1
|
Tempora P, D'Amico S, Gragera P, Damiani V, Krol K, Scaldaferri V, Pandey K, Chung S, Lucarini V, Giorda E, Scarsella M, Volpe G, Pezzullo M, De Stefanis C, D'Oria V, De Angelis L, Giovannoni R, De Ioris MA, Melaiu O, Purcell AW, Locatelli F, Fruci D. Combining ERAP1 silencing and entinostat therapy to overcome resistance to cancer immunotherapy in neuroblastoma. J Exp Clin Cancer Res 2024; 43:292. [PMID: 39438988 PMCID: PMC11494811 DOI: 10.1186/s13046-024-03180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Checkpoint immunotherapy unleashes tumor control by T cells, but it is undermined in non-immunogenic tumors, e.g. with low MHC class I expression and low neoantigen burden, such as neuroblastoma (NB). Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an enzyme that trims peptides before loading on MHC class I molecules. Inhibition of ERAP1 results in the generation of new antigens able of inducing potent anti-tumor immune responses. Here, we identify a novel non-toxic combinatorial strategy based on genetic inhibition of ERAP1 and administration of the HDAC inhibitor (HDACi) entinostat that increase the immunogenicity of NB, making it responsive to PD-1 therapy. METHODS CRISPR/Cas9-mediated gene editing was used to knockout (KO) the ERAP1 gene in 9464D NB cells derived from spontaneous tumors of TH-MYCN transgenic mice. The expression of MHC class I and PD-L1 was evaluated by flow cytometry (FC). The immunopeptidome of these cells was studied by mass spectrometry. Cocultures of splenocytes derived from 9464D bearing mice and tumor cells allowed the assessment of the effect of ERAP1 inhibition on the secretion of inflammatory cytokines and activation and migration of immune cells towards ERAP1 KO cells by FC. Tumor cell killing was evaluated by Caspase 3/7 assay and flow cytometry analysis. The effect of ERAP1 inhibition on the immune content of tumors was analyzed by FC, immunohistochemistry and multiple immunofluorescence. RESULTS We found that inhibition of ERAP1 makes 9464D cells more susceptible to immune cell-mediated killing by increasing both the recall and activation of CD4+ and CD8+ T cells and NK cells. Treatment with entinostat induces the expression of MHC class I and PD-L1 molecules in 9464D both in vitro and in vivo. This results in pronounced changes in the immunopeptidome induced by ERAP1 inhibition, but also restrains the growth of ERAP1 KO tumors in vivo by remodelling the tumor-infiltrating T-cell compartment. Interestingly, the absence of ERAP1 in combination with entinostat and PD-1 blockade overcomes resistance to PD-1 immunotherapy and increases host survival. CONCLUSIONS These findings demonstrate that ERAP1 inhibition combined with HDACi entinostat treatment and PD-1 blockade remodels the immune landscape of a non-immunogenic tumor such as NB, making it responsive to checkpoint immunotherapy.
Collapse
Affiliation(s)
| | | | - Paula Gragera
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Kamila Krol
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | | | - Ezio Giorda
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | - Ombretta Melaiu
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Franco Locatelli
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Doriana Fruci
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Yang Y, Li H, Yang W, Shi Y. Improving efficacy of TNBC immunotherapy: based on analysis and subtyping of immune microenvironment. Front Immunol 2024; 15:1441667. [PMID: 39430759 PMCID: PMC11487198 DOI: 10.3389/fimmu.2024.1441667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive type of breast cancer that encompasses several distinct subtypes. Recent advances in immunotherapy offer a promising future for the treatment of these highly heterogeneous and readily metastatic tumors. Despite advancements, the efficacy of immunotherapy remains limited as shown by unimproved efficacy of PD-L1 biomarker and limited patient benefit. To enhance the effectiveness of TNBC immunotherapy, we conducted investigation on the microenvironment, and corresponding therapeutic interventions of TNBC and recommended further investigation into the identification of additional biomarkers that can facilitate the subtyping of TNBC for more targeted therapeutic approaches. TNBC is a highly aggressive subtype with dismal long-term survival due to the lack of opportunities for traditional endocrine and targeted therapies. Recent advances in immunotherapy have shown promise, but response rates can be limited due to the heterogeneous tumor microenvironments and developed therapy resistance, especially in metastatic cases. In this review, we will investigate the tumor microenvironment of TNBC and corresponding therapeutic interventions. We will summarize current subtyping strategies and available biomarkers for TNBC immunotherapy, with a particular emphasis on the need for further research to identify additional prognostic markers and refine tailored therapies for specific TNBC subtypes. These efforts aim to improve treatment sensitivity and ultimately enhance survival outcomes for advanced-stage TNBC patients.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haifeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanxia Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
3
|
Gaudio G, Martino E, Pellizzari G, Cavallone M, Castellano G, Omar A, Katselashvili L, Trapani D, Curigliano G. Developing combination therapies with biologics in triple-negative breast cancer. Expert Opin Biol Ther 2024; 24:1075-1094. [PMID: 39360776 DOI: 10.1080/14712598.2024.2408756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Novel compounds have entered the triple-negative breast cancer (TNBC) treatment algorithm, namely immune checkpoints inhibitors (ICIs), PARP inhibitors and antibody-drug conjugates (ADCs). The optimization of treatment efficacy can be enhanced with the use of combination treatments, and the incorporation of novel compounds. In this review, we discuss the combination treatments under development for the treatment of TNBC. AREAS COVERED The development of new drugs occurring in recent years has boosted the research for novel combinations to target TNBC heterogeneity and improve outcomes. ICIs, ADCs, tyrosine kinase inhibitors (TKIs), and PARP inhibitors have emerged as leading players in this new landscape, while other compounds like novel intracellular pathways inhibitors or cancer vaccines are drawing more and more interest. The future of TNBC is outlined in combination approaches, and based on new cancer targets, including many chemotherapy-free treatments. EXPERT OPINION A large number of TNBC therapies have either proved clinically ineffective or weighted by unacceptable safety profiles. Others, however, have provided promising results and are currently in late-stage clinical trials, while a few have actually changed clinical practice in recent years. As novel, more and more selective drugs come up, combination strategies focusing the concept of synergy are fully warranted for the future.
