1
|
Reitz JG, Meier JM, Berg C, Weber EC, Gembruch U, Wolter A, Sterzbecher V, Bedei I, Axt-Fliedner R. Two-dimensional speckle tracking echocardiography in fetuses with critical aortic stenosis before and after fetal aortic valvuloplasty. Arch Gynecol Obstet 2024; 310:817-824. [PMID: 38363396 DOI: 10.1007/s00404-024-07376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Critical aortic stenosis (AS) in fetuses may progress to hypoplastic left heart syndrome (HLHS) with need for postnatal single ventricular (SV) palliation. Fetal aortic valvuloplasty (FAV) is performed to achieve postnatal biventricular (BV) circulation. However, the impact of FAV on fetal myocardial function is difficult to measure. Prediction of postnatal circulatory status and, therefore, counseling is challenging. METHODS Retrospective study of fetuses with critical AS who underwent FAV. Global Longitudinal Peak Systolic Strain (GLPSS) of the left ventricle (LV) and right ventricle (RV) were retrospectively analyzed before and after intervention. Fisher's Exact Test and Mann-Whitney-U Test were used for univariant statistical analysis. RESULTS 23 fetuses with critical AS were included. After intervention fetuses demonstrated more negative LV-GLPSS mean values post- vs. pre-intervention (- 5.36% vs. - 1.57%; p < 0.05). RV-GLPSS was decreased in all fetuses, there was no peri-interventional change. 20 fetuses were born alive. Postnatally, 10 had BV and 10 SV circulation. Improved post-interventional LV-GLPSS strain values correlated with BV outcome (p < 0.05). Pre-interventional continuous LV-GLPSS values correlated with postnatal SV vs. BV outcome (p < 0.05). CONCLUSION In some fetuses, LV myocardial function assessed by speckle tracking echocardiography (STE) improves after FAV. Improved post-interventional LV-GLPSS correlates with biventricular postnatal outcome. Furthermore, pre-interventional LV- and RV-GLPSS correlate with postnatal outcome. Further studies are needed to asses, if pre-interventional STE parameters might predict which fetuses will benefit from FAV with postnatal BV circulation.
Collapse
Affiliation(s)
- Justus G Reitz
- Department of Cardiovascular Surgery, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
| | - Johanna M Meier
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Eva C Weber
- Department of Obstetrics and Gynecology, University Hospital Cologne, Cologne, Germany
| | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Aline Wolter
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
| | - Vanessa Sterzbecher
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
| | - Ivonne Bedei
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany
| | - Roland Axt-Fliedner
- Division of Prenatal Medicine, Department of Obstetrics and Gynecology, University Hospital Giessen, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
2
|
Li L, Sun JP, Zuo R, Shen Y, Zhao M, Zhao W, Luo Z. Cardiac function evaluated by two-dimensional speckle tracking imaging in fetuses with congenital heart disease of ventricular afterload increase. J Matern Fetal Neonatal Med 2023; 36:2214663. [PMID: 37217449 DOI: 10.1080/14767058.2023.2214663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
AIMS To study myocardial deformation in fetuses with ventricular afterload increase compared with gestational age-matched controls using speckle tracking echocardiography. METHODS AND RESULTS Eighty-nine fetuses were retrospectively selected from the pregnancy screen by echocardiography. There are 41 fetuses with gestational age-matched normal heart served as the control group, 25 fetuses with congenital heart disease (CHD) leading to left ventricular (LV) afterload increase as group LVA and 23 fetuses with CHD leading to right ventricular(RV) afterload increases as group RVA. LV and RV fractional shortening (FS) were measured by conventional methods. The longitudinal strain (LS) and strain rate (LSr) were analyzed by EchoPac software. Group LVA and RVA compared with control group, the LV FS was no significant difference, but LS and LSr values of LV were lower in fetuses with LVA compared to the control group (LS:-15.97(-12.50,-22.52)vs -27.53(-24.33,-29.16) %, p < .01; systolic strain rate (SRs):-1.34(-1.12,-2.16) vs -2.55(-2.28,-2.92) 1/sec, p < .01; early diastolic strain rate (SRe):1.70 ± 0.57 vs 2.46 ± 0.61 1/sec, p < 0.01; late diastolic strain rate (SRa):1.62 ± 0.82 vs 2.39 ± 0.81 1/sec, p < .01). LS and LSr values of LV or RV were lower in fetuses with RVA compared to the control group (LV: LS:-21.52 ± 6.68 vs -26.79 ± 3.22%, p < .01; SRs:-2.11 ± 0.78 vs -2.56 ± 0.43 1/sec; p = .02; RV: LS:-17.64 ± 7.58 vs -26.38 ± 3.97%, p < .01; SRs:-1.62 ± 0.67 vs -2.37 ± 0.44 1/sec; p < .01). CONCLUSION The results of this study showed that the ventricular LS, LSr, SRs, SRe, SRa values were lower in fetuses with LV or RV afterload increasing CHD estimated by speckle tracking imaging but LV and RV FS were normal,which indicated the strain imaging is feasible in evaluating cardiac function of fetus, and may be more sensitive.
