18/2024] Open
Abstract
PURPOSE Electronic patient-reported outcome (ePRO) symptom monitoring may support the safe delivery of immune checkpoint inhibitors (ICI). There is no consensus on which side effects should be monitored in routine care. We aimed to develop a prioritized list of ICI side effects to include in ePRO systems and compare this to existing ICI-specific patient-reported outcome measures (PROMs). METHODS We conducted a two-round modified Delphi survey. Participants were patients (or their carers) who had received/were receiving ICI or managing health care professionals (HCPs). Round 1 (R1) side effects were generated from a literature review and existing PROMs. In R1, participants rated the importance of 63 ICI side effects in an ePRO system on a five-point Likert scale. In round 2 (R2), participants ranked the 10 most important side effects from 36 side effects. Content mapping of the prioritized list against existing PROMs was conducted. RESULTS In R1, 47 patients, nine carers, and 58 HCPs responded. Twenty-eight side effects were rated important (I)/very important (VI) by >75% of participants and included in R2. Ten were rated I/VI by <50% of participants and excluded. Twenty-five were rated I/VI by 50%-75% of participants and discussed at an HCP roundtable to determine inclusion in R2. In R2, 39 patients, 11 carers, and 42 HCPs ranked seizures, shortness of breath, chest pain, diarrhea, and rash as the most important side effects for monitoring. Content mapping showed significant differences between the prioritized list and existing PROMs. CONCLUSION We developed a consumer- and clinician-driven prioritized list of 36 ICI side effects to include in future ePRO systems. This process highlights the importance of broad stakeholder engagement in side-effect selection and rigorously identifying clinically important side effects to ensure content validity and clinical utility.
Collapse
Affiliation(s)
- Julia Lai-Kwon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael Jefford
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Australian Cancer Survivorship Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stephanie Best
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Victorian Comprehensive Cancer Centre Alliance, Melbourne, VIC, Australia
- Australian Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Iris Zhang
- Department of Health Services Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Claudia Rutherford
- Sydney Quality of Life Office, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Li X, Wu D, Tang J, Wu Y. The Efficiency and Safety of Triple-Drug Combination of Albumin-Bound Paclitaxel, Anlotinib and PD-1/L1 Inhibitors in the 2 nd or Above Line of Advanced NSCLC: A Retrospective Cohort Study. Cancer Manag Res 2024; 16:1003-1012. [PMID: 39135711 PMCID: PMC11318595 DOI: 10.2147/cmar.s472196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Background Existing research data indicates that albumin-bound paclitaxel (nab-ptx), anlotinib, and PD-1/L1 inhibitors have individually shown efficacy in second-line and subsequent treatments for advanced non-small cell lung cancer (NSCLC). This study seeks to investigate the potential of an optimized treatment regimen in this context by combining these three drugs and evaluating both efficacy and safety outcomes. Patients and Methods Between January 2020 and January 2022, we collected data from pre-treated advanced NSCLC patients who received a combination therapy of nab-ptx, anlotinib, and PD-1/L1 inhibitors as a second-line or later treatment. The primary endpoints for the study included the objective response rate (ORR), progression-free survival (PFS), disease control rate (DCR) and overall survival (OS), while adverse events (AEs) were also recorded. Results Our findings revealed that the ORR of this regimen in pretreated NSCLC patients was 35.71%, with mean PFS of 5.0 months and mean OS of 10.0 months. Further analysis suggested correlations between the efficacy of the regimen and factors such as PD-L1 expression levels, the occurrence of certain types of adverse events, and the status of NK cell activity. Additionally, the tolerable toxicity profile of this regimen indicates its potential applicability in the treatment of pretreated advanced NSCLC. Conclusion Our study displayed that triple-drug combination of nab-ptx, anlotinib and PD-1/L1 inhibitors showed promising efficiency and tolerated cytotoxicity in the 2nd or above line treatment of advanced NSCLC, indicating the potential of such regimen as an important option for second-line treatment of advanced NSCLC. However, due to limitations in patient numbers, its actual clinical value awaits further research confirmation.
Collapse
Affiliation(s)
- Xiaobing Li
- Department of Thoracic Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - De Wu
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jing Tang
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuebing Wu
- Department of Lymphoma, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
15
|
Myers SP, Sevilimedu V, Jones VM, Abuhadra N, Montagna G, Plitas G, Morrow M, Downs-Canner SM. Impact of Neoadjuvant Chemoimmunotherapy on Surgical Outcomes and Time to Radiation in Triple-Negative Breast Cancer. Ann Surg Oncol 2024; 31:5180-5188. [PMID: 38767803 DOI: 10.1245/s10434-024-15359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND We examined the association between immunotherapy-containing and standard chemotherapy regimens with treatment delays and postoperative complications in stage II-III triple-negative breast cancer. The effect of immune-related adverse events (irAEs) was compared. PATIENTS AND METHODS We compared 139 women treated with neoadjuvant pembrolizumab plus chemotherapy (KEYNOTE-522 regimen) from August 2021 to September 2022 with 287 consecutive patients who received neoadjuvant chemotherapy alone prior to July 2021 and underwent surgery. Baseline characteristics, time to treatments, and surgical complications were compared using two-sample non-parametric tests. Linear regression evaluated association of irAEs with time to surgery and radiation. Logistic regression identified factors associated with surgical complications. RESULTS Age, body mass index, race, American Society of Anesthesiologists (ASA) class, and mastectomy rates were similar among cohorts. No clinically relevant difference in time from end of neoadjuvant treatment to surgery was observed [KEYNOTE-522: median 32 (IQR 27, 43) days; non-KEYNOTE-522: median 31 (IQR 26, 37) days; P = 0.048]. Time to radiation did not differ (P = 0.7). A total of 26 patients (9%; non-KEYNOTE-522) versus 11 (8%; KEYNOTE-522) experienced postoperative complications (P = 0.6). In the KEYNOTE-522 cohort, 59 (43%) of 137 patients experienced 82 irAEs; 40 (68%) required treatment. Older age (P = 0.018) and ASA class 4 (P = 0.007) were associated with delays to surgery after adjusting for clinical factors. Experiencing ≥ 1 irAE was associated with delay to radiation (P = 0.029). IrAEs were not associated with surgical complications (P = 0.4). CONCLUSIONS We observed no clinically meaningful difference between times to surgery/adjuvant radiation or postoperative complications and type of preoperative chemotherapy. IrAEs were associated with delay to adjuvant radiation but not with postoperative complications or delay to surgery.
Collapse
Affiliation(s)
- Sara P Myers
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Varadan Sevilimedu
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - V Morgan Jones
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nour Abuhadra
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giacomo Montagna
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Plitas
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Monica Morrow
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephanie M Downs-Canner
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
16
|
Chen Y, Fan X, Lu R, Zeng S, Gan P. PARP inhibitor and immune checkpoint inhibitor have synergism efficacy in gallbladder cancer. Genes Immun 2024; 25:307-316. [PMID: 38866965 DOI: 10.1038/s41435-024-00280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Gallbladder cancer (GBC) is an aggressive cancer with poor prognosis. PARP inhibitors (PARPi) target PARP enzymes and have shown efficacy in patients with breast cancer gene (BRCA) mutations. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has transformed cancer treatment. However, the combined impact of PARPi and ICIs in GBC remains unclear. We present a groundbreaking case of a GBC patient with BRCA2 mutations who received combination therapy with PARPi and ICIs after failing multiple lines of treatment. Next-generation sequencing (NGS-Seq) identified BRCA gene mutations. To further investigate potential mechanisms, we developed a PARP1-BRCA1-BRCA2 pathway-related risk score (PBscore) system to evaluate the impact of PARPi on the tumor immune microenvironment via RNA-Seq data. Gene expression and functional analysis identified potential mechanisms associated with the PBscore. Experimental validation assessed the impact of the combination therapy on the tumor microenvironment using multiplexed immunofluorescence imaging and immunohistochemistry in patients with BRCA gene wild type or mutations. RNA-Seq analysis revealed correlations between PBscore, immune checkpoint levels, tumor-infiltrating immune cells (TIICs), and the cancer-immunity cycle. Multiplexed immunofluorescence imaging validated that low PBscore patients might have an active tumor microenvironment. Furthermore, upon drug resistance, we observed an upregulation of negative immune checkpoints such as CEACAM1, indicating that the tumor immune microenvironment becomes suppressed after resistance. Our study revealed that PBscore could serve as a biomarker to predict immunotherapy efficacy, offering a promising alternative for BRCA2-mutated GBC patients.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xudong Fan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ruohuang Lu
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Pingping Gan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
17
|
Chocarro L, Blanco E, Fernandez-Rubio L, Garnica M, Zuazo M, Garcia MJ, Bocanegra A, Echaide M, Johnston C, Edwards CJ, Legg J, Pierce AJ, Arasanz H, Fernandez-Hinojal G, Vera R, Ausin K, Santamaria E, Fernandez-Irigoyen J, Kochan G, Escors D. PD-1/LAG-3 co-signaling profiling uncovers CBL ubiquitin ligases as key immunotherapy targets. EMBO Mol Med 2024; 16:1791-1816. [PMID: 39030301 PMCID: PMC11319776 DOI: 10.1038/s44321-024-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/21/2024] Open
Abstract
Many cancer patients do not benefit from PD-L1/PD-1 blockade immunotherapies. PD-1 and LAG-3 co-upregulation in T-cells is one of the major mechanisms of resistance by establishing a highly dysfunctional state in T-cells. To identify shared features associated to PD-1/LAG-3 dysfunctionality in human cancers and T-cells, multiomic expression profiles were obtained for all TCGA cancers immune infiltrates. A PD-1/LAG-3 dysfunctional signature was found which regulated immune, metabolic, genetic, and epigenetic pathways, but especially a reinforced negative regulation of the TCR signalosome. These results were validated in T-cell lines with constitutively active PD-1, LAG-3 pathways and their combination. A differential analysis of the proteome of PD-1/LAG-3 T-cells showed a specific enrichment in ubiquitin ligases participating in E3 ubiquitination pathways. PD-1/LAG-3 co-blockade inhibited CBL-B expression, while the use of a bispecific drug in clinical development also repressed C-CBL expression, which reverted T-cell dysfunctionality in lung cancer patients resistant to PD-L1/PD-1 blockade. The combination of CBL-B-specific small molecule inhibitors with anti-PD-1/anti-LAG-3 immunotherapies demonstrated notable therapeutic efficacy in models of lung cancer refractory to immunotherapies, overcoming PD-1/LAG-3 mediated resistance.