Collapse
Affiliation(s)
- Gilda Gaudio
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Enzo Martino
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
| | - Gloria Pellizzari
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Matteo Cavallone
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Grazia Castellano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Abeid Omar
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Nuclear Medicine, Kenyatta University Teaching Referral and Research Hospital, Nairobi, Kenya
| | - Lika Katselashvili
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Dario Trapani
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy
| |
Collapse
|
4
|
Kaleem M, Thool M, Dumore NG, Abdulrahman AO, Ahmad W, Almostadi A, Alhashmi MH, Kamal MA, Tabrez S. Management of triple-negative breast cancer by natural compounds through different mechanistic pathways. Front Genet 2024; 15:1440430. [PMID: 39130753 PMCID: PMC11310065 DOI: 10.3389/fgene.2024.1440430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most severe form of breast cancer, characterized by the loss of estrogen, progesterone, and human epidermal growth factor receptors. It is caused by various genetic and epigenetic factors, resulting in poor prognosis. Epigenetic changes, such as DNA methylation and histone modification, are the leading mechanisms responsible for TNBC progression and metastasis. This review comprehensively covers the various subtypes of TNBC and their epigenetic causes. In addition, the genetic association of TNBC with all significant genes and signaling pathways linked to the progression of this form of cancer has been enlisted. Furthermore, the possible uses of natural compounds through different mechanistic pathways have also been discussed in detail for the successful management of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mandar Thool
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Nitin G. Dumore
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | | | - Wasim Ahmad
- Department of KuliyateTib, National Institute of Unani Medicine, Bengaluru, India
| | - Amal Almostadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Hassan Alhashmi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for High Altitude Medicine, Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Birulia, Bangladesh
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Enzymoics, Hebersham, NSW, Australia; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Roussos Torres ET, Ho WJ, Danilova L, Tandurella JA, Leatherman J, Rafie C, Wang C, Brufsky A, LoRusso P, Chung V, Yuan Y, Downs M, O'Connor A, Shin SM, Hernandez A, Engle EL, Piekarz R, Streicher H, Talebi Z, Rudek MA, Zhu Q, Anders RA, Cimino-Mathews A, Fertig EJ, Jaffee EM, Stearns V, Connolly RM. Entinostat, nivolumab and ipilimumab for women with advanced HER2-negative breast cancer: a phase Ib trial. NATURE CANCER 2024; 5:866-879. [PMID: 38355777 PMCID: PMC11552660 DOI: 10.1038/s43018-024-00729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
We report the results of 24 women, 50% (N = 12) with hormone receptor-positive breast cancer and 50% (N = 12) with advanced triple-negative breast cancer, treated with entinostat + nivolumab + ipilimumab from the dose escalation (N = 6) and expansion cohort (N = 18) of ETCTN-9844 ( NCT02453620 ). The primary endpoint was safety. Secondary endpoints were overall response rate, clinical benefit rate, progression-free survival and change in tumor CD8:FoxP3 ratio. There were no dose-limiting toxicities. Among evaluable participants (N = 20), the overall response rate was 25% (N = 5), with 40% (N = 4) in triple-negative breast cancer and 10% (N = 1) in hormone receptor-positive breast cancer. The clinical benefit rate was 40% (N = 8), and progression-free survival at 6 months was 50%. Exploratory analyses revealed that changes in myeloid cells may contribute to responses; however, no correlation was noted between changes in CD8:FoxP3 ratio, PD-L1 status and tumor mutational burden and response. These findings support further investigation of this treatment in a phase II trial.