Collapse
Affiliation(s)
- Li Li
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| | | | - Rongyu Zuo
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| | - Yan Shen
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| | - Miao Zhao
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| | - Wanyu Zhao
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| | - Zhiling Luo
- Fuwai Yunnan Cardiovascular Hospital, Yunnan, China
| |
Collapse
|
3
|
Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr Res 2022; 92:1555-1565. [PMID: 35277596 PMCID: PMC9771797 DOI: 10.1038/s41390-022-01955-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal conditions that are linked with preterm birth, such as intrauterine inflammation, can influence fetal cardiac development thereby rendering the heart more vulnerable to the effects of prematurity. We aimed to investigate the effect of intrauterine inflammation, consequent to lipopolysaccharide exposure, on postnatal cardiac growth and maturation in preterm lambs. METHODS Preterm lambs (~129 days gestational age) exposed antenatally to lipopolysaccharide or saline were managed according to contemporary neonatal care and studied at postnatal day 7. Age-matched fetal controls were studied at ~136 days gestational age. Cardiac tissue was sampled for molecular analyses and assessment of cardiac structure and cardiomyocyte maturation. RESULTS Lambs delivered preterm showed distinct ventricular differences in cardiomyocyte growth and maturation trajectories as well as remodeling of the left ventricular myocardium compared to fetal controls. Antenatal exposure to lipopolysaccharide resulted in further collagen deposition in the left ventricle and a greater presence of immune cells in the preterm heart. CONCLUSIONS Adverse impacts of preterm birth on cardiac structure and cardiomyocyte growth kinetics within the first week of postnatal life are exacerbated by intrauterine inflammation. The maladaptive remodeling of the cardiac structure and perturbed cardiomyocyte growth likely contribute to the increased vulnerability to cardiac dysfunction following preterm birth. IMPACT Preterm birth induces maladaptive cardiac remodeling and adversely impacts cardiomyocyte growth kinetics within the first week of life in sheep. These effects of prematurity on the heart are exacerbated when preterm birth is preceded by exposure to intrauterine inflammation, a common antecedent of preterm birth. Inflammatory injury to the fetal heart coupled with preterm birth consequently alters neonatal cardiac growth and maturation and thus, may potentially influence long-term cardiac function and health.
Collapse
|
4
|
Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J Clin Med 2021; 10:jcm10173896. [PMID: 34501343 PMCID: PMC8432182 DOI: 10.3390/jcm10173896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Preterm birth coincides with a key developmental window of cardiac growth and maturation, and thus has the potential to influence long-term cardiac function. Individuals born preterm have structural cardiac remodelling and altered cardiac growth and function by early adulthood. The evidence linking preterm birth and cardiovascular disease in later life is mounting. Advances in the perinatal care of preterm infants, such as glucocorticoid therapy, have improved survival rates, but at what cost? This review highlights the short-term and long-term impact of preterm birth on the structure and function of the heart and focuses on the impact of antenatal and postnatal glucocorticoid treatment on the immature preterm heart.