Collapse
Grants
- FIS PI20/00010 MEC | Instituto de Salud Carlos III (ISCIII)
- FIS PI23/00196 MEC | Instituto de Salud Carlos III (ISCIII)
- COV20/00237 MEC | Instituto de Salud Carlos III (ISCIII)
- FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- TRANSPOCART ICI19/00069 MEC | Instituto de Salud Carlos III (ISCIII)
- PFIS,FI21/00080 MEC | Instituto de Salud Carlos III (ISCIII)
- BMED 050-2019 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 51-2021 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- BMED 036-2023 Departamento de Salud, Gobierno de Navarra (Department of Health, Government of Navarra)
- PROYE16001ESC Fundación Científica Asociación Española Contra el Cáncer (AECC)
- AGATA,0011-1411-2020-000013 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- LINTERNA,0011-1411-2020-000033 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- DESCARTHES,0011-1411-2019-000058 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ARNMUNE,0011-1411-2023-000101 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- ISOLDA,grant agreement 848166 EC | Horizon 2020 Framework Programme (H2020)
Collapse
Affiliation(s)
- Luisa Chocarro
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| | - Ester Blanco
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Leticia Fernandez-Rubio
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maider Garnica
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miren Zuazo
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Maria Jesus Garcia
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ana Bocanegra
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Miriam Echaide
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Colette Johnston
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Carolyn J Edwards
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - James Legg
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew J Pierce
- Crescendo Biologics Ltd., Meditrina Building, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Hugo Arasanz
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
- Oncobiona Unit, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Gonzalo Fernandez-Hinojal
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Ruth Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Karina Ausin
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Enrique Santamaria
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Joaquin Fernandez-Irigoyen
- Proteomics Platform, Proteored-ISCIII, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Grazyna Kochan
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - David Escors
- OncoImmunology Unit, Navarrabiomed - Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain.
| |
Collapse
|
18
|
Zheng Z, Yang T, Li Y, Qu P, Shao Z, Wang Y, Chang W, Umar SM, Wang J, Ding N, Wang W. A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy. Front Immunol 2024; 15:1428584. [PMID: 39091498 PMCID: PMC11291258 DOI: 10.3389/fimmu.2024.1428584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.
Collapse
Affiliation(s)
- Zhouhang Zheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tianci Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yixuan Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Shahzad Muhammad Umar
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Holder AM, Dedeilia A, Sierra-Davidson K, Cohen S, Liu D, Parikh A, Boland GM. Defining clinically useful biomarkers of immune checkpoint inhibitors in solid tumours. Nat Rev Cancer 2024; 24:498-512. [PMID: 38867074 DOI: 10.1038/s41568-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Although more than a decade has passed since the approval of immune checkpoint inhibitors (ICIs) for the treatment of melanoma and non-small-cell lung, breast and gastrointestinal cancers, many patients still show limited response. US Food and Drug Administration (FDA)-approved biomarkers include programmed cell death 1 ligand 1 (PDL1) expression, microsatellite status (that is, microsatellite instability-high (MSI-H)) and tumour mutational burden (TMB), but these have limited utility and/or lack standardized testing approaches for pan-cancer applications. Tissue-based analytes (such as tumour gene signatures, tumour antigen presentation or tumour microenvironment profiles) show a correlation with immune response, but equally, these demonstrate limited efficacy, as they represent a single time point and a single spatial assessment. Patient heterogeneity as well as inter- and intra-tumoural differences across different tissue sites and time points represent substantial challenges for static biomarkers. However, dynamic biomarkers such as longitudinal biopsies or novel, less-invasive markers such as blood-based biomarkers, radiomics and the gut microbiome show increasing potential for the dynamic identification of ICI response, and patient-tailored predictors identified through neoadjuvant trials or novel ex vivo tumour models can help to personalize treatment. In this Perspective, we critically assess the multiple new static, dynamic and patient-specific biomarkers, highlight the newest consortia and trial efforts, and provide recommendations for future clinical trials to make meaningful steps forwards in the field.
Collapse
Affiliation(s)
- Ashley M Holder
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sonia Cohen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Aparna Parikh
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Genevieve M Boland
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Zhao P, Xu L, Zhu H, Ding W, Tang H. The clinicopathological features and possible physiological mechanisms of only the EGFR-T790M primary mutation in patients with lung adenocarcinoma. Pathol Res Pract 2024; 259:155352. [PMID: 38781763 DOI: 10.1016/j.prp.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The treatment of non-small cell lung cancer (NSCLC) patients can be complicated by the presence of the EGFR-T790M mutation. Although primary or secondary EGFR-T790M mutations have been extensively studied worldwide, there are few reports on the clinicopathological characteristics and physiological mechanisms of lung adenocarcinoma (LUAD) with only the EGFR-T790M primary mutation. METHODS The clinical data of all LUAD patients with only the EGFR-T790M primary mutation were collected. Immunohistochemical staining was performed on cell cycle-related proteins, targeted therapy indicators, and prognosis-related proteins in the specimens obtained from puncture biopsies or surgeries. OBJECTIVES The aim of this study is to analyze the clinicopathological features and possible physiological mechanisms of only the EGFR-T790M primary mutation in LUAD, and to offer recommendations for clinical management. RESULTS Two patients who have only the T790M de novo mutation were both female (2/12,928, 0.02%). β-catenin and Cyclin D1 were both highly expressed. In case 1, IHC results showed a positive Ki67 and mutant P53 and there was a significant increase in serum CYFRA 21-1. Third-generation of EGFR TKIs resulted in a partial response (PR) time of less than 8 months in case 1. In case 2, the patient underwent surgical resection and adjuvant chemotherapy, resulting in a progression-free survival (PFS) time of 25 months. CONCLUSION The results suggest that abnormal activation of the Wnt signaling pathway may be specifically associated with the EGFR-T790M primary mutation in LUAD. Furthermore, it has been observed that patients with significant Ki67, mutant P53, and CYFRA 21-1 expression tend to have a poor prognosis.
Collapse
Affiliation(s)
- Ping Zhao
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, People's Republic of China
| | - Liming Xu
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, People's Republic of China
| | - Huijuan Zhu
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, People's Republic of China
| | - Wei Ding
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, People's Republic of China
| | - Hui Tang
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
21
|
Zeng J, Zhang L, Ma S, Dai W, Xu M, Wei Y, Zhang Y, Cheng Y, Zhu G, Lu S, Li Q, Cao B. Dysregulation of peripheral and intratumoral KLRG1 + CD8 +T cells is associated with immune evasion in patients with non-small-cell lung cancer. Transl Oncol 2024; 45:101968. [PMID: 38713923 PMCID: PMC11097332 DOI: 10.1016/j.tranon.2024.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024] Open
Abstract
OBJECTIVES Killer cell lectin like receptor G1 (KLRG1) is identified as a co-inhibitory receptor for NK cells and antigen-experienced T cells. The role of KLRG1 in immune regulation in patients with non-small cell lung cancer (NSCLC) remains poorly understood. MATERIALS AND METHODS We measured the proportion and immune function of KLRG1+CD8+T cells derived from peripheral blood in patients with NSCLC by flow cytometry. Besides, using data from the gene expression profiles and single-cell sequencing, we explored the expression and immune role of KLRG1 in tumor tissues of patients with NSCLC. We further determined the prognostic value of KLRG1 in terms of overall survival (OS) in NSCLC patients. RESULTS We found that the proportion of KLRG1+CD8+T cells in peripheral blood significantly increased in patients with NSCLC as compared to those with benign pulmonary nodules and healthy donors. Peripheral KLRG1+CD8+T cell proportion was increased in elder subjects compared to that in younger ones, implying an immunosenescence phenotype. Moreover, the KLRG1+CD8+T cell levels were positively correlated with tumor size and TNM stage in the NSCLC cohort. In vitro stimulation experiments demonstrated that the KLRG1+CD8+T cells from peripheral blood expressed higher levels of Granzyme B and perforin than the KLRG1-CD8+ T cells. However, single-cell RNA sequencing data revealed that the KLRG1+CD8+ T cells were less infiltrated in tumor microenvironment and exhibited impaired cytotoxicity. The KLRG1 gene expression levels were significantly lower in tumor tissues than that in normal lung tissues, and were inversely correlated with CDH1 expression levels. Moreover, higher expression of CDH1 in tumor tissues predicted worse overall survival only in patients with KLRG1-high expression, but not in the KLRG1-low subset. CONCLUSION This study demonstrates that KLRG1+CD8+T cells were associated with tumor immune evasion in NSCLC and suggests KLRG1 as a potential immunotherapy target.
Collapse
Affiliation(s)
- Juan Zeng
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Zhang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shiqi Ma
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Dai
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Man Xu
- Department of Healthy Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Wei
- Department of Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyang Zhang
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Youfu Cheng
- Department of Healthy Center, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shun Lu
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Bangrong Cao
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Biobank, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
22
|
Chen Y, Liu T, Feng H, Liu T, Zhang J, Wang J, Lu J, Rossi A, Riano I, Hu P, Zhang J. The prognostic role of albumin levels in lung cancer patients receiving third-line or advanced immunotherapy: a retrospective study. Transl Lung Cancer Res 2024; 13:1307-1317. [PMID: 38973954 PMCID: PMC11225039 DOI: 10.21037/tlcr-24-378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Background Immunotherapy functions by leveraging immunoregulation drugs to bolster the immune system's capacity to identify and eliminate cancerous cells. In contrast to radiotherapy and chemotherapy, immunotherapy exhibits diminished side effects, heightened efficacy, and prolonged survival rates. Nevertheless, meticulous exploration into the determinants governing the advantageous effects of immunotherapy among patients who have previously undergone multiple prior therapies has yet to be conducted. Albumin (ALB) as a nutritional indicator has not been thoroughly studied for its prognostic effect on efficacy or survival. This study aims to identify factors that influence treatment outcomes among patients undergoing third-line or later immunological therapies. Methods A cohort of 250 lung cancer patients undergoing toripalimab or tislelizumab immunotherapy was the focal point of data collection. The determination of the median value facilitated the establishment of a cut-off point, enabling the categorization of continuous variables. After data collection, a series of statistical analyses of various clinical factors at baseline were performed, including nonparametric tests, logistic regression, and Cox proportional risk modeling. The last follow-up was in May 2022. The primary study endpoint was overall survival (OS). Results A total of 250 patients were enrolled in the study, of which 129 patients received first- or second-line immunotherapy and 121 patients received third-line or subsequent immunotherapy. According to Cox multifactor regression analysis, in patients receiving either first- or second-line therapy, the ALB level exhibited negligible prognostic relevance (P>0.05). However, in patients subjected to immunotherapy beyond the second line, the ALB level manifested significant prognostic importance (P=0.039). Notably, patients demonstrating elevated ALB levels achieved a higher disease control rate (DCR) (70.0% vs. 52.5%, P=0.05) and displayed a tendency towards a heightened objective response rate (ORR) (20.0% vs. 16.4%, P=0.61) in comparison to those with lower ALB levels. Conclusions Among patients undergoing immunotherapy in the third line or subsequent treatment phases, elevated ALB levels in baseline correlated with DCR and OS. Thus, the pre-immunotherapy ALB level emerges as an autonomous predictor of OS in patients subjected to third- or later line immunotherapy interventions.