Collapse
Affiliation(s)
- Evanthia T Roussos Torres
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Won J Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joseph A Tandurella
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - James Leatherman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christine Rafie
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenguang Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam Brufsky
- University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, PA, USA
| | | | | | - Yuan Yuan
- Cedars-Sinai Cancer, Los Angeles, CA, USA
| | - Melinda Downs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley O'Connor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah M Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth L Engle
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard Piekarz
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute, Bethesda, MD, USA
| | - Howard Streicher
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute, Bethesda, MD, USA
| | - Zahra Talebi
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashley Cimino-Mathews
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
8
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Wang F, Jin Y, Wang M, Luo HY, Fang WJ, Wang YN, Chen YX, Huang RJ, Guan WL, Li JB, Li YH, Wang FH, Hu XH, Zhang YQ, Qiu MZ, Liu LL, Wang ZX, Ren C, Wang DS, Zhang DS, Wang ZQ, Liao WT, Tian L, Zhao Q, Xu RH. Combined anti-PD-1, HDAC inhibitor and anti-VEGF for MSS/pMMR colorectal cancer: a randomized phase 2 trial. Nat Med 2024; 30:1035-1043. [PMID: 38438735 DOI: 10.1038/s41591-024-02813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024]
Abstract
Epigenetic modifications of chromatin, including histone acetylation, and tumor angiogenesis play pivotal roles in creating an immunosuppressive tumor microenvironment. In the randomized phase 2 CAPability-01 trial, we investigated the potential efficacy of combining the programmed cell death protein-1 (PD-1) monoclonal antibody sintilimab with the histone deacetylase inhibitor (HDACi) chidamide with or without the anti-vascular endothelial growth factor (VEGF) monoclonal antibody bevacizumab in patients with unresectable chemotherapy-refractory locally advanced or metastatic microsatellite stable/proficient mismatch repair (MSS/pMMR) colorectal cancer. Forty-eight patients were randomly assigned to either the doublet arm (sintilimab and chidamide, n = 23) or the triplet arm (sintilimab, chidamide and bevacizumab, n = 25). The primary endpoint of progression-free survival (PFS) rate at 18 weeks (18wPFS rate) was met with a rate of 43.8% (21 of 48) for the entire study population. Secondary endpoint results include a median PFS of 3.7 months, an overall response rate of 29.2% (14 of 48), a disease control rate of 56.3% (27 of 48) and a median duration of response of 12.0 months. The secondary endpoint of median overall survival time was not mature. The triplet arm exhibited significantly improved outcomes compared to the doublet arm, with a greater 18wPFS rate (64.0% versus 21.7%, P = 0.003), higher overall response rate (44.0% versus 13.0%, P = 0.027) and longer median PFS rate (7.3 months versus 1.5 months, P = 0.006). The most common treatment-emergent adverse events observed in both the triplet and doublet arms included proteinuria, thrombocytopenia, neutropenia, anemia, leukopenia and diarrhea. There were two treatment-related fatalities (hepatic failure and pneumonitis). Analysis of bulk RNA sequencing data from the patients suggested that the triplet combination enhanced CD8+ T cell infiltration, resulting in a more immunologically active tumor microenvironment. Our study suggests that the combination of a PD-1 antibody, an HDACi, and a VEGF antibody could be a promising treatment regimen for patients with MSS/pMMR advanced colorectal cancer. ClinicalTrials.gov registration: NCT04724239 .
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| | - Ying Jin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Min Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wei-Jia Fang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ying-Nan Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Run-Jie Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Long Guan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Ji-Bin Li
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yu-Hong Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yan-Qiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Lu-Lu Liu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Dong-Sheng Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Zhi-Qiang Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China
| | - Wen-Ting Liao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Qi Zhao
- Bioinformatics Platform, Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, P. R. China.
| |
Collapse
|
10
|
Searcy MB, Johnson RW. Epigenetic control of the vicious cycle. J Bone Oncol 2024; 44:100524. [PMID: 38304486 PMCID: PMC10830514 DOI: 10.1016/j.jbo.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Epigenetic alterations, including DNA methylation and post translational modifications to histones, drive tumorigenesis and metastatic progression. In the context of bone metastasis, epigenetic modifications in tumor cells can modulate dissemination of cancer cells to the bone, tumor progression in the bone marrow, and may be associated with patient survival rates. Bone disseminated tumor cells may enter a dormant state or stimulate osteolysis through the "vicious cycle" of bone metastasis where bone disseminated tumor cells disrupt the bone microenvironment, which fuels tumor progression. Epigenetic alterations may either exacerbate or abrogate the vicious cycle by regulating tumor suppressors and oncogenes, which alter proliferation of bone-metastatic cancer cells. This review focuses on the specific epigenetic alterations that regulate bone metastasis, including DNA methylation, histone methylation, and histone acetylation. Here, we summarize key findings from researchers identifying epigenetic changes that drive tumor progression in the bone, along with pre-clinical and clinical studies investigating the utility of targeting aberrant epigenetic alterations to treat bone metastatic cancer.
Collapse
Affiliation(s)
- Madeline B. Searcy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
12
|
Jacobs F, Agostinetto E, Miggiano C, De Sanctis R, Zambelli A, Santoro A. Hope and Hype around Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15112933. [PMID: 37296893 DOI: 10.3390/cancers15112933] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) holds a poor prognosis compared to other breast cancer subtypes, and the development of new effective treatment strategies is an unmet medical need. TNBC has traditionally been considered not amenable to treatment with targeted agents due to a lack of actionable targets. Therefore, chemotherapy has remained the mainstay of systemic treatment for many decades. The advent of immunotherapy raised very hopeful expectations in TNBC, possibly due to higher levels of tumor-infiltrating lymphocytes, PD-L1 expression and tumor mutational burden compared to other breast cancer subtypes, that predict an effective anti-tumor immune-engagement. The results of clinical trials testing immunotherapy in TNBC led to the approval of the combination of immune checkpoint inhibitors and chemotherapy in both early and advanced settings. However, some open questions about the use of immunotherapy in TNBC still exist. These include a deeper understanding of the heterogeneity of the disease, identification of reliable predictive biomarkers of response, determination of the most appropriate chemotherapy backbone and appropriate management of potential long-term immune-related adverse events. In this review we aim to examine the available evidence on the use of immunotherapy strategies in both early and advanced TNBC, to critically discuss some of the limitations encountered in clinical research and to summarize data on novel promising immunotherapeutic strategies beyond PD-(L)1 blockade that have been investigated in the most recent trials.