Collapse
|
5
|
Soveral I, Crispi F, Walter C, Guirado L, García-Cañadilla P, Cook A, Bonnin A, Dejea H, Rovira-Zurriaga C, Sánchez de Toledo J, Gratacós E, Martínez JM, Bijnens B, Gómez O. Early cardiac remodeling in aortic coarctation: insights from fetal and neonatal functional and structural assessment. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 56:837-849. [PMID: 31909552 DOI: 10.1002/uog.21970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Coarctation of the aorta (CoA) is associated with left ventricular (LV) dysfunction in neonates and adults. Cardiac structure and function in fetal CoA and cardiac adaptation to early neonatal life have not been described. We aimed to investigate the presence of cardiovascular structural remodeling and dysfunction in fetuses with CoA and their early postnatal cardiac adaptation. METHODS This was a prospective observational case-control study, conducted between 2011 and 2018 in a single tertiary referral center, of fetuses with CoA and gestational age-matched normal controls. All fetuses/neonates underwent comprehensive echocardiographic evaluation in the third trimester of pregnancy and after birth. Additionally, myocardial microstructure was assessed in one fetal and one neonatal CoA-affected heart specimen, using synchrotron radiation-based X-ray phase-contrast microcomputed tomography and histology, respectively. RESULTS We included 30 fetuses with CoA and 60 gestational age-matched controls. Of these, 20 CoA neonates and 44 controls were also evaluated postnatally. Fetuses with CoA showed significant left-to-right volume redistribution, with right ventricular (RV) size and output dominance and significant geometry alterations with an abnormally elongated LV, compared with controls (LV midventricular sphericity index (median (interquartile range; IQR), 2.4 (2.0-2.7) vs 1.8 (1.7-2.0); P < 0.001). Biventricular function was preserved and no ventricular hypertrophy was observed. Synchrotron tomography and histological assessment revealed normal myocyte organization in the fetal and neonatal specimens, respectively. Postnatally, the LV in CoA cases showed prompt remodeling, becoming more globular (LV midventricular sphericity index (mean ± SD), 1.5 ± 0.3 in CoA vs 1.8 ± 0.2 in controls; P < 0.001) with preserved systolic and normalized output, but altered diastolic, parameters compared with controls (LV inflow peak velocity in early diastole (mean ± SD), 97.8 ± 14.5 vs 56.5 ± 12.9 cm/s; LV inflow peak velocity in atrial contraction (median (IQR), 70.5 (60.1-84.9) vs 47.0 (43.0-55.0) cm/s; LV peak myocardial velocity in atrial contraction (mean ± SD), 5.1 ± 2.6 vs 6.3 ± 2.2 cm/s; P < 0.05). The neonatal RV showed increased longitudinal function in the presence of a patent arterial duct. CONCLUSIONS Our results suggest unique fetal cardiac remodeling in CoA, in which the LV stays smaller from the decreased growth stimulus of reduced volume load. Postnatally, the LV is acutely volume-loaded, resulting in an overall geometry change with higher filling velocities and preserved systolic function. These findings improve our understanding of the evolution of CoA from fetal to neonatal life. Copyright © 2020 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- I Soveral
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
| | - F Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - C Walter
- Pediatric Cardiology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - L Guirado
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
| | - P García-Cañadilla
- PhySense, DTIC, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Cardiovascular Science, University College London, London, UK
| | - A Cook
- Institute of Cardiovascular Science, University College London, London, UK
| | - A Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - H Dejea
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
- Institute for Biomedical Engineering, ETH Zürich, Zürich, Switzerland
| | - C Rovira-Zurriaga
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - E Gratacós
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - J M Martínez
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - B Bijnens
- PhySense, DTIC, Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - O Gómez
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
6
|
Pedra SRFF, Zielinsky P, Binotto CN, Martins CN, Fonseca ESVBD, Guimarães ICB, Corrêa IVDS, Pedrosa KLM, Lopes LM, Nicoloso LHS, Barberato MFA, Zamith MM. Brazilian Fetal Cardiology Guidelines - 2019. Arq Bras Cardiol 2019; 112:600-648. [PMID: 31188968 PMCID: PMC6555576 DOI: 10.5935/abc.20190075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Simone R F Fontes Pedra
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brazil.,Hospital do Coração (HCor), São Paulo, SP - Brazil
| | - Paulo Zielinsky
- Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS - Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Karamlou T, Giraud GD, McKeogh D, Jonker SS, Shen I, Ungerleider RM, Thornburg KL. Right ventricular remodeling in response to volume overload in fetal sheep. Am J Physiol Heart Circ Physiol 2019; 316:H985-H991. [PMID: 30707615 DOI: 10.1152/ajpheart.00439.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The fetal myocardium is known to be sensitive to hemodynamic load, responding to systolic overload with cellular hypertrophy, proliferation, and accelerated maturation. However, the fetal cardiac growth response to primary volume overload is unknown. We hypothesized that increased venous return would stimulate fetal cardiomyocyte proliferation and terminal differentiation, particularly in the right ventricle (RV). Vascular catheters and pulmonary artery flow probes were implanted in 16 late-gestation fetal sheep: a right carotid artery-jugular vein (AV) fistula was surgically created in nine fetuses, and sham operations were performed on seven fetuses. Instrumented fetuses were studied for 1 wk before hearts were dissected for component analysis or cardiomyocyte dispersion for cellular measurements. Within 1 day of AV fistula creation, RV output was 20% higher in experimental than sham fetuses ( P < 0.0001). Circulating atrial natriuretic peptide levels were elevated fivefold in fetuses with an AV fistula ( P < 0.002). On the terminal day, RV-to-body weight ratios were 35% higher in the AV fistula group ( P < 0.05). Both left ventricular and RV cardiomyocytes grew longer in fetuses with an AV fistula ( P < 0.02). Cell cycle activity was depressed by >50% [significant in left ventricle ( P < 0.02), but not RV ( P < 0.054)]. Rates of terminal differentiation were unchanged. Based on these studies, we speculate that atrial natriuretic peptide suppressed fetal cardiomyocyte cell cycle activity. Unlike systolic overload, fetal diastolic load appears to drive myocyte enlargement, but not cardiomyocyte proliferation or maturation. These changes could predispose to RV dysfunction later in life. NEW & NOTEWORTHY Adaptation of the fetal heart to changes in cardiac load allows the fetus to maintain adequate blood flow to its systemic and placental circulations, which is necessary for the well-being of the fetus. Addition of arterial-venous fistula flow to existing venous return increased right ventricular stroke volume and output. The fetal heart compensated by cardiomyocyte elongation without accelerated cellular maturation, while cardiomyocyte proliferation decreased. Even transient volume overload in utero alters myocardial structure and cardiomyocyte endowment.
Collapse
Affiliation(s)
- Tara Karamlou
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - George D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Donogh McKeogh
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Irving Shen
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - Ross M Ungerleider
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Division of Cardiothoracic Surgery, Department of Surgery, Oregon Health & Science University , Portland, Oregon
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
8
|
Jonker SS, Louey S, Roselli CE. Cardiac myocyte proliferation and maturation near term is inhibited by early gestation maternal testosterone exposure. Am J Physiol Heart Circ Physiol 2018; 315:H1393-H1401. [PMID: 30095996 PMCID: PMC6297822 DOI: 10.1152/ajpheart.00314.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
Polycystic ovary syndrome is a complex and common disorder in women, and those affected experience an increased burden of cardiovascular disease. It is an intergenerational syndrome, as affected women with high androgen levels during pregnancy "program" fetal development, leading to a similar phenotype in their female offspring. The effect of excess maternal testosterone exposure on fetal cardiomyocyte growth and maturation is unknown. Pregnant ewes received biweekly injections of vehicle (control) or 100 mg testosterone propionate between 30 and 59 days of gestation (early T) or between 60 and 90 days of gestation (late T). Fetuses were delivered at ~135 days of gestation, and their hearts were enzymatically dissociated to measure cardiomyocyte growth (dimensional measurements), maturation (proportion binucleate), and proliferation (nuclear Ki-67 protein). Early T depressed serum insulin-like growth factor 1 and caused intrauterine growth restriction (IUGR; P < 0.0005). Hearts were smaller with early T ( P < 0.001) due to reduced cardiac myocyte maturation ( P < 0.0005) and proliferation ( P = 0.017). Maturation was also lower in male than female fetuses ( P = 0.004) independent of treatment. Late T did not affect cardiac growth. Early excess maternal testosterone exposure depresses circulating insulin-like growth factor 1 near term and causes IUGR in both female and male offspring. These fetuses have small, immature hearts with reduced proliferation, which may reduce cardiac myocyte endowment and predispose to adverse cardiac growth in postnatal life. While excess maternal testosterone exposure leads to polycystic ovary syndrome and cardiovascular disease in female offspring, it may also predispose to complications of IUGR and cardiovascular disease in male offspring. NEW & NOTEWORTHY Using measurements of cardiac myocyte growth and maturation in an ovine model of polycystic ovary syndrome, this study demonstrates that early gestation excess maternal testosterone exposure reduces near-term cardiomyocyte proliferation and maturation in intrauterine growth-restricted female and male fetuses. The effect of testosterone is restricted to exposure during a specific period early in pregnancy, and the effects appear mediated through reduced insulin-like growth factor 1 signaling. Furthermore, male fetuses, regardless of treatment, had fewer mature cardiomyocytes than female fetuses.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