Collapse
Affiliation(s)
- Yanfei Chen
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Tong Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Feng
- Department of Radiation Therapy, Linyi Cancer Hospital, Linyi, China
| | - Tiantian Liu
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhang
- Department of Childhood Health Development Center, Affiliated Central Hospital of Shandong First Medical University, Jinan, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jihong Lu
- College of Clinical and Basic Medicine of Shandong First Medical University, Jinan, China
| | - Antonio Rossi
- Oncology Centre of Excellence, Therapeutic Science & Strategy Unit, IQVIA, Milan, Italy
| | - Ivy Riano
- Section of Hematology and Medical Oncology, Dartmouth Cancer Center, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Pingping Hu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
Sakaeda K, Kurose K, Matsumura Y, Muto S, Fukuda M, Sugasaki N, Fukuda M, Takemoto S, Taniguchi H, Masuda T, Shimizu K, Kataoka Y, Irino Y, Sakai Y, Atarashi Y, Yanagida M, Hattori N, Mukae H, Nakata M, Kanda E, Oga T, Suzuki H, Oka M. Automated immunoassay of serum NY-ESO-1 and XAGE1 antibodies for predicting clinical benefit with immune checkpoint inhibitor (ICI) in advanced non-small cell lung cancer. Cancer Treat Res Commun 2024; 40:100830. [PMID: 38964205 DOI: 10.1016/j.ctarc.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND NY-ESO-1 and XAGE1 cancer/testis antigens elicit humoral and cellular immune responses in NSCLC patients. We aimed to predict clinical benefit with ICI monotherapy, using an automated immunoassay of NY-ESO-1/XAGE1 antibodies (Abs). METHODS This study enrolled 99 NSCLC patients who received nivolumab after chemotherapy, including 21 patients harboring EGFR, ALK, or KRAS alterations. The cutoff value (10 units/mL) of NY-ESO-1 and XAGE1 Ab was determined based on Ab levels in non-malignant controls, and NY-ESO-1/XAGE1 Abs in NSCLC were measured before nivolumab. Differences in PFS and OS between the Ab-positive and Ab-negative groups were retrospectively analyzed using Cox regression analysis after applying inverse probability of treatment weighting (IPTW). RESULTS NY-ESO-1/XAGE1 Abs were positive in 28 NSCLC, who responded more highly to nivolumab than the Ab-negatives (response rate 50.0% vs. 15.5 %, p < 0.0007). The IPTW-adjusted positives and negatives for NY-ESO-1/XAGE1 Abs were 24.5 and 70.2, respectively. The Ab-positives showed longer IPTW-adjusted PFS (HR = 0.59, 95 % CI: 0.39-0.90, p = 0.014) and IPTW-adjusted OS (HR = 0.51, 95 % CI: 0.32-0.81, p = 0.004) than the Ab-negatives. Among NSCLC harboring driver genes, the Ab-positives (n = 10) showed longer PFS (HR = 0.34, 95 % CI: 0.13-0.89, p = 0.029) and OS (HR = 0.27, 95 % CI: 0.098-0.75, p = 0.012) than the Ab-negatives (n = 11). CONCLUSION Our immunoassay of NY-ESO-1/XAGE1 Abs is probably useful for predicting the clinical benefit with nivolumab in NSCLC, including those harboring driver genes. These results suggest that our immunoassay may be useful in ICI monotherapy for NSCLC.
Collapse
Affiliation(s)
- Kanako Sakaeda
- Central Research Laboratories, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Koji Kurose
- Respiratory Medicine, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yuki Matsumura
- Thoracic Surgery, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Satoshi Muto
- Thoracic Surgery, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Minoru Fukuda
- Respiratory Medicine, Nagasaki Prefecture Shimabara Hospital, Shimabara, Nagasaki 855-0861, Japan
| | - Nanae Sugasaki
- Respiratory Medicine, Nagasaki Prefecture Shimabara Hospital, Shimabara, Nagasaki 855-0861, Japan
| | - Masaaki Fukuda
- Respiratory Medicine, The Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Nagasaki 852-8511, Japan
| | - Shinnosuke Takemoto
- Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Nagasaki 852-8501, Japan
| | - Hirokazu Taniguchi
- Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Nagasaki 852-8501, Japan
| | - Takeshi Masuda
- Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima, Hiroshima 734-8551, Japan
| | - Katsuhiko Shimizu
- Thoracic Surgery, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Yuki Kataoka
- Scientific Research Works Peer Support Group (SRWS-PSG), Osaka, Japan
| | - Yasuhiro Irino
- Central Research Laboratories, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Yumiko Sakai
- Central Research Laboratories, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Yusuke Atarashi
- Central Research Laboratories, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Masatoshi Yanagida
- Central Research Laboratories, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Noboru Hattori
- Respiratory Internal Medicine, Hiroshima University Hospital, Hiroshima, Hiroshima 734-8551, Japan
| | - Hiroshi Mukae
- Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Nagasaki 852-8501, Japan
| | - Masao Nakata
- Thoracic Surgery, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Eiichiro Kanda
- Medical Science, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Toru Oga
- Respiratory Medicine, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Hiroyuki Suzuki
- Thoracic Surgery, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Mikio Oka
- Immuno-Oncology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan.
| |
Collapse
|
24
|
Hu J, Li M, Xie Z, Chen J. Comparison of the efficacy and safety of domestically produced tislelizumab, camrelizumab, and imported pembrolizumab in the treatment of advanced NSCLC: a real-world retrospective study. Clin Transl Oncol 2024:10.1007/s12094-024-03565-7. [PMID: 38935240 DOI: 10.1007/s12094-024-03565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Since the imported PD-1 inhibitor pembrolizumab was listed in China in 2018, China has opened up the era of immunotherapy for malignant tumors, with several domestically produced PD-1 inhibitors coming onto the market one after another. To find out whether there are differences in the efficacy and safety of domestic and imported PD-1 inhibitors in patients with advanced non-small cell lung cancer, we conducted this retrospective study in two tertiary hospitals in China. METHODS Patients with advanced NSCLC treated with tislelizumab or camrelizumab or pembrolizumab who met the inclusion criteria were screened through the electronic medical record system. A total of 259 patients were screened, but due to the unbalanced baseline, we performed propensity score matching and finally included 149 patients in three groups: pembrolizumab (n = 38), tislelizumab (n = 38), and camrelizumab (n = 73), which had very balanced baseline characteristics in each group after propensity score matching treatment. RESULTS The results showed that the median progression-free period was 11.3 m vs 10.1 m vs 8.9 m; p = 0.754; and the objective response rate was 63.2% vs 50% vs 57.5%; P = 0.510 for pembrolizumab, tislelizumab, and carrelizumab, respectively. There was no significant difference in median PFS between PD-L1 expression subgroups. In terms of safety, only skin toxicity of any grade of carrelizumab was higher than that of the other two groups (p = 0.034), and the incidence of grade ≥ 3 adverse reactions was not statistically significant among the three groups. CONCLUSION In this real-world study, the efficacy and safety of the domestically produced tislelizumab, camrelizumab, and the imported pembrolizumab were comparable.
Collapse
Affiliation(s)
- Jia Hu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - MengTing Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - ZeYu Xie
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - JiSheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
25
|
Capella MP, Pang SA, Magalhaes MA, Esfahani K. A Review of Immunotherapy in Non-Small-Cell Lung Cancer. Curr Oncol 2024; 31:3495-3512. [PMID: 38920741 PMCID: PMC11203112 DOI: 10.3390/curroncol31060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors has led to a dramatic increase in the survival of patients with lung cancer across all stages. Over the past decade, the field has experienced rapid maturation; however, several challenges continue to complicate patient management. This review aims to highlight the data that led to this dramatic shift in practice as well as to focus on key challenges. These include determining the optimal therapy duration, managing frail patients or those with brain metastases, addressing the challenges posed by immune-related adverse events, and defining the various patterns of clinical and radiological responses to immunotherapy.
Collapse
Affiliation(s)
- Mariana Pilon Capella
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
| | - Steph A. Pang
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
| | - Marcos A. Magalhaes
- Department of Oncology, Hospital Beneficencia Portuguesa de Sao Paulo, São Paulo 01451-010, Brazil;
| | - Khashayar Esfahani
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (M.P.C.)
- Department of Oncology, St. Mary’s Hospital, McGill University, Montreal, QC H3T 1M5, Canada
| |
Collapse
|
26
|
Lan C, Lu H, Zhou L, Liao K, Liu J, Xie Z, Liang H, Zou G, Yang T, Xu Q, Huang X. Long-term survival outcomes and immune checkpoint inhibitor retreatment in patients with advanced cervical cancer treated with camrelizumab plus apatinib in the phase II CLAP study. Cancer Commun (Lond) 2024; 44:654-669. [PMID: 38741375 PMCID: PMC11194449 DOI: 10.1002/cac2.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Camrelizumab plus apatinib have demonstrated robust antitumor activity and safety in patients with advanced cervical cancer (CLAP study; NCT03816553). We herein present the updated long-term results of the CLAP study and explore potential biomarkers for survival. The outcomes of patients who underwent immune checkpoint inhibitor (ICI) retreatment were also reported. METHODS In this phase II trial, eligible patients received camrelizumab 200 mg intravenously every two weeks and apatinib 250 mg orally once daily in 4-week cycles for up to two years. Treatment was continued until disease progression, unacceptable toxicity, or withdrawal of consent. RESULTS Between January 21 and August 1, 2019, a total of 45 patients were enrolled. Data were analyzed as of July 31, 2023, representing > 48 months since treatment initiation for all patients. Nine (20.0%) patients completed the 2-year study. The median duration of response (DOR) was 16.6 months, and 45.0% of patients achieved a DOR of ≥ 24 months. The 12-month progression-free survival (PFS) rate was 40.7% (95% confidence interval [CI], 25.2-55.6), with an 18-month PFS rate of 37.8% (95% CI, 22.7-52.8). The median overall survival (OS) was 20.3 months (95% CI, 9.3-36.9), and the 24-month OS rate was 47.8% (95% CI, 31.7-62.3). Age > 50 years, programmed death-ligand 1 (PD-L1) combined positive score (CPS) ≥ 1 (versus [vs.] < 1), CPS ≥ 10 (vs. < 1), high tumor mutational burden, and PIK3CA mutations were associated with improved PFS (hazard ratio [HR] < 1) and longer OS (HR < 1). Eight patients who initially responded in the CLAP trial but later experienced disease progression were retreated with ICIs. Among them, 2 (25.0%) achieved a partial response, while 5 (62.5%) had stable disease. Notably, four patients who received retreatment with ICIs survived for more than 45 months. No new safety signals were identified in the present study. CONCLUSION Long-term survival follow-up data demonstrated that camrelizumab plus apatinib has robust, sustained, and durable efficacy in patients with advanced cervical cancer who progress after first-line platinum-based chemotherapy. No new safety signals were noted with long-term treatment.