Collapse
Affiliation(s)
- Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- Academic Trials Promoting Team, Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L'Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Chiara Miggiano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, 20090 Pieve Emanuele, MI, Italy
| |
Collapse
|
13
|
Valenza C, Rizzo G, Passalacqua MI, Boldrini L, Corti C, Trapani D, Curigliano G. Evolving treatment landscape of immunotherapy in breast cancer: current issues and future perspectives. Ther Adv Med Oncol 2023; 15:17588359221146129. [PMID: 36743524 PMCID: PMC9893403 DOI: 10.1177/17588359221146129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) deeply changed the treatment landscape of breast cancer (BC). In particular, anti-programmed-death (ligand) 1 antibodies were approved for the treatment of triple-negative breast cancer (TNBC), both in first line for metastatic disease and in neoadjuvant setting, on the basis of a demonstrated improvement of the survival outcomes. In light of these results, current clinical trials aim at improving this benefit investigating novel combinations and strategies, at exploring the role of ICIs beyond TNBC, and at better selecting the patients in order to spare non-responders from avoidable toxicities. This narrative review aims at summarizing and discussing the evolving landscape of immunotherapeutic treatments for BC, highlighting the current challenges and the future perspectives.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Graziella Rizzo
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Maria Ilenia Passalacqua
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Human Pathology “G. Barresi”, Medical Oncology Unit, University of Messina, Messina, Italy
| | - Laura Boldrini
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano
| |
Collapse
|
14
|
Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, Koklesova L, Kudela E, Kubatka P. Genetic Heterogeneity, Tumor Microenvironment and Immunotherapy in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms232314937. [PMID: 36499265 PMCID: PMC9735793 DOI: 10.3390/ijms232314937] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Heterogeneity of triple-negative breast cancer is well known at clinical, histopathological, and molecular levels. Genomic instability and greater mutation rates, which may result in the creation of neoantigens and enhanced immunogenicity, are additional characteristics of this breast cancer type. Clinical outcome is poor due to early age of onset, high metastatic potential, and increased likelihood of distant recurrence. Consequently, efforts to elucidate molecular mechanisms of breast cancer development, progression, and metastatic spread have been initiated to improve treatment options and improve outcomes for these patients. The extremely complex and heterogeneous tumor immune microenvironment is made up of several cell types and commonly possesses disorganized gene expression. Altered signaling pathways are mainly associated with mutated genes including p53, PIK3CA, and MAPK, and which are positively correlated with genes regulating immune response. Of note, particular immunity-associated genes could be used in prognostic indexes to assess the most effective management. Recent findings highlight the fact that long non-coding RNAs also play an important role in shaping tumor microenvironment formation, and can mediate tumor immune evasion. Identification of molecular signatures, through the use of multi-omics approaches, and effector pathways that drive early stages of the carcinogenic process are important steps in developing new strategies for targeted cancer treatment and prevention. Advances in immunotherapy by remodeling the host immune system to eradicate tumor cells have great promise to lead to novel therapeutic strategies. Current research is focused on combining immune checkpoint inhibition with chemotherapy, PARP inhibitors, cancer vaccines, or natural killer cell therapy. Targeted therapies may improve therapeutic response, eliminate therapeutic resistance, and improve overall patient survival. In the future, these evolving advancements should be implemented for personalized medicine and state-of-art management of cancer patients.
Collapse
Affiliation(s)
- Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Veronika Holubekova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Hornakova
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dana Dvorska
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Correspondence:
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
15
|
Taurelli Salimbeni B, Corvaja C, Valenza C, Zagami P, Curigliano G. The triple negative breast cancer drugs graveyard: a review of failed clinical trials 2017-2022. Expert Opin Investig Drugs 2022; 31:1203-1226. [PMID: 36413823 DOI: 10.1080/13543784.2022.2151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) accounts for 15-20% of breast cancers (BC) and has the worst prognosis. It is characterized by the absence of both hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2). TNBC has more limited therapeutic options compared to other subtypes, meaning that there is still a long way to go to discover target treatments. AREAS COVERED Our review aims to summarize phase II/III clinical trials enrolling patients with TNBC that have been published between 2017 and 2022 but failed to reach their primary endpoint. We here try to emphasize the limitations and weaknesses noted in negative studies and to point out unexpected results which might be useful to enhance the therapeutic approach to TNBC disease. EXPERT OPINION A deeper understanding of the mechanisms behind TNBC heterogeneity allowed to enhance the knowledge of new prognostic and predictive biomarkers of response. However, it is also through several failed clinical trials that we were able to define new therapeutic approaches which improved TNBC patients' clinical outcomes. Nowadays, we still need to overcome several difficulties to fully recognize different intracellular and extracellular pathways that crosstalk in TNBC and the mechanisms of resistance to identify novel tailored-patients' therapies.