9
|
Wilburn AN, Giraud GD, Louey S, Morgan T, Gandhi N, Jonker SS. Systemic arterial hypertension but not IGF-I treatment stimulates cardiomyocyte enlargement in neonatal lambs. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1038-R1048. [PMID: 30480483 DOI: 10.1152/ajpregu.00198.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although cardiomyocyte terminal differentiation is nearly complete at birth in sheep, as in humans, very limited postnatal expansion of myocyte number may occur. The capacity of newborn cardiomyocytes to respond to growth stimulation by proliferation is poorly understood. Our objective was to test this growth response in newborn lambs with two stimuli shown to be potent inducers of cardiomyocyte growth in fetuses and adults: increased systolic load (Load) and insulin-like growth factor I (IGF-I). Vascular catheters and an inflatable aortic occluder were implanted in lambs. Hearts were collected for analysis at 18 days of age after a 7-day experiment and compared with control hearts. Load hearts, but not IGF-I hearts, were heavier ( P = 0.001) because of increased mass of the left ventricle (LV), septum, and left atrium (40-50%, P = 0.004). Terminal differentiation and cell cycle activity were not different between groups. Myocyte length was 7% greater in Load lamb hearts ( P < 0.05), and binucleated myocytes, which comprise ~90% of LV cells, were 25% larger in volume ( P = 0.03). Myocyte number per gram of myocardium was decreased in all ventricles of Load lambs ( P = 0.01). Cells from the IGF-I group were not different by any comparison. These results suggest that the newborn sheep LV responds to systolic stress with cardiomyocyte hypertrophy, not proliferation. Furthermore, IGF-I is ineffective at stimulating cardiomyocyte proliferation at this age (despite effectiveness when administered before birth). Thus, to expand cardiomyocyte number in the newborn heart, therapies other than systolic pressure load and IGF-I treatment need to be developed.
Collapse
Affiliation(s)
- Adrienne N Wilburn
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Pacific University , Forest Grove, Oregon
| | - George D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon.,Department of Veterans Affairs Portland Health Care System , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University , Portland, Oregon
| | - Nainesh Gandhi
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
10
|
Davis L, Musso J, Soman D, Louey S, Nelson JW, Jonker SS. Role of adenosine signaling in coordinating cardiomyocyte function and coronary vascular growth in chronic fetal anemia. Am J Physiol Regul Integr Comp Physiol 2018; 315:R500-R508. [PMID: 29791204 DOI: 10.1152/ajpregu.00319.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal anemia causes rapid and profound changes in cardiac structure and function, stimulating proliferation of the cardiac myocytes, expansion of the coronary vascular tree, and impairing early contraction and relaxation. Although hypoxia-inducible factor-1α is sure to play a role, adenosine, a metabolic byproduct that increases coronary flow and growth, is implicated as a major stimulus for these adaptations. We hypothesized that genes involved in myocardial adenosine signaling would be upregulated in chronically anemic fetuses and that calcium-handling genes would be downregulated. After sterile surgical instrumentation under anesthesia, gestationally timed fetal sheep were made anemic by isovolumetric hemorrhage for 1 wk (16% vs. 35% hematocrit). At 87% of gestation, necropsy was performed to collect heart tissue for PCR and immunohistochemical analysis. Anemia increased mRNA expression levels of adenosine receptors ADORA 1, ADORA2A, and ADORA2B in the left and right ventricles (adenosine receptor ADORA3 was unchanged). In both ventricles, anemia also increased expression of ectonucleoside triphosphate diphosphohydrolase 1 and ecto-5'-nucleotidase. The genes for both equilibrative nucleoside transporters 1 and 2 were expressed more abundantly in the anemic right ventricle but were not different in the left ventricle. Neither adenosine deaminase nor adenosine kinase cardiac levels were significantly changed by chronic fetal anemia. Chronic fetal anemia did not significantly change cardiac mRNA expression levels of the voltage-dependent L-type calcium channel, ryanodine receptor 1, sodium-calcium exchanger, sarcoplasmic/endoplasmic reticulum calcium transporting ATPase 2, phospholamban, or cardiac calsequestrin. These data support local metabolic integration of vascular and myocyte function through adenosine signaling in the anemic fetal heart.