Collapse
Affiliation(s)
- Chunyan Lan
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Huaiwu Lu
- Department of Gynecologic OncologySun Yat‐sen Memorial HospitalGuangzhouGuangdongP. R. China
| | - Lin Zhou
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Kunlun Liao
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
- Clinical Research Daytime Treatment CenterSun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
| | - Junxiu Liu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdongP. R. China
| | - Zhiwen Xie
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Haixi Liang
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Guorong Zou
- Cancer Institute of PanyuPanyu Central HospitalGuangzhouGuangdongP. R. China
| | - Ting Yang
- Medical AffairsJiangsu Hengrui Pharmaceuticals Co., LtdShanghaiP. R. China
| | - Qin Xu
- Department of GynecologyClinical Oncology School of Fujian Medical UniversityFujian Cancer HospitalFuzhouFujianP. R. China
| | - Xin Huang
- Department of Gynecologic OncologySun Yat‐sen University Cancer CentreGuangzhouGuangdongP. R. China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Centre for Cancer MedicineGuangzhouGuangdongP. R. China
| |
Collapse
|
27
|
Li S, Yu ZS, Liu HZ, Li SJ, Wang MY, Ning FL, Tian LJ. Immunotherapy combined with antiangiogenic therapy as third- or further-line therapy for stage IV non-small cell lung cancer patients with ECOG performance status 2: A retrospective study. Cancer Med 2024; 13:e7349. [PMID: 38872402 PMCID: PMC11176590 DOI: 10.1002/cam4.7349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Patients with Eastern Cooperative Oncology Group performance status (ECOG PS) 2 probably cannot tolerate chemotherapy or other antitumor therapies. Some studies have reported that immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity. However, the efficacy of this combination as a later-line therapy in patients with ECOG PS 2 is unclear. This study evaluated the effectiveness and safety of this combination strategy as third- or further-line therapy in stage IV non-small cell lung cancer (NSCLC) patients with ECOG PS 2. METHODS In this retrospective study, patients treated with camrelizumab plus antiangiogenic therapy (bevacizumab, anlotinib, or recombinant human endostatin) were included. Objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), quality of life (QOL) assessed by ECOG PS, and safety were analyzed. RESULTS Between January 10, 2019, and February 28, 2024, a total of 59 patients were included. The ORR was 35.6% (21/59) and the DCR was 86.4%. With a median follow-up of 10.5 months (range: 0.7-23.7), the median PFS was 5.5 months (95% confidence interval [CI]: 3.8-7.3) and the median OS was 10.5 months (95% CI: 11.2-13.6). QOL was improved (≥1 reduction in ECOG PS) in 39 patients (66.1%). The most common Grade 3-4 treatment-related adverse events were hepatic dysfunction (6 [10%]), hypertension (5 [8%]), and hypothyroidism (3 [5%]). There were no treatment-related deaths. CONCLUSIONS Third- or further-line immunotherapy combined with antiangiogenic therapy is well-tolerated and shows good antitumor activity in stage IV NSCLC patients with ECOG PS 2. Future large-scale prospective studies are required to confirm the clinical benefits of this combination therapy.
Collapse
Affiliation(s)
- Shuo Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ze-Shun Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Hong-Zhi Liu
- Department of Orthopedics, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Shu-Jing Li
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Ming-Yue Wang
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Fang-Ling Ning
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Li-Jun Tian
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| |
Collapse
|
28
|
Madabhavi I, Sarkar M, Kumar V, Sagar R. Combined Metronomic Chemo-immunotherapy (CMCI) in Head and Neck Cancers-An Experience from a Developing Country. Indian J Surg Oncol 2024; 15:321-331. [PMID: 38741631 PMCID: PMC11088580 DOI: 10.1007/s13193-024-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 05/16/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) have proven to be inherently resistant to systemic treatments as a result of histological, molecular, and etiological heterogeneity, with limited responses seen after second-line therapy and beyond. With limited treatment options after progression on systemic chemotherapy in HNSCCs, immunotherapy has a role to play with improved results. In this prospective, observational, non-randomized, open-label study, a total of 12 patients with advanced, relapsed, or metastatic HNSCC received Inj. Nivolumab weight-based dose of 3 mg per kg, intravenously every 2 weeks along with low-dose capecitabine 500 mg twice a day, was prospectively assessed. The patient's clinical, hematological, and staging characteristics were described and the clinical benefit rate (CBR) was calculated. A total of 12 patients received the combined metronomic chemo-immunotherapy (CMCI). The majority of patients were belonging to ECOG-PS 1(66%), with all patients being in stage IV disease. Six, four, and two patients received immunotherapy as the 5th, 3rd, and 4th line of therapy, respectively. Nivolumab and low-dose capecitabine were used in all 12 patients. CBR was seen in 66% (8/12) of patients, one patient died due to hepatitis and hepatic encephalopathy, another patient died due to pneumonia and respiratory complications, two patients had progressive disease, and two patients with stable disease discontinued treatment because of financial constraints and kept on capecitabine alone. The majority tolerated therapy well with no grade 3/4 immune-related adverse events (IRAEs). Two patients required supportive therapy with packed red cell transfusion and albumin infusions. Six-month overall survival (OS) and progression-free survival (PFS) in the study population were 83.3% and 66.6%, respectively. In conclusion, nivolumab along with metronomic chemotherapy with low-dose capecitabine was very well tolerated and exhibited anti-tumor activity with a CBR of 66%, 6-month OS of 83.3%, and 6-month PFS of 66.6%, in extensively pretreated patients with HNSCCs. Additional studies of nivolumab and metronomic chemotherapy and immuno-immuno combination therapy in these diseases are ongoing.
Collapse
Affiliation(s)
- Irappa Madabhavi
- Department of Medical and Pediatric Oncology and Hematology, J N Medical College and KLE Academy of Higher Education and Research, Belagavi, India
- Kerudi Cancer Hospital, Bagalkot, India
- Nanjappa Hospital, Davanagere, Karnataka India
| | - Malay Sarkar
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh India
| | - Vineet Kumar
- Department of Community Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh India
| | - Raghavendra Sagar
- Department of Radiation Oncology, J N Medical College, Belagavi, Karnataka India
| |
Collapse
|
29
|
Li B, Su J, Liu K, Hu C. Deep learning radiomics model based on PET/CT predicts PD-L1 expression in non-small cell lung cancer. Eur J Radiol Open 2024; 12:100549. [PMID: 38304572 PMCID: PMC10831499 DOI: 10.1016/j.ejro.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
Purpose Programmed cell death protein-1 ligand (PD-L1) is an important prognostic predictor for immunotherapy of non-small cell lung cancer (NSCLC). This study aimed to develop a non-invasive deep learning and radiomics model based on positron emission tomography and computed tomography (PET/CT) to predict PD-L1 expression in NSCLC. Methods A total of 136 patients with NSCLC between January 2021 and September 2022 were enrolled in this study. The patients were randomly divided into the training dataset and the validation dataset in a ratio of 7:3. Radiomics feature and deep learning feature were extracted from their PET/CT images. The Mann-whitney U-test, Least Absolute Shrinkage and Selection Operator algorithm and Spearman correlation analysis were used to select the top significant features. Then we developed a radiomics model, a deep learning model, and a fusion model based on the selected features. The performance of three models were compared by the area under the curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value. Results Of the patients, 42 patients were PD-L1 negative and 94 patients were PD-L1 positive. A total of 2446 radiomics features and 4096 deep learning features were extracted per patient. In the training dataset, the fusion model achieved a highest AUC (0.954, 95% confident internal [CI]: 0.890-0.986) compared with the radiomics model (0.829, 95%CI: 0.738-0.898) and the deep learning model (0.935, 95%CI: 0.865-0.975). In the validation dataset, the AUC of the fusion model (0.910, 95% CI: 0.779-0.977) was also higher than that of the radiomics model (0.785, 95% CI: 0.628-0.897) and the deep learning model (0.867, 95% CI: 0.724-0.952). Conclusion The PET/CT-based deep learning radiomics model can predict the PD-L1 expression accurately in NSCLC patients, and provides a non-invasive tool for clinicians to select positive PD-L1 patients.
Collapse
Affiliation(s)
| | | | - Kai Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Chunfeng Hu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Rehman S, Harikrishna A, Silwal A, Sumie BR, Mohamed S, Kolhe N, Maddi M, Huynh L, Gutierrez J, Annepu YR, Farrukh AM. Ovarian angiosarcoma: A systematic review of literature and survival analysis. Ann Diagn Pathol 2024; 73:152331. [PMID: 38811255 DOI: 10.1016/j.anndiagpath.2024.152331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Ovarian angiosarcoma (OA) is rare, with only sporadic cases reported in English literature. We performed a systematic review of cases published in the PubMed, Science Direct, and Google Scholar databases with the aim of describing the reported clinicopathological features of OA. Fifty-three articles that reported 60 patients were reviewed. Of the 60 patients, 7 (11.6 %) were diagnosed with secondary (metastatic) ovarian angiosarcoma and 53 (88.3 %) were diagnosed with primary ovarian angiosarcoma. The mean age at presentation for ovarian angiosarcoma was 38.3±17.8 years. The average tumor size for ovarian angiosarcoma was 11.9±6.1 cm. Abdominal distention was reported in 45/60 (75 %). Microscopic examination revealed necrosis in 28/60 (46.7 %), pleomorphism in 32/59 (54.2 %), mitotic figures in 44/60 (73.3 %), spindle-shaped cells in 27/36 (75 %), epithelioid-shaped cells in 20/36 (55.5 %), and mixed epithelioid and spindle-shaped cells in 12/36 (33.3 %) patients. On immunohistochemistry CD 31 was positive in 41/41 (100 %), CD 34 in 38/39 (97.4 %), and Factor VIII related antigen in 18/21 (85.7 %) patients. Metastasis was present in 43/60 (71.6 %) patients. Chemotherapy and surgery was performed in 36/52 (69.2 %). The median follow-up time for ovarian angiosarcoma was 7 months (IQR1-IQR3:2-13.5 months). 24 (48 %) of the 50 patients with available survival data were alive and 26/50 (52 %) were dead of disease. Survival analyses (KM curves) revealed that the presence of necrosis (log-rank test; p = 0.05) and absence of spindle-shaped cells (log rank test; p = 0.04) on histopathology were associated with worse outcomes, while treatment with combined chemotherapy and surgical excision was associated with better survival (P < 0.001) therefore, prompt diagnosis and early treatment with combined chemotherapy and surgical excision can prolong survival in OA.
Collapse
Affiliation(s)
- Shafi Rehman
- Department of Histopathology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Pakistan.
| | | | - Amisha Silwal
- Cagayan State University College of Medicine, Philippines
| | - B R Sumie
- KMCH Medical College Hospital, India
| | - Safdar Mohamed
- Nicolae Testemitanu State University of Medicine and Pharmacy, Republic of Moldova
| | | | - Meghana Maddi
- Kamineni Academy of Medical Sciences and Research Center, Hyderabad, India
| | - Linh Huynh
- Kansas College of Osteopathic Medicine, United States of America
| | | | | | | |
Collapse
|
31
|
Ferrari V, Helissey C. Revolutionizing Localized Lung Cancer Treatment: Neoadjuvant Chemotherapy plus Immunotherapy for All? J Clin Med 2024; 13:2715. [PMID: 38731244 PMCID: PMC11084409 DOI: 10.3390/jcm13092715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lung cancer poses a significant public health challenge, with resectable non-small cell lung cancer (NSCLC) representing 20 to 25% of all NSCLC cases, staged between I and IIIA. Despite surgical interventions, patient survival remains unsatisfactory, with approximately 50% mortality within 5 years across early stages. While perioperative chemotherapy offers some benefit, outcomes vary. Therefore, novel therapeutic approaches are imperative to improve patient survival. The combination of chemotherapy and immunotherapy emerges as a promising avenue. In this review, we explore studies demonstrating the benefits of this combination therapy, its impact on surgical procedures, and patient quality of life. However, challenges persist, particularly for patients failing to achieve pathologic complete response (pCR), those with stage II lung cancer, and individuals with specific genetic mutations. Additionally, identifying predictive biomarkers remains challenging. Nevertheless, the integration of immunotherapy and chemotherapy in the preoperative setting presents a new paradigm in managing resectable lung cancer, heralding more effective and personalized treatments for patients.