Collapse
Affiliation(s)
- Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Clinical and Molecular Medicine, Oncology Unit, "la Sapienza" University of Rome, Azienda Ospedaliera Sant'Andrea, Rome, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paola Zagami
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, Irccs, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat 2022; 195:1-15. [PMID: 35834065 PMCID: PMC9338129 DOI: 10.1007/s10549-022-06665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/23/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Immunotherapy has started to transform the treatment of triple-negative breast cancer (TNBC), in part due to the unique immunogenicity of this breast cancer subtype. This review summarizes clinical studies of immunotherapy in advanced and early-stage TNBC. FINDINGS Initial studies of checkpoint blockade monotherapy demonstrated occasional responses, especially in patients with untreated programmed death-ligand 1 (PD-L1) positive advanced TNBC, but failed to confirm a survival advantage over chemotherapy. Nonetheless, pembrolizumab monotherapy has tumor agnostic approval for microsatellite instability-high or high tumor mutational burden cancers, and thus can be considered for select patients with advanced TNBC. Combination chemoimmunotherapy approaches have been more successful, and pembrolizumab is approved for PD-L1 positive advanced TNBC in combination with chemotherapy. This success has been translated to the curative setting, where pembrolizumab is now approved in combination with neoadjuvant chemotherapy for high-risk early-stage TNBC. CONCLUSION Immunotherapy has been a welcome addition to the growing armamentarium for TNBC, but responses remain limited to a subset of patients. Innovative strategies are under investigation in an attempt to induce immune responses in resistant tumors-with regimens incorporating small-molecule inhibitors, novel immune checkpoint targets, and intratumoral injections that directly alter the tumor microenvironment. As the focus shifts toward the use of immunotherapy for early-stage TNBC, it will be critical to identify those who derive the most benefit from treatment, given the potential for irreversible autoimmune toxicity and the lack of predictive accuracy of PD-L1 expression in the early-stage setting.
Collapse
Affiliation(s)
- Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| | - Rita Nanda
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine & Biological Sciences, 5841 S. Maryland Ave MC 2115, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
18
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
19
|
Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, Letizia O, De Vita F, Daniele B, Ciardiello F, Orditura M. Immune-Based Therapy in Triple-Negative Breast Cancer: From Molecular Biology to Clinical Practice. Cancers (Basel) 2022; 14:cancers14092102. [PMID: 35565233 PMCID: PMC9103968 DOI: 10.3390/cancers14092102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been considered for many years an orphan disease in terms of therapeutic options, with conventional chemotherapy (CT) still representing the mainstay of treatment in the majority of patients. Although breast cancer (BC) has been historically considered a "cold tumor", exciting progress in the genomic field leading to the characterization of the molecular portrait and the immune profile of TNBC has opened the door to novel therapeutic strategies, including Immune Checkpoint Inhibitors (ICIs), Poly ADP-Ribose Polymerase (PARP) inhibitors and Antibody Drug Conjugates (ADCs). In particular, compared to standard CT, the immune-based approach has been demonstrated to improve progression-free survival (PFS) and overall survival (OS) in metastatic PD-L1-positive TNBC and the pathological complete response rate in the early setting, regardless of PD-L1 expression. To date, PD-L1 has been widely used as a predictor of the response to ICIs; however, many patients do not benefit from the addition of immunotherapy. Therefore, PD-L1 is not a reliable predictive biomarker of the response, and its accuracy remains controversial due to the lack of a consensus about the assay, the antibody, and the scoring system to adopt, as well as the spatial and temporal heterogeneity of the PD-L1 status. In the precision medicine era, there is an urgent need to identify more sensitive biomarkers in the BC immune oncology field other than just PD-L1 expression. Through the characterization of the tumor microenvironment (TME), the analysis of peripheral blood and the evaluation of immune gene signatures, novel potential biomarkers have been explored, such as the Tumor Mutational Burden (TMB), Microsatellite Instability/Mismatch Repair Deficiency (MSI/dMMR) status, genomic and epigenomic alterations and tumor-infiltrating lymphocytes (TILs). This review aims to summarize the recent knowledge on BC immunograms and on the biomarkers proposed to support ICI-based therapy in TNBC, as well as to provide an overview of the potential strategies to enhance the immune response in order to overcome the mechanisms of resistance.
Collapse
Affiliation(s)
- Francesca Carlino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
- Correspondence: ; Tel.: +39-349-5152216
| | - Anna Diana
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Antonio Piccolo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Anna Ventriglia
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Vincenzo Bruno
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ortensio Letizia
- Medical Oncology Unit, Ospedale Ave Gratia Plena, San Felice a Cancello, 81027 Caserta, Italy; (I.D.S.); (O.L.)
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy; (A.D.); (B.D.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| | - Michele Orditura
- Department of Precision Medicine, Division of Medical Oncology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (A.P.); (A.V.); (V.B.); (F.D.V.); (F.C.); (M.O.)