Collapse
Affiliation(s)
- Lowell Davis
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Department of Obstetrics and Gynecology, Oregon Health & Science University , Portland, Oregon
| | - James Musso
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
| | - Divya Soman
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Jonathan W Nelson
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
11
|
Assessment of Structural and Functional Abnormalities of the Myocardium and the Ascending Aorta in Fetus with Hypoplastic Left Heart Syndrome. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2616729. [PMID: 26981527 PMCID: PMC4770132 DOI: 10.1155/2016/2616729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022]
Abstract
Aims. To detect anatomical and intrinsic histopathological features of the ascending aorta and left ventricular (LV) myocardium and evaluate right ventricular (RV) function in fetuses with hypoplastic left heart syndrome (HLHS). Methods. Twenty-five fetuses diagnosed with HLHS were followed up in the antenatal and postpartum periods. 12 necropsy heart specimens were analyzed for morphological and histological changes. Results. Prenatal echocardiography and pathologic anatomy displayed the typical characteristics of HLHS as a severe underdevelopment of the LV in the form of mitral stenosis or atresia or as aortic atresia or stenosis, with a decreased ratio of aortic diameter to pulmonary artery diameter (median of 0.49 with a range of 0.24 to 0.69, p ≤ 0.001) and a higher ratio of RV diameter to LV diameter (median of 2.44 with a range of 1.33 to 6.25, p ≤ 0.001). The RV volume, stroke volume, and cardiac output in HLHS fetuses were increased compared with the gestational age-matched normal controls (p < 0.01). Histological changes in the 12 HLHS specimens included LV myocardial fibrosis, aortic elastic fragmentation, and fibrosis. Conclusions. In addition to severe anatomical deformity, distinct histological abnormalities in the LV myocardium and aortic wall were identified in the fetuses with HLHS. RV function damage may be potentially exists.
Collapse
|
12
|
Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol 2016; 228:R1-18. [PMID: 26432905 PMCID: PMC4677998 DOI: 10.1530/joe-15-0309] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 01/09/2023]
Abstract
Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments.
Collapse
Affiliation(s)
- S S Jonker
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| | - S Louey
- Knight Cardiovascular Institute Center for Developmental HealthOregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
13
|
Sandgren J, Scholz TD, Segar JL. ANG II modulation of cardiac growth and remodeling in immature fetal sheep. Am J Physiol Regul Integr Comp Physiol 2015; 308:R965-72. [PMID: 25810382 DOI: 10.1152/ajpregu.00034.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
Abstract
ANG II increases fetal blood pressure and stimulates fetal heart growth; however, little is known regarding its direct effects on cardiomyocytes in vivo. We sought to determine whether ANG II stimulates heart growth and cardiomyocyte hypertrophy and/or hyperplasia in utero in the immature fetal heart independent of the effects on cardiac afterload. In twin gestation, fetal sheep at ∼100 days gestation (term 145 days), one fetus received a chronic (6 days) infusion of ANG II alone (50 μg·kg(-1)·min(-1)) or ANG II plus nitroprusside (NTP) to attenuate the increase in blood pressure; noninstrumented twins served as controls. ANG II alone, but not ANG II + NTP resulted in a significant increase in heart mass (left and right ventricle + septum, corrected for body weight) compared with controls. ANG II, but not ANG II+NTP, also significantly increased cardiomyocyte area compared with control and increased the percentage of binucleated myocytes. ANG II with or without concomitant infusion of NTP increased cardiac PCNA expression, a marker of proliferation. Steady-state protein expression of terminal mitogen-activated protein kinases, cyclin B1, cyclin E1, and p21 were similar among groups. We conclude that in vivo, ANG II increases fetal cardiac mass via cardiomyocyte hypertrophy, differentiation, and to a lesser extent hyperplasia. The effects of ANG II on hypertrophy appear dependent upon the increase in blood pressure (mechanical load), whereas effects on proliferation are load-independent.