Collapse
Affiliation(s)
| | - Carole Helissey
- Department of Medical Oncology and Clinical Research Unit, Military Hospital Bégin, 94160 Saint-Mandé, France
| |
Collapse
|
32
|
Tourniaire P, Ilie M, Mazières J, Vigier A, Ghiringhelli F, Piton N, Sabourin JC, Bibeau F, Hofman P, Ayache N, Delingette H. WhARIO: whole-slide-image-based survival analysis for patients treated with immunotherapy. J Med Imaging (Bellingham) 2024; 11:037502. [PMID: 38737491 PMCID: PMC11088447 DOI: 10.1117/1.jmi.11.3.037502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/21/2024] [Accepted: 04/03/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Immune checkpoint inhibitors (ICIs) are now one of the standards of care for patients with lung cancer and have greatly improved both progression-free and overall survival, although < 20 % of the patients respond to the treatment, and some face acute adverse events. Although a few predictive biomarkers have integrated the clinical workflow, they require additional modalities on top of whole-slide images and lack efficiency or robustness. In this work, we propose a biomarker of immunotherapy outcome derived solely from the analysis of histology slides. Approach We develop a three-step framework, combining contrastive learning and nonparametric clustering to distinguish tissue patterns within the slides, before exploiting the adjacencies of previously defined regions to derive features and train a proportional hazards model for survival analysis. We test our approach on an in-house dataset of 193 patients from 5 medical centers and compare it with the gold standard tumor proportion score (TPS) biomarker. Results On a fivefold cross-validation (CV) of the entire dataset, the whole-slide image-based survival analysis for patients treated with immunotherapy (WhARIO) features are able to separate a low- and a high-risk group of patients with a hazard ratio (HR) of 2.29 (CI 95 = 1.48 to 3.56), whereas the TPS 1% reference threshold only reaches a HR of 1.81 (CI 95 = 1.21 to 2.69). Combining the two yields a higher HR of 2.60 (CI 95 = 1.72 to 3.94). Additional experiments on the same dataset, where one out of five centers is excluded from the CV and used as a test set, confirm these trends. Conclusions Our uniquely designed WhARIO features are an efficient predictor of survival for lung cancer patients who received ICI treatment. We achieve similar performance to the current gold standard biomarker, without the need to access other imaging modalities, and show that both can be used together to reach even better results.
Collapse
Affiliation(s)
- Paul Tourniaire
- Université Côte d’Azur, Inria, Epione Project-Team, Sophia Antipolis, Nice, France
| | - Marius Ilie
- Pasteur Hospital, Université Côte d’Azur Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Hospital-Related Biobank BB-0033-00025
- FHU OncoAge, Nice, France
| | - Julien Mazières
- CHU Toulouse-Hôpital Larrey, Université Paul Sabatier, Department of Pneumology, Toulouse, France
| | - Anna Vigier
- IUCT-Oncopole, Department of Pathology, Toulouse, France
| | | | - Nicolas Piton
- Rouen University Hospital, France and Normandie University, UNIROUEN, Inserm U124, Department of Pathology, Rouen, France
| | - Jean-Christophe Sabourin
- Rouen University Hospital, France and Normandie University, UNIROUEN, Inserm U124, Department of Pathology, Rouen, France
| | - Frédéric Bibeau
- Centre Hospitalier Universitaire de Besançon, Department of Pathology, Besançon, France
| | - Paul Hofman
- Pasteur Hospital, Université Côte d’Azur Nice, Laboratory of Clinical and Experimental Pathology, Nice, France
- Hospital-Related Biobank BB-0033-00025
- FHU OncoAge, Nice, France
| | - Nicholas Ayache
- Université Côte d’Azur, Inria, Epione Project-Team, Sophia Antipolis, Nice, France
- FHU OncoAge, Nice, France
| | - Hervé Delingette
- Université Côte d’Azur, Inria, Epione Project-Team, Sophia Antipolis, Nice, France
- FHU OncoAge, Nice, France
| |
Collapse
|
33
|
Li Y, Sharma A, Schmidt-Wolf IGH. Evolving insights into the improvement of adoptive T-cell immunotherapy through PD-1/PD-L1 blockade in the clinical spectrum of lung cancer. Mol Cancer 2024; 23:80. [PMID: 38659003 PMCID: PMC11040940 DOI: 10.1186/s12943-023-01926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/20/2023] [Indexed: 04/26/2024] Open
Abstract
Undeniably, cancer immunotherapies have expanded the spectrum of cancer treatment, however, some patients do not respond to immunotherapies. This scenario is no different for lung cancer, whose two main types, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), still pose a serious clinical challenge. Adoptive T-cell therapies (ATC), which primarily include cytokine-induced killer (CIK) cell therapy, chimeric antigen receptor T-cell (CAR T-cell) therapy and γδ-T-cell therapy, strengthen the patient's immune system in combating cancer. Combining ATC with immune checkpoint inhibitors (ICI) further enhances the effectiveness of this approach to eradicate cancer. With a particular emphasis on CIK cell therapy, which recently completed 30 years, we highlight the role of the PD-1/PD-L1 axis in NSCLC and SCLC. Besides, we provide insights into the potential synergies of PD-1/PD-L1 inhibitors with adoptive T-cell immunotherapy in reshaping the treatment paradigm for lung cancer.
Collapse
Affiliation(s)
- Yutao Li
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Venusberg Campus 1, D-53127,, Bonn, Germany.
| |
Collapse
|
34
|
Tricarico P, Chardin D, Martin N, Contu S, Hugonnet F, Otto J, Humbert O. Total metabolic tumor volume on 18F-FDG PET/CT is a game-changer for patients with metastatic lung cancer treated with immunotherapy. J Immunother Cancer 2024; 12:e007628. [PMID: 38649279 PMCID: PMC11043703 DOI: 10.1136/jitc-2023-007628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Because of atypical response imaging patterns in patients with metastatic non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICPIs), new biomarkers are needed for a better monitoring of treatment efficacy. The aim of this prospective study was to evaluate the prognostic value of volume-derived positron-emission tomography (PET) parameters on baseline and follow-up 18F-fluoro-deoxy-glucose PET (18F-FDG-PET) scans and compare it with the conventional PET Response Criteria in Solid Tumors (PERCIST). METHODS Patients with metastatic NSCLC were included in two different single-center prospective trials. 18F-FDG-PET studies were performed before the start of immunotherapy (PETbaseline), after 6-8 weeks (PETinterim1) and after 12-16 weeks (PETinterim2) of treatment, using PERCIST criteria for tumor response assessment. Different metabolic parameters were evaluated: absolute values of maximum standardized uptake value (SUVmax) of the most intense lesion, total metabolic tumor volume (TMTV), total lesion glycolysis (TLG), but also their percentage changes between PET studies (ΔSUVmax, ΔTMTV and ΔTLG). The median follow-up of patients was 31 (7.3-31.8) months. Prognostic values and optimal thresholds of PET parameters were estimated by ROC (Receiver Operating Characteristic) curve analysis of 12-month overall survival (12M-OS) and 6-month progression-free survival (6M-PFS). Tumor progression needed to be confirmed by a multidisciplinary tumor board, considering atypical response patterns on imaging. RESULTS 110 patients were prospectively included. On PETbaseline, TMTV was predictive of 12M-OS [AUC (Area Under Curve) =0.64; 95% CI: 0.61 to 0.66] whereas SUVmax and TLG were not. On PETinterim1 and PETinterim2, all metabolic parameters were predictive for 12M-OS and 6M-PFS, the residual TMTV on PETinterim1 (TMTV1) being the strongest prognostic biomarker (AUC=0.83 and 0.82; 95% CI: 0.74 to 0.91, for 12M-OS and 6M-PFS, respectively). Using the optimal threshold by ROC curve to classify patients into three TMTV1 subgroups (0 cm3; 0-57 cm3; >57 cm3), TMTV1 prognostic stratification was independent of PERCIST criteria on both PFS and OS, and significantly outperformed them. Subgroup analysis demonstrated that TMTV1 remained a strong prognostic biomarker of 12M-OS for non-responding patients (p=0.0003) according to PERCIST criteria. In the specific group of patients with PERCIST progression on PETinterim1, low residual tumor volume (<57 cm3) was still associated with a very favorable patients' outcome (6M-PFS=73%; 24M-OS=55%). CONCLUSION The absolute value of residual metabolic tumor volume, assessed 6-8 weeks after the start of ICPI, is an optimal and independent prognostic measure, exceeding and complementing conventional PERCIST criteria. Oncologists should consider it in patients with first tumor progression according to PERCIST criteria, as it helps identify patients who benefit from continued treatment. TRIAL REGISTRATION NUMBER 2018-A02116-49; NCT03584334.
Collapse
Affiliation(s)
- Pierre Tricarico
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Nice, France
| | - David Chardin
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Nice, France
- IBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Nicolas Martin
- Department of Medical Oncology, Centre Antoine-Lacassagne, Nice, France
| | - Sara Contu
- Department of Biostatistics, Centre Antoine-Lacassagne, Nice, France
| | - Florent Hugonnet
- Department of Nuclear Medicine, Centre Hospitalier Princesse Grâce, Monaco
| | - Josiane Otto
- Department of Medical Oncology, Centre Antoine-Lacassagne, Nice, France
| | - Olivier Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Nice, France
- IBV, Université Côte d'Azur, CNRS, Inserm, Nice, France
| |
Collapse
|
35
|
Divan HA, Bittoni MA, Krishna A, Carbone DP. Real-world patient characteristics and treatment patterns in US patients with advanced non-small cell lung cancer. BMC Cancer 2024; 24:424. [PMID: 38580900 PMCID: PMC10998387 DOI: 10.1186/s12885-024-12126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Patients from non-small cell lung cancer (NSCLC) controlled clinical trials do not always reflect real-world heterogeneous patient populations. We designed a study to describe the real-world patient characteristics and treatment patterns of first-line treatment in patients in the US with NSCLC. METHODS This was an observational, retrospective cohort study based on electronic medical records of US adults with locally advanced or metastatic disease in the ConcertAI Patient360 NSCLC database who initiated first-line treatment with anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) therapy between July 2016 and December 2020. The analysis used patient attributes, clinical characteristics, and treatments from each patient's medical records. RESULTS A total of 2175 patients were eligible for analysis. The median age was 68 years, and 26.2% of the patients were ≥75 years old. At treatment initiation, 96.4% and 3.6% of the patients had Stage 4 and Stage 3 (B or C) NSCLC, respectively. The most common histology type was nonsquamous adenocarcinoma (66.4%), and 19.8% had Eastern Cooperative Oncology Group performance status ≥2. Immunosuppressive medications were being used by 17.7% of patients, and 11.0% were immunocompromised. Almost all patients had metastases: 64.6% had 1, 23.2% had 2, and 8.0% had ≥3 metastatic sites. Brain metastases were present in 22.9% of patients. Treatment evolution was observed with first-line standard of care shifting from single-agent immunotherapy in 2016 (90.2%) to combination immunotherapy and chemotherapy in 2020 (60.2%). CONCLUSION Between 2016 and 2020, the first-line treatment paradigm for advanced NSCLC in the US shifted from anti-PD-1/PD-L1 monotherapy to combination chemoimmunotherapy, with increasing biomarker testing. Further research in heterogeneous patient populations to characterize treatment strategies is warranted.