| |
Collapse
|
20
|
Agostinetto E, Losurdo A, Nader-Marta G, Santoro A, Punie K, Barroso R, Popovic L, Solinas C, Kok M, de Azambuja V, Lambertini M. Progress and pitfalls in the use of immunotherapy for patients with triple negative breast cancer. Expert Opin Investig Drugs 2022; 31:567-591. [PMID: 35240902 DOI: 10.1080/13543784.2022.2049232] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is an area of high unmet medical need in terms of new effective treatment strategies. Although breast cancer is traditionally considered a 'cold' tumor type, TNBC is the most appropriate subtype for immunotherapeutic strategies; this is due to the high level of tumor infiltrating lymphocytes, PD-L1 expression and tumor mutational burden relative to other breast cancer subtypes. AREAS COVERED This review examines the use of immunotherapeutic strategies in early and advanced TNBC. The paper summarizes data on novel promising immunomodulatory approaches that have been explored in early phase trials and discusses the pitfalls and limitations often encountered in clinical research. EXPERT OPINION PD-1-blockade is approved for stage II/III TNBC and for first-line treatment of PD-L1-positive TNBC patients with metastatic disease and should be considered standard of care. However, question marks and difficulties remain; these include the identification of predictive biomarkers to select patients who benefit from the addition of PD1-blockade and the balance between efficacy and long-term toxicity for an individual patient. Numerous treatment combinations and new immunotherapeutic strategies beyond PD1 blockade are being evaluated, thus reflecting a promising evolution of a more personalized approach, and extended clinical benefit in TNBC.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Agnese Losurdo
- Humanitas Research Hospital - IRCCS, Humanitas Cancer Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Guilherme Nader-Marta
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.,Humanitas Research Hospital - IRCCS, Humanitas Cancer Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | | | - Lazar Popovic
- Oncology Institute of Vojvodina, Faculty of Medicine, University Novi Sad, Novi Sad, Serbia
| | - Cinzia Solinas
- Medical Oncology, ATS Sardegna, Ospedale San Francesco, Nuoro, Italy
| | - Marleen Kok
- Departments of Medical Oncology, Tumor Biology & Immunology. Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Vandro de Azambuja
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy.,Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
21
|
HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers (Basel) 2021; 14:cancers14010066. [PMID: 35008230 PMCID: PMC8750966 DOI: 10.3390/cancers14010066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has made a breakthrough in medical oncology with the approval of several immune checkpoint inhibitors in clinical routine, improving overall survival of advanced cancer patients with refractory disease. However only a minority of patients experience a durable response with these agents, which has led to the development of combination strategies and novel immunotherapy drugs to further counteract tumor immune escape. Epigenetic regulations can be altered in oncogenesis, favoring tumor progression. The development of epidrugs has allowed targeting successfully these altered epigenetic patterns in lymphoma and leukemia patients. It has been recently shown that epigenetic alterations can also play a key role in tumor immune escape. Epidrugs, like HDAC inhibitors, can prime the anti-tumor immune response, therefore constituting interesting partners to develop combination strategies with immunotherapy agents. In this review, we will discuss epigenetic regulations involved in oncogenesis and immune escape and describe the clinical development of combining HDAC inhibitors with immunotherapies.
Collapse
|
22
|
Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat Rev Clin Oncol 2021; 19:91-113. [PMID: 34754128 DOI: 10.1038/s41571-021-00565-2] [Citation(s) in RCA: 481] [Impact Index Per Article: 160.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Tumour heterogeneity and a long-standing paucity of effective therapies other than chemotherapy have contributed to triple-negative breast cancer (TNBC) being the subtype with the least favourable outcomes. In the past few years, advances in omics technologies have shed light on the relevance of the TNBC microenvironment heterogeneity, unveiling a close dynamic relationship with cancer cell features. An improved understanding of tumour-immune system co-evolution supports the need to adopt a more comprehensive view of TNBC as an ecosystem that encompasses the intrinsic and extrinsic features of cancer cells. This new appreciation of the biology of TNBC has already led to the development of novel targeted agents, including PARP inhibitors, antibody-drug conjugates and immune-checkpoint inhibitors, which are revolutionizing the therapeutic landscape and providing new opportunities both for patients with early-stage TNBC and for those with advanced-stage disease. The current therapeutic scenario is only the tip of the iceberg, as hundreds of new compounds and combinations are in development. The translation of these experimental therapies into clinical benefit is a welcome and ongoing challenge. In this Review, we describe the current and upcoming therapeutic landscape of TNBC and discuss how an integrated view of the TNBC ecosystem can define different levels of risk and provide improved opportunities for tailoring treatment.
Collapse
Affiliation(s)
- Giampaolo Bianchini
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy. .,Università Vita-Salute San Raffaele, Milan, Italy.
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy.,Laster and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Luca Licata
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
23
|
Roussos Torres ET, Rafie C, Wang C, Lim D, Brufsky A, LoRusso P, Eder JP, Chung V, Downs M, Geare M, Piekarz R, Streicher H, Anforth L, Rudek MA, Zhu Q, Besharati S, Cimino-Mathews A, Anders RA, Stearns V, Jaffee EM, Connolly RM. Phase I Study of Entinostat and Nivolumab with or without Ipilimumab in Advanced Solid Tumors (ETCTN-9844). Clin Cancer Res 2021; 27:5828-5837. [PMID: 34135021 PMCID: PMC8563383 DOI: 10.1158/1078-0432.ccr-20-5017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Epigenetic modulators improve immune checkpoint inhibitor (ICI) efficacy and increase CD8+ effector:FoxP3+ regulatory T cell ratios in preclinical models. We conducted a multicenter phase I clinical trial combining the histone deacetylase inhibitor entinostat with nivolumab ± ipilimumab in advanced solid tumors. PATIENTS AND METHODS Patients received an entinostat run-in (5 mg, weekly × 2) prior to the addition of ICIs. Dose escalation followed a modified 3+3 design [dose level (DL)1/2: entinostat + nivolumab; DL 3/4: entinostat + nivolumab + ipilimumab]. Blood and tissue samples were collected at baseline, after entinostat run-in, and after 8 weeks of combination therapy. Primary endpoints included safety and tolerability, and the recommended phase II dose (RP2D). Secondary endpoints included antitumor activity and change in tumor CD8/FoxP3 ratio pre- and post-therapy. RESULTS Thirty-three patients were treated across four dose levels. Treatment-related adverse events (AE) included fatigue (65%), nausea (41%), anemia (38%), diarrhea (26%), and anorexia (26%). Grade 3/4 AEs included fatigue (n = 7, 21%), anemia (n = 9, 27%), and neutropenia (n = 4, 12%). The RP2D was 3 mg entinostat weekly, 3 mg/kg every 2 weeks nivolumab, and 1 mg/kg every 6 weeks ipilimumab (max four doses). The objective response rate by RECIST 1.1 was 16%, including a complete response in triple-negative breast cancer. A statistically significant increase in CD8/FoxP3 ratio was seen following the addition of ICIs to entinostat, but not post-entinostat alone. CONCLUSIONS The combination of entinostat with nivolumab ± ipilimumab was safe and tolerable with expected rates of immune-related AEs. Preliminary evidence of both clinical efficacy and immune modulation supports further investigation.