Collapse
Affiliation(s)
- Hozefa A Divan
- Sanofi, Inc., 450 Water Street, Cambridge, MA, 02142, USA
| | - Marisa A Bittoni
- James Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue, Columbus, OH, 43210, USA
| | - Ashok Krishna
- Sanofi, Inc., 450 Water Street, Cambridge, MA, 02142, USA.
| | - David P Carbone
- James Comprehensive Cancer Center, The Ohio State University, 460 West 10th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Zheng XX, Ma YQ, Cui YQ, Dong SS, Chang FX, Zhu DL, Huang G. Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer. Clin Radiol 2024; 79:e511-e523. [PMID: 38307814 DOI: 10.1016/j.crad.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
AIM To explore the value of radiomics for predicting the expression of programmed death ligand 1 (PD-L1) in non-small-cell lung cancer (NSCLC) based on multiparameter spectral computed tomography (CT) images. MATERIALS AND METHODS A total of 220 patients with NSCLC were enrolled retrospectively and divided into the training (n=176) and testing (n=44) cohorts. The radiomics features were extracted from the conventional CT images, mono-energy 40 keV images, iodine density (ID) maps, Z-effective maps, and electron density maps. The logistic regression (LR) and support vector machine (SVM) algorithms were employed to build models based on radiomics signatures. The prediction abilities were qualified by the area under the curve (AUC) obtained from the receiver operating characteristic (ROC) curve. Internal validation was performed on the independent testing dataset. RESULTS The combined model for PD-L1 ≥1%, which consisted of the radiomics score (rad-score; p<0.0001), white blood cell (WBC; p=0.027) counts, and air bronchogram (p=0.003), reached the highest performance with the AUCs of 0.873 and 0.917 in the training and testing dataset, respectively, which was better than the radiomics model with the AUCs of 0.842 and 0.886. The combined model for PD-L1 ≥50%, which consisted of rad-score (p<0.0001) and WBC counts (p=0.027), achieved the highest performance in the training and testing dataset with AUCs of 0.932 and 0.903, respectively, which was better than the radiomics model with AUCs of 0.920 and 0.892, respectively. CONCLUSION The radiomics model based on the multiparameter images of spectral CT can predict the expression level of PD-L1 in NSCLC. The combined model can obtain higher prediction efficiency and serves as a promising method for immunotherapy selection.
Collapse
Affiliation(s)
- X X Zheng
- Imaging Center Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Y Q Ma
- Department of Radiology, Gansu Province Hospital, Lanzhou, China
| | - Y Q Cui
- Department of Radiology, Gansu Province Hospital, Lanzhou, China
| | - S S Dong
- Clinical Science, Philips Healthcare, Shanghai, China
| | - F X Chang
- Imaging Center Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - D L Zhu
- Imaging Center Department, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - G Huang
- Department of Radiology, Gansu Province Hospital, Lanzhou, China.
| |
Collapse
|
37
|
Hayashi H, Chamoto K, Hatae R, Kurosaki T, Togashi Y, Fukuoka K, Goto M, Chiba Y, Tomida S, Ota T, Haratani K, Takahama T, Tanizaki J, Yoshida T, Iwasa T, Tanaka K, Takeda M, Hirano T, Yoshida H, Ozasa H, Sakamori Y, Sakai K, Higuchi K, Uga H, Suminaka C, Hirai T, Nishio K, Nakagawa K, Honjo T. Soluble immune checkpoint factors reflect exhaustion of antitumor immunity and response to PD-1 blockade. J Clin Invest 2024; 134:e168318. [PMID: 38557498 PMCID: PMC10977985 DOI: 10.1172/jci168318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUNDPrecise stratification of patients with non-small cell lung cancer (NSCLC) is needed for appropriate application of PD-1/PD-L1 blockade therapy.METHODSWe measured soluble forms of the immune-checkpoint molecules PD-L1, PD-1, and CTLA-4 in plasma of patients with advanced NSCLC before PD-1/PD-L1 blockade. A prospective biomarker-finding trial (cohort A) included 50 previously treated patients who received nivolumab. A retrospective observational study was performed for patients treated with any PD-1/PD-L1 blockade therapy (cohorts B and C), cytotoxic chemotherapy (cohort D), or targeted therapy (cohort E). Plasma samples from all patients were assayed for soluble immune-checkpoint molecules with a highly sensitive chemiluminescence-based assay.RESULTSNonresponsiveness to PD-1/PD-L1 blockade therapy was associated with higher concentrations of these soluble immune factors among patients with immune-reactive (hot) tumors. Such an association was not apparent for patients treated with cytotoxic chemotherapy or targeted therapy. Integrative analysis of tumor size, PD-L1 expression in tumor tissue (tPD-L1), and gene expression in tumor tissue and peripheral CD8+ T cells revealed that high concentrations of the 3 soluble immune factors were associated with hyper or terminal exhaustion of antitumor immunity. The combination of soluble PD-L1 (sPD-L1) and sCTLA-4 efficiently discriminated responsiveness to PD-1/PD-L1 blockade among patients with immune-reactive tumors.CONCLUSIONCombinations of soluble immune factors might be able to identify patients unlikely to respond to PD-1/PD-L1 blockade as a result of terminal exhaustion of antitumor immunity. Our data suggest that such a combination better predicts, along with tPD-L1, for the response of patients with NSCLC.TRIAL REGISTRATIONUMIN000019674.FUNDINGThis study was funded by Ono Pharmaceutical Co. Ltd. and Sysmex Corporation.
Collapse
Affiliation(s)
- Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kurosaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yosuke Togashi
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Fukuoka
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | | | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Shuta Tomida
- Department of Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takayo Ota
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Japan
| | - Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Junko Tanizaki
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takeshi Yoshida
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tsutomu Iwasa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Cancer Genomics and Medical Oncology, Nara Medical University School of Medicine, Nara, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Sakamori
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | | | | | | | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Wei Y, Wang L, Jin Z, Jia Q, Brcic L, Akaba T, Chu Q. Biological characteristics and clinical treatment of pulmonary sarcomatoid carcinoma: a narrative review. Transl Lung Cancer Res 2024; 13:635-653. [PMID: 38601447 PMCID: PMC11002509 DOI: 10.21037/tlcr-24-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Background and Objective Pulmonary sarcomatoid carcinoma (PSC) is a subset of non-small cell lung cancer (NSCLC) with highly malignant, aggressive, and heterogeneous features. Patients with this disease account for approximately 0.1-0.4% of lung cancer cases. The absence of comprehensive summaries on the basic biology and clinical treatments for PSC means there is limited systematic awareness and understanding of this rare disease. This paper provides an overview of the biological characteristics of PSC and systematically summarizes various treatment strategies available for patients with this disease. Methods For this narrative review, we have searched literature related to the basic biology and clinical treatment approaches of PSC by searching the PubMed database for articles published from July 16, 1990 to August 29, 2023. The following keywords were used: "pulmonary sarcomatoid carcinoma", "genetic mutations", "immune microenvironment", "hypoxia", "angiogenesis", "overall survival", "surgery", "radiotherapy", "chemotherapy", and "immune checkpoint inhibitors". Key Content and Findings Classical PSC comprises epithelial and sarcomatoid components, with most studies suggesting a common origin. PSC exhibits a higher tumor mutational burden (TMB) and mutation frequency than other types of NSCLC. The tumor microenvironment (TME) of PSC is characterized by hypoxia, hypermetabolism, elevated programmed cell death protein 1/programmed cell death-ligand 1 expression, and high immune cell infiltration. Treatment strategies for advanced PSC are mainly based on traditional NSCLC treatments, but PSC exhibits resistance to chemotherapy and radiotherapy. The advancement of genome sequencing has introduced targeted therapies as an option for mutation-positive PSC cases. Moreover, due to the characteristics of the immune microenvironment of PSC, many patients positively respond to immunotherapy, demonstrating its potential for the management of PSC. Conclusions Although several studies have examined and assessed the TME of PSC, these are limited in quantity and quality, presenting challenges for research into the clinical treatment strategies for PSC. With the emergence of new technologies and the advancement of clinical research, for example, savolitinib's clinical study for MET exon 14 skipping mutations positive PSC patients have shown promising outcomes, more in-depth studies on PSC are eagerly anticipated.
Collapse
Affiliation(s)
- Yuxuan Wei
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Jin
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Tomohiro Akaba
- Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Kim JW, Lee HJ, Lee JY, Park SR, Kim YJ, Hwang IG, Kyun Bae W, Byun JH, Kim JS, Kang EJ, Lee J, Shin SJ, Chang WJ, Kim EO, Sa JK, Park KH. Phase II study of nivolumab in patients with genetic alterations in DNA damage repair and response who progressed after standard treatment for metastatic solid cancers (KM-06). J Immunother Cancer 2024; 12:e008638. [PMID: 38485184 PMCID: PMC10941126 DOI: 10.1136/jitc-2023-008638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Immune-modulating antibodies targeting programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have demonstrated promising antitumor efficacy in various types of cancers, especially highly mutated ones. Genetic alterations in DNA damage response and repair (DDR) genes can lead to genetic instability, often accompanied by a high tumor mutation burden (TMB). However, few studies have validated the aberration of DDR genes as a predictive biomarker for response to immune-modulating antibodies. METHODS The KM-06 open-label, multicenter, single-arm, phase II trial evaluated the safety and efficacy of nivolumab in refractory solid cancers with DDR gene mutations assessed by clinically targeted sequencing. Nivolumab (3 mg/kg) was administered every 2 weeks until disease progression, unacceptable toxicity, or for 24 months. The primary endpoint was the objective response rate (ORR) as per RECIST V.1.1 criteria. RESULTS A total of 48 patients were enrolled in the study (median age 61, 58.3% male). The most common cancer type was colorectal cancer (41.7%), followed by prostate and biliary tract cancer (8.3% each). Eight patients achieved a partial response as their best overall response, resulting in an ORR of 17.8%. The disease control rate was 60.0%. The median progression-free survival was 2.9 months. Treatment-related adverse events of any grade and grade ≥3 occurred in 44 (91.7%) and 4 (8.3%) patients, respectively. Clinically targeted sequencing data inferred both TMB and microsatellite instability (MSI). Using a TMB cut-off of 12 mut/Mb, there were significant differences in overall survival (p=0.00035), progression-free survival (p=0.0061), and the best overall response (p=0.05). In the RNA sequencing analysis, nivolumab responders showed activation of the interleukin signaling pathway. Patients who experienced early progression presented high epithelial-mesenchymal transition signaling pathway activation. The responders exhibited a marked increase in PD-1-/Ki67+CD8 T cells at the early stage of treatment (C3D1) compared with non-responders (p=0.03). CONCLUSIONS In this phase II trial, nivolumab demonstrated moderate efficacy and manageable toxicity in patients with solid cancer harboring DDR gene mutations. A high TMB (>12 mut/Mb) and MSI score (>2.5) determined through clinically target sequencing presented significant discriminatory power for the nivolumab response. TRIAL REGISTRATION NUMBER NCT04761744.
Collapse
Affiliation(s)
- Ju Won Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hyo Jin Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Ji Yoon Lee
- Department of Biomedical Informatics and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sook Ryun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Jung Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - In Gyu Hwang
- Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine and Graduate School of Medicine, Dongjak-gu, Republic of Korea
| | - Woo Kyun Bae
- Division of Hemato-Oncology, Department of Internal Medicine, Chonnam National University Medical School & Hwasun Hospital, Hwasun, Republic of Korea
| | - Jae Ho Byun
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jung Sun Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Eun Joo Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hemato-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seodaemun-gu, Republic of Korea
| | - Won Jin Chang
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Eun-Ok Kim
- Medical Science Research Center, College of Medicine, Korea University, Seongbuk-gu, Republic of Korea
| | - Jason K Sa
- Department of Biomedical Informatics and Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyong Hwa Park
- Division of Hemato-Oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
40
|
Liu K, Zhu Y, Zhu H, Zeng M. Combination tumor-treating fields treatment for patients with metastatic non-small cell lung cancer: A cost-effectiveness analysis. Cancer Med 2024; 13:e7070. [PMID: 38468503 DOI: 10.1002/cam4.7070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Tumor-treating field (TTFields) was a novel antitumor therapy that provided significant survival for previously treated metastatic non-small cell lung cancer (mNSCLC). The consistency of the cost of the new treatment regimen with its efficacy was the main objective of the study. METHODS The primary parameters, derived from the Phase 3 LUNAR study, were collected to evaluate the cost and efficacy of TTFields plus standard-of-care (SOC) (immune checkpoint inhibitors [ICIs] and docetaxel [DTX]) or SOC in patients with mNSCLC by establishing a three-state Markov model over a 15-year time horizon. Primary outcome measures for this study included costs, life-years (LYs), quality-adjusted LYs (QALYs), and incremental cost-effectiveness ratios (ICERs). Sensitivity analyses were performed. RESULTS The total costs of TTFields plus SOC, TTFields plus ICI, and TTFields plus DTX were $319,358, $338,688, and $298,477, generating 1.23 QALYs, 1.58 QALYs, and 0.89 QALYs, respectively. The ICERs of TTFields plus SOC versus SOC, TTFields plus ICI versus ICI, and TTFields plus DTX versus DTX were $613,379/QALY, $387,542/QALY, and $1,359,559/QALY, respectively. At willingness-to-pay (WTP) thresholds of $150,000/QALY, the probability of combination TTFields being cost-effective was 0%. In addition, TTFields plus SOC exhibited similar efficacy (1.12 QALYs and 1.14 QALYs) and costs ($309,822 and $312,531) in the treatment of squamous cell carcinoma (SCC) and non-squamous cell carcinoma (NSCC) populations. CONCLUSIONS In the United States, TTFields plus SOC as second-line treatment was not a more cost-effective strategy for patients with mNSCLC. Of the analyzed regimens, TTFields plus ICI was associated with most significant health benefits.
Collapse
Affiliation(s)
- Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manting Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Zhang X, Xu Q, Zhang Y. Remarkable response to pazopanib plus vivolumab in a patient with pericardial synovial sarcoma carrying a novel genotype BRCA2 c.968dupT: A case report. Thorac Cancer 2024; 15:667-671. [PMID: 38323364 DOI: 10.1111/1759-7714.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024] Open
Abstract
Pericardial synovial sarcomas (PSS) have a low incidence rate and are highly invasive with a dismal prognosis. Standard treatment includes surgery, radiotherapy and chemotherapy but with limited response. Here, we report the case of a 15-year-old nonsmoking youngster diagnosed with PSS who developed disease relapsed from surgery after 1 month. Next-generation sequencing (NGS) using baseline tissue was performed, and BRCA2 c.968dupT was detected. Then pazopanib (a multitargeted inhibitor) plus nivolumab (an immune checkpoint inhibitor) was administered, with a partial response and progression-free survival of 14 months. BRCA2 c.968dupT has not previously been reported in PSS and its response to targeted combination immunotherapy are not well characterized. Here, we report the efficacy of pazopanib combined with nivolumab in a PSS patient harboring BRCA2 c.968dupT and also provide the clinical evidence of the utility of NGS in exploring actionable mutations for solid tumor. Combination therapy based on immunotherapy may be a potential treatment choice for PSS harboring BRCA2 mutation.
Collapse
Affiliation(s)
- Xing Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining, Qinghai, China
| | - Yongchang Zhang
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, China
| |
Collapse
|
42
|
Akinjiyan FA, Nassief G, Phillipps J, Adeyelu T, Elliott A, Abdulla F, Zhou AY, Souroullas G, Kim KB, Vanderwalde A, Park SJ, Ansstas G. ARID2 mutations may relay a distinct subset of cutaneous melanoma patients with different outcomes. Sci Rep 2024; 14:3444. [PMID: 38341515 PMCID: PMC10858967 DOI: 10.1038/s41598-024-54136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
ARID genes encode subunits of SWI/SNF chromatin remodeling complexes and are frequently mutated in human cancers. We investigated the correlation between ARID mutations, molecular features, and clinical outcomes in melanoma patients. Cutaneous melanoma samples (n = 1577) were analyzed by next-generation sequencing. Samples were stratified by pathogenic/likely pathogenic mutation in ARID genes (ARID1A/2/1B/5B). PD-L1 expression was assessed using IHC (SP142; positive (+): ≥ 1%). Tumor mutation burden (TMB)-high was defined as ≥ 10 mutations/Mb. Transcriptomic signatures predictive of response to immune checkpoint inhibitors-interferon gamma and T-cell inflamed score were calculated. Real-world overall survival (OS) information was obtained from insurance claims data, with Kaplan-Meier estimates calculated from time of tissue collection until last date of contact. Mann-Whitney U, Chi-square, and Fisher exact tests were applied where appropriate, with p values adjusted for multiple comparisons. ARID2 mutations were more prevalent in cutaneous melanoma compared to ARID1A (11.0%: n = 451 vs 2.8%: n = 113), with concurrent ARID1A/ARID2 mutation in 1.1% (n = 46) of samples. ARID mutations were associated with a high prevalence of RAS pathway mutations-NF1 (ARID1A, 52.6%; ARID2, 48.5%; ARID1A/2, 63.6%; and ARID-WT, 13.3%; p < 0.0001) and KRAS (ARID1A, 3.5%; ARID2, 3.1%; ARID1A/2, 6.5%; and ARID-WT, 1.0%; p = 0.018)), although BRAF mutations were less common in ARID-mutated cohorts (ARID1A, 31.9%; ARID2, 35.6%; ARID1A/2, 26.1%; and ARID-WT, 50.4%; p < 0.0001). TMB-high was more common in ARID-mutated samples (ARID1A, 80.9%; ARID2, 89.9%; ARID1A/2, 100%; and ARID-WT, 49.4%; p < 0.0001), while PD-L1 positivity was similar across subgroups (ARID1A, 43.8%; ARID2, 51.1%; ARID1A/2, 52.5%; and ARID-WT, 44.9%; p = 0.109). Patients with ARID1A mutations had a higher prevalence of dMMR/MSI-H compared to those with ARID-WT (2.7% vs 0.2%, p = 0.030). Median IFN-γ and T-cell signatures were higher in ARID2-mutated samples compared to ARID-WT (IFN-γ: - 0.15 vs - 0.21, p = 0.0066; T-cell: 23.5 vs - 18.5, p = 0.041). ARID2-mutated patients had improved survival compared to ARID-WT; (HR: 1.22 (95% CI 1.0-1.5), p = 0.022). No additional OS benefit was observed with anti-PD-1 therapy for ARID2 mutation compared to ARID-WT. Melanoma patients with ARID mutations exhibited higher prevalence of markers associated with ICI response, including TMB-H, and immune-related signatures. Our data also suggests improved survival outcome in patients with ARID2 mutations, irrespective of anti-PD1 therapy.
Collapse
Affiliation(s)
- Favour A Akinjiyan
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - George Nassief
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - Jordan Phillipps
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | | | | | | | - Alice Y Zhou
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - George Souroullas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA
| | - Kevin B Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Soo J Park
- Division of Hematology/Oncology, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - George Ansstas
- Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis, 4921 Parkview Place, Saint Louis, MO, 63110, USA.
| |
Collapse
|
43
|
Liang LJ, Yang FY, Wang D, Zhang YF, Yu H, Wang Z, Sun BB, Liu YT, Wang GZ, Zhou GB. CIP2A induces PKM2 tetramer formation and oxidative phosphorylation in non-small cell lung cancer. Cell Discov 2024; 10:13. [PMID: 38321019 PMCID: PMC10847417 DOI: 10.1038/s41421-023-00633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024] Open
Abstract
Tumor cells are usually considered defective in mitochondrial respiration, but human non-small cell lung cancer (NSCLC) tumor tissues are shown to have enhanced glucose oxidation relative to adjacent benign lung. Here, we reported that oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) inhibited glycolysis and promoted oxidative metabolism in NSCLC cells. CIP2A bound to pyruvate kinase M2 (PKM2) and induced the formation of PKM2 tetramer, with serine 287 as a novel phosphorylation site essential for PKM2 dimer-tetramer switching. CIP2A redirected PKM2 to mitochondrion, leading to upregulation of Bcl2 via phosphorylating Bcl2 at threonine 69. Clinically, CIP2A level in tumor tissues was positively correlated with the level of phosphorylated PKM2 S287. CIP2A-targeting compounds synergized with glycolysis inhibitor in suppressing cell proliferation in vitro and in vivo. These results indicated that CIP2A facilitates oxidative phosphorylation by promoting tetrameric PKM2 formation, and targeting CIP2A and glycolysis exhibits therapeutic potentials in NSCLC.