Collapse
Affiliation(s)
- Evanthia T Roussos Torres
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christine Rafie
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- University of Miami Miller School of Medicine, Miami, Florida
| | - Chenguang Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David Lim
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Adam Brufsky
- University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, Pennsylvania
| | | | | | | | - Melinda Downs
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Molly Geare
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Richard Piekarz
- Cancer Therapy Evaluation Program (CTEP), NCI, Bethesda, Maryland
| | - Howard Streicher
- Cancer Therapy Evaluation Program (CTEP), NCI, Bethesda, Maryland
| | - Leslie Anforth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- NIH Clinical Center, Bethesda, Maryland
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sepideh Besharati
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ashley Cimino-Mathews
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Cancer Research @ UCC, College of Medicine and Health, University College Cork, Ireland
| |
Collapse
|
24
|
Hernando-Calvo A, Cescon DW, Bedard PL. Novel classes of immunotherapy for breast cancer. Breast Cancer Res Treat 2021; 191:15-29. [PMID: 34623509 DOI: 10.1007/s10549-021-06405-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Immune-checkpoint inhibitors have profoundly changed the treatment landscape for many tumor types. Despite marked improvements in disease control for highly immunogenic cancers, the clinical impact of checkpoint inhibitors in breast cancers to date is limited. Breast cancer is a heterogeneous disease with different levels of PD-L1 expression and variable tumor microenvironment (TME) composition according to molecular subtype. With emerging evidence of the role of different factors involved in immune evasion, there are promising new immunotherapy targets that will reshape early drug development for metastatic breast cancer. This review examines the available evidence for existing and emerging immuno-oncology (IO) approaches including small molecules targeting different regulators of the cancer-immunity cycle.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada.
| | - David W Cescon
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada
| | - Philippe L Bedard
- Division of Medical Oncology & Hematology, Department of Medicine, Princess Margaret Cancer Centre - University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Chang L, Ruiz P, Ito T, Sellers WR. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021; 39:466-479. [PMID: 33450197 PMCID: PMC8157671 DOI: 10.1016/j.ccell.2020.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
Despite remarkable successes in the clinic, cancer targeted therapy development remains challenging and the failure rate is disappointingly high. This problem is partly due to the misapplication of the targeted therapy paradigm to therapeutics targeting pan-essential genes, which can result in therapeutics whereby efficacy is attenuated by dose-limiting toxicity. Here we summarize the key features of successful chemotherapy and targeted therapy agents, and use case studies to outline recurrent challenges to drug development efforts targeting pan-essential genes. Finally, we suggest strategies to avoid previous pitfalls for ongoing and future development of pan-essential therapeutics.
Collapse
Affiliation(s)
- Liang Chang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paloma Ruiz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Takahiro Ito
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Sellers
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
26
|
Agostinetto E, Eiger D, Punie K, de Azambuja E. Emerging Therapeutics for Patients with Triple-Negative Breast Cancer. Curr Oncol Rep 2021; 23:57. [PMID: 33763756 DOI: 10.1007/s11912-021-01038-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Triple negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancers and it is associated with a poor prognosis. However, recent new effective treatment strategies have improved its outcomes. The aim of this review is to provide an overview on the emerging therapeutics for TNBC, describing both previously approved therapies that are currently being repurposed, as well as new target therapies that may improve patient outcomes. RECENT FINDINGS Emerging therapies are forthcoming in TNBC's treatment landscape, including new post-neoadjuvant chemotherapy strategies, PARP inhibitors, immune checkpoint inhibitors, and antibody-drug conjugates. Combination of different therapies such as AKT/PI3K/mTOR-inhibitors, other immunotherapeutic agents, CDK-inhibitors, antiandrogens, antiangiogenics, and histone deacetylase inhibitors is under clinical investigation. The treatment landscape for TNBC is gradually evolving towards a more personalized approach with promising expectations.
Collapse
Affiliation(s)
- Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.,Department of Medical Oncology and Hematology, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Daniel Eiger
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Evandro de Azambuja
- Academic Trials Promoting Team, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Rue Héger-Bordet 1, 1000, Brussels, Belgium.