Collapse
Affiliation(s)
- Li-Jun Liang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fu-Ying Yang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan-Fei Zhang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Basic Medicine, Anhui Medical College, Hefei, Anhui, China
| | - Hong Yu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Zheng Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bei-Bei Sun
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Tao Liu
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Gui-Zhen Wang
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Guang-Biao Zhou
- State Key Laboratory of Molecular Oncology & Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
44
|
Liu D, Wen C, Chen L, Ye M, Liu H, Sun X, Liang L, Zhang J, Chang S, Liu J. The emerging roles of PD-L1 subcellular localization in tumor immune evasion. Biochem Pharmacol 2024; 220:115984. [PMID: 38135128 DOI: 10.1016/j.bcp.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Targeting immune checkpoint PD-1 or its ligand PD-L1 blockade has achieved a great therapeutic effect in a variety of cancer types. However, the overall response rate and duration are still limited for intrinsic and acquired resistance. There is an urgent need to understand the underlying mechanism. Studies showed that PD-L1 regulation is related to the response to PD-1 monoclonal antibodies (PD-1 mAB). Interestingly, emerging studies found that the different distribution of PD-L1 has distinct functions in tumor through the specific signaling pathways. Thus, controlling the distribution of PD-L1 provides an attractive therapeutic strategy for enhancing PD-1 mAB efficiency and rewiring the resistance. Here, we review the recent studies about the role and regulation of PD-L1 distribution from synthesis to surface delivery, internalization, recycling, or lysosome degradation and translocated into the nucleus or secreted into the extracellular space. We place this knowledge in the context of observations in the clinic and discuss the potential therapeutic strategies to enhance the efficacy of anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Lu Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xing Sun
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China.
| | - Ji Zhang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421002, China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
45
|
Győrffy B. Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol 2024; 181:362-374. [PMID: 37783508 DOI: 10.1111/bph.16257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Survival rate of patients with lung cancer has increased by over 60% in the recent two decades. With longer survival, the identification of genes associated with survival has emerged as an issue of utmost importance to uncover the most promising biomarkers and therapeutic targets. EXPERIMENTAL APPROACH An integrated database was set up by combining multiple independent datasets with clinical data and transcriptome-level gene expression measurements. Univariate and multivariate survival analyses were performed to identify genes with higher expression levels linked to shorter survival. The strongest genes were filtered to include only those with known druggability. KEY RESULTS The entire database includes 2852 tumour specimens from 17 independent cohorts. Of these, 2227 have overall survival data and 1256 samples have progression-free survival time. The most significant genes associated with survival were MIF, UBC and B2M in lung adenocarcinoma and ANXA2, CSNK2A2 and KRT18 in squamous cell carcinoma. We also aimed to reveal the best druggable targets in non-smokers lung cancer. The three most promising hits in this cohort were MDK, THY1 and PADI2. The established lung cancer cohort was added to the Kaplan-Meier plotter (https://www.kmplot.com) enabling the validation of future gene expression-based biomarkers in both the present and yet unexamined subgroups of patients. CONCLUSIONS AND IMPLICATIONS In this study, we established a comprehensive database of transcriptome-level data for lung cancer. The database can be utilized to identify and rank the most promising biomarkers and therapeutic targets for different subtypes of lung cancer.
Collapse
Affiliation(s)
- Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
46
|
Chiu HY, Wang TW, Hsu MS, Chao HS, Liao CY, Lu CF, Wu YT, Chen YM. Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:615. [PMID: 38339369 PMCID: PMC10854498 DOI: 10.3390/cancers16030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Immunotherapy, particularly with checkpoint inhibitors, has revolutionized non-small cell lung cancer treatment. Enhancing the selection of potential responders is crucial, and researchers are exploring predictive biomarkers. Delta radiomics, a derivative of radiomics, holds promise in this regard. For this study, a meta-analysis was conducted that adhered to PRISMA guidelines, searching PubMed, Embase, Web of Science, and the Cochrane Library for studies on the use of delta radiomics in stratifying lung cancer patients receiving immunotherapy. Out of 223 initially collected studies, 10 were included for qualitative synthesis. Stratifying patients using radiomic models, the pooled analysis reveals a predictive power with an area under the curve of 0.81 (95% CI 0.76-0.86, p < 0.001) for 6-month response, a pooled hazard ratio of 4.77 (95% CI 2.70-8.43, p < 0.001) for progression-free survival, and 2.15 (95% CI 1.73-2.66, p < 0.001) for overall survival at 6 months. Radiomics emerges as a potential prognostic predictor for lung cancer, but further research is needed to compare traditional radiomics and deep-learning radiomics.
Collapse
Affiliation(s)
- Hwa-Yen Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-Y.C.); (T.-W.W.); (M.-S.H.); (H.-S.C.)
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Internal Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Chutong 310, Taiwan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ting-Wei Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-Y.C.); (T.-W.W.); (M.-S.H.); (H.-S.C.)
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ming-Sheng Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-Y.C.); (T.-W.W.); (M.-S.H.); (H.-S.C.)
| | - Heng-Shen Chao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-Y.C.); (T.-W.W.); (M.-S.H.); (H.-S.C.)
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (C.-F.L.)
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (C.-F.L.)
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuh-Ming Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
47
|
Sun D, Qian H, Li J, Xing P. Targeting MDM2 in malignancies is a promising strategy for overcoming resistance to anticancer immunotherapy. J Biomed Sci 2024; 31:17. [PMID: 38281981 PMCID: PMC10823613 DOI: 10.1186/s12929-024-01004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.
Collapse
Affiliation(s)
- Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
48
|
Tan J, Xue Q, Hu X, Yang J. Inhibitor of PD-1/PD-L1: a new approach may be beneficial for the treatment of idiopathic pulmonary fibrosis. J Transl Med 2024; 22:95. [PMID: 38263193 PMCID: PMC10804569 DOI: 10.1186/s12967-024-04884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a globally prevalent, progressive disease with limited treatment options and poor prognosis. Because of its irreversible disease progression, IPF affects the quality and length of life of patients and imposes a significant burden on their families and social healthcare services. The use of the antifibrotic drugs pirfenidone and nintedanib can slow the progression of the disease to some extent, but it does not have a reverse effect on the prognosis. The option of lung transplantion is also limited owing to contraindications to transplantation, possible complications after transplantation, and the risk of death. Therefore, the discovery of new, effective treatment methods is an urgent need. Over recent years, various studies have been undertaken to investigate the relationship between interstitial pneumonia and lung cancer, suggesting that some immune checkpoints in IPF are similar to those in tumors. Immune checkpoints are a class of immunosuppressive molecules that are essential for maintaining autoimmune tolerance and regulating the duration and magnitude of immune responses in peripheral tissues. They can prevent normal tissues from being damaged and destroyed by the immune response. While current studies have focused on PD-1/PD-L1 and CTLA-4, PD-1/PD-L1 may be the only effective immune checkpoint IPF treatment. This review discusses the application of PD-1/PD-L1 checkpoint in IPF, with the aim of finding a new direction for IPF treatment.
Collapse
Affiliation(s)
- Jie Tan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Xiao Hu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
49
|
Blethen KE, Wolford CP, Pecar GL, Arsiwala TA, Adjeroh E, Dykstra LP, Kielkowski BN, Lockman PR. Coordination of anti-CTLA-4 with whole-brain radiation therapy decreases tumor burden during treatment in a novel syngeneic model of lung cancer brain metastasis. Cancer Immunol Immunother 2024; 73:20. [PMID: 38240876 PMCID: PMC10799151 DOI: 10.1007/s00262-023-03599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/22/2024]
Abstract
Lung cancer is the most common primary tumor to metastasize to the brain. Although advances in lung cancer therapy have increased rates of survival over the past few decades, control and treatment of lung cancer brain metastasis remains an urgent clinical need. Herein, we examine the temporal coordination of α-CTLA-4 administration in combination with whole-brain radiation therapy in a syngeneic preclinical model of lung cancer brain metastasis in both C57Bl/6 and athymic nude mice. Brain tumor burden, survival, and weight loss were monitored. Immunotherapy administration 24 h prior to irradiation resulted in increased brain tumor burden, while administration of immunotherapy 12 h after radiation decreased tumor burden. Neither of the treatments affected survival outcomes or weight loss due to brain tumor recurrence. These findings suggest that the coordination of α-CTLA-4 administration in addition to whole-brain radiation therapy may be a viable strategy for reduction of tumor burden for the management of lung cancer brain metastasis.
Collapse
Affiliation(s)
- K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C P Wolford
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - G L Pecar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV, USA
| | - E Adjeroh
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - L P Dykstra
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - B N Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
50
|
Zhou Y, Xiang Z, Lin W, Lin J, Wen Y, Wu L, Ma J, Chen C. Long-term trends of lung cancer incidence and survival in southeastern China, 2011-2020: a population-based study. BMC Pulm Med 2024; 24:25. [PMID: 38200537 PMCID: PMC10782768 DOI: 10.1186/s12890-024-02841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Lung cancer is the primary cause of cancer-related deaths in China. This study analysed the incidence and survival trends of lung cancer from 2011 to 2020 in Fujian Province, southeast of China, and provided basis for formulating prevention and treatment strategies. METHODS The population-based cancer data was used to analyse the incidence of lung cancer between 2011 and 2020, which were stratified by sex, age and histology. The change of incidence trend was analysed using Joinpoint regression. The relative survival of lung cancer with onset in 2011-2014, 2015-2017 and 2018-2020 were calculated using the cohort, complete and period methods, respectively. RESULTS There were 23,043 patients diagnosed with lung cancer in seven registries between 2011 and 2020, with an age-standardized incidence rate (ASIR) of 37.7/100,000. The males ASIR increased from 51.1/100,000 to 60.5/100,000 with an annual percentage change (APC) of 1.5%. However, females ASIR increased faster than males, with an APC of 5.7% in 2011-2017 and 21.0% in 2017-2020. Compared with 2011, the average onset age of males and females in 2020 was 1.5 years and 5.9 years earlier, respectively. Moreover, the proportion of adenocarcinoma has increased, while squamous cell carcinoma and small cell carcinoma have decreased over the past decade. The 5-year relative survival of lung cancer increased from 13.8 to 23.7%, with a greater average increase in females than males (8.7% and 2.6%). The 5-year relative survival of adenocarcinoma, squamous cell carcinoma and small cell carcinoma reached 47.1%, 18.3% and 6.9% in 2018-2020, respectively. CONCLUSIONS The incidence of lung cancer in Fujian Province is on the rise, with a significant rise in adenocarcinoma, a younger age of onset and the possibility of overdiagnosis. Thus, Fujian Province should strengthen the prevention and control of lung cancer, giving more attention to the prevention and treatment of lung cancer in females and young populations.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, 350014, Fuzhou, China
| | - Zhisheng Xiang
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China
| | - Weikai Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, 350003, Fuzhou, China
| | - Jinghui Lin
- Department of Thoracic oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China
| | - Yeying Wen
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China
| | - Linrong Wu
- Fujian Provincial Office for Cancer Prevention and Control, 350014, Fuzhou, China
| | - Jingyu Ma
- Department of Epidemiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 350014, Fuzhou, China.
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No.420 Fuma Road, 350014, Fuzhou, China.
| |
Collapse
|