| |
Collapse
|
27
|
Gatti-Mays ME, Gameiro SR, Ozawa Y, Knudson KM, Hicks KC, Palena C, Cordes LM, Steinberg SM, Francis D, Karzai F, Lipkowitz S, Donahue RN, Jochems C, Schlom J, Gulley JL. Improving the Odds in Advanced Breast Cancer With Combination Immunotherapy: Stepwise Addition of Vaccine, Immune Checkpoint Inhibitor, Chemotherapy, and HDAC Inhibitor in Advanced Stage Breast Cancer. Front Oncol 2021; 10:581801. [PMID: 33747894 PMCID: PMC7977003 DOI: 10.3389/fonc.2020.581801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023] Open
Abstract
Breast tumors commonly harbor low mutational burden, low PD-L1 expression, defective antigen processing/presentation, and an immunosuppressive tumor microenvironment (TME). In a malignancy mostly refractory to checkpoint blockade, there is an unmet clinical need for novel combination approaches that increase tumor immune infiltration and tumor control. Preclinical data have guided the development of this clinical trial combining 1) BN-Brachyury (a poxvirus vaccine platform encoding the tumor associated antigen brachyury), 2) bintrafusp alfa (a bifunctional protein composed of the extracellular domain of the TGF-βRII receptor (TGFβ "trap") fused to a human IgG1 anti-PD-L1), 3), entinostat (a class I histone deacetylase inhibitor), and 4) T-DM1 (ado-trastuzumab emtansine, a standard of care antibody-drug conjugate targeting HER2). We hypothesize that this tetratherapy will induce a robust immune response against HER2+ breast cancer with improved response rates through 1) expanding tumor antigen-specific effector T cells, natural killer cells, and immunostimulatory dendritic cells, 2) improving antigen presentation, and 3) decreasing inhibitory cytokines, regulatory T cells, and myeloid-derived suppressor cells. In an orthotopic HER2+ murine breast cancer model, tetratherapy induced high levels of antigen-specific T cell responses, tumor CD8+ T cell/Treg ratio, and augmented the presence of IFNγ- or TNFα-producing CD8+ T cells and IFNγ/TNFα bifunctional CD8+ T cells with increased cytokine production. Similar effects were observed in tumor CD4+ effector T cells. Based on this data, a phase 1b clinical trial evaluating the stepwise addition of BN-Brachyury, bintrafusp alfa, T-DM1 and entinostat in advanced breast cancer was designed. Arm 1 (TNBC) receives BN-Brachyury + bintrafusp alfa. Arm 2 (HER2+) receives T-DM1 + BN-Brachyury + bintrafusp alfa. After safety is established in Arm 2, Arm 3 (HER2+) will receive T-DM1 + BN-Brachyury + bintrafusp alfa + entinostat. Reimaging will occur every 2 cycles (1 cycle = 21 days). Arms 2 and 3 undergo research biopsies at baseline and after 2 cycles to evaluate changes within the TME. Peripheral immune responses will be evaluated. Co-primary objectives are response rate and safety. All arms employ a safety assessment in the initial six patients and a 2-stage Simon design for clinical efficacy (Arm 1 if ≥ three responses of eight then expand to 13 patients; Arms 2 and 3 if ≥ four responses of 14 then expand to 19 patients per arm). Secondary objectives include progression-free survival and changes in tumor infiltrating lymphocytes. Exploratory analyses include changes in peripheral immune cells and cytokines. To our knowledge, the combination of a vaccine, an anti-PD-L1 antibody, entinostat, and T-DM1 has not been previously evaluated in the preclinical or clinical setting. This trial (NCT04296942) is open at the National Cancer Institute (Bethesda, MD).
Collapse
Affiliation(s)
- Margaret E. Gatti-Mays
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sofia R. Gameiro
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yohei Ozawa
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin M. Knudson
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kristin C. Hicks
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lisa M. Cordes
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deneise Francis
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stanley Lipkowitz
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Renee N. Donahue
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - James L. Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol Immunother 2020; 70:607-617. [PMID: 33015734 DOI: 10.1007/s00262-020-02736-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by a lack of expression of both estrogen (ER) and progesterone (PgR) receptors as well as human epidermal growth factor receptor 2 (HER2) and is associated with poor prognosis. Moreover, the systemic treatment options are limited. However, the TNBC is more likely than other breast cancer subtypes to benefit from immune checkpoint blockade therapy due to its higher immunogenicity, higher enrichment by tumour-infiltrating lymphocytes (TILs), and higher levels of programmed cell death ligand 1 (PD-L1) expression. Thus far, atezolizumab was approved in combination with nab-paclitaxel for patients with unresectable locally advanced or metastatic TNBC whose tumours express PD-L1. Currently, it seems that PD-L1-positive subgroup will potentially benefit the most from the immune checkpoint inhibitor (ICI) treatment. Moreover, it seems that better results are seen when an ICI is given as first-line treatment than when an ICI is given in later lines of treatment for advanced TNBC/metastatic TNBC. Recently, pembrolizumab has demonstrated promising results in early-stage TNBC what can lead in near future to its approval in (neo)adjuvant setting. This review summarizes the development and highlights recent advances of the atezolizumab and pembrolizumab in early and advanced/metastatic TNBC.
Collapse
Affiliation(s)
- Dorota Kwapisz
- Department of Immunology, Transplantology and Internal Diseases, University Clinical Center of the Medical University in Warsaw, Warsaw, Poland.
| |
Collapse
|
29
|
Huynh MM, Pambid MR, Jayanthan A, Dorr A, Los G, Dunn SE. The dawn of targeted therapies for triple negative breast cancer (TNBC): a snapshot of investigational drugs in phase I and II trials. Expert Opin Investig Drugs 2020; 29:1199-1208. [DOI: 10.1080/13543784.2020.1818067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- My-my Huynh
- Pre-clinical R&D, Phoenix Molecular Designs, Vancouver, BC, Canada
| | - Mary Rose Pambid
- Pre-clinical R&D, Phoenix Molecular Designs, Vancouver, BC, Canada
| | - Aarthi Jayanthan
- Pre-clinical R&D, Phoenix Molecular Designs, Vancouver, BC, Canada
| | - Andrew Dorr
- Clinical Operations, Phoenix Molecular Designs, San Diego, CA, USA
| | - Gerrit Los
- Clinical Operations, Phoenix Molecular Designs, San Diego, CA, USA
| | - Sandra E. Dunn
- Pre-clinical R&D, Phoenix Molecular Designs, Vancouver, BC, Canada
- Clinical Operations, Phoenix Molecular Designs, San Diego, CA, USA
| |
Collapse
|