Collapse
Affiliation(s)
- Jeremy Sandgren
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Thomas D Scholz
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Jeffrey L Segar
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
14
|
Abstract
Neonatal acute myocardial infarction is a rare event that carries a high mortality rate. We describe the cases of two newborns who survived acute myocardial infarction and discuss the management. The first neonate was born with severe asphyxia and left ventricular myocardial infarction with ventricular tachycardia. In this patient, systemic flow was maintained by right-to-left shunting through the patent ductus arteriosus. The second neonate presented with a haematocrit of 80% and an inferolateral myocardial infarction. Intensive treatment of low cardiac output syndrome led to survival of both high-risk neonates. In the follow-up, at 48 and 4 months, respectively, ventricular function recovered in both patients.
Collapse
|
15
|
Ishii T, McElhinney DB, Harrild DM, Marcus EN, Sahn DJ, Truong U, Tworetzky W. Ventricular strain in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after prenatal aortic valvuloplasty. Fetal Diagn Ther 2013; 35:18-26. [PMID: 24280672 DOI: 10.1159/000341717] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The impact of prenatal intervention on fetal cardiac function has not been well defined. We assessed standard ventricular function parameters and strain in fetuses with evolving hypoplastic left heart syndrome (HLHS) treated with fetal aortic valvuloplasty (fAVP). METHODS Fetuses with valvar aortic stenosis that underwent fAVP were studied. Echocardiographic images prior to intervention (Pre), within 1 week after fAVP (Post), and at the last prenatal follow-up examination (FU) were analyzed. Left ventricular (LV) circumferential (LVCS) and longitudinal strain (LVLS), right ventricular (RV) longitudinal strain (RVLS), and LV end-diastolic dimension Z-scores (LVIDD-Z) were documented and compared according to postnatal outcome. RESULTS Among 57 fetuses studied, the postnatal outcome was biventricular in 23 and univentricular in 34. Prior to fAVP, strain was <4 in most cases, regardless of outcome. Biventricular fetuses had higher LVCS and LVLS segmental strain than univentricular fetuses. Among fetuses with a biventricular outcome, LVCS and LVLS increased as LVIDD-Z decreased in late gestation, whereas LVCS and LVLS remained <4 in univentricular fetuses, although the LVIDD-Z decreased to <0 in all cases. Septal RVLS increased after fAVP in the biventricular but not the univentricular outcome group. CONCLUSION In utero aortic valve dilation appears to have a beneficial effect on both LV and RV function in some fetuses with evolving HLHS.
Collapse
Affiliation(s)
- Tetsuko Ishii
- Department of Cardiology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass., USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ciulla MM, Acquistapace G, Perrucci GL, Nicolini P, Toffetti L, Braidotti P, Ferrero S, Zucca I, Aquino D, Busca G, Magrini F. Immunohistochemical expression of oncological proliferation markers in the hearts of rats during normal pregnancy. Biomark Med 2013; 7:119-29. [DOI: 10.2217/bmm.12.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Pregnancy is characterized by left ventricular hypertrophy that is potentially accounted for by cardiomyocyte proliferation, although no such evidence is currently available. This study investigates if the left ventricular mass (LVM) increase during pregnancy implies cell hyperplasia. Materials & methods: In nonpregnant and late-pregnant rats, cardiac function and LVM were evaluated by MRI, and cardiomyocyte dimensions and proliferations were assessed quantitatively by morphometric analysis and immunohistochemistry using oncological markers (Ki67 and MCM2). Results: In late-pregnant rats, LVM and cardiomyocyte area were greater. No mitotic figures were found nor was there any significant difference between groups in Ki67 expression. MCM2 expression was related to LVM. Conclusion: During pregnancy, rat cardiomyocytes undergo hypertrophy but not hyperplasia; the expression of MCM2, related to LVM, suggests it could be a marker of protein synthesis. The application of oncological markers to physiological contexts may provide insight into their role within the cell cycle.
Collapse
Affiliation(s)
- Michele M Ciulla
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Giulia Acquistapace
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Gianluca L Perrucci
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Paola Nicolini
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Laura Toffetti
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Paola Braidotti
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical & Dental Science, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ileana Zucca
- Scientific Direction Unit, Foundation IRCCS Neurological Institute ‘Carlo Besta’, 20133 Milan, Italy
| | - Domenico Aquino
- Scientific Direction Unit, Foundation IRCCS Neurological Institute ‘Carlo Besta’, 20133 Milan, Italy
- Neuroradiology Unit, Foundation IRCCS Neurological Institute ‘Carlo Besta’, 20133 Milan, Italy
| | - Giuseppe Busca
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
| | - Fabio Magrini
- Department of Clinical Science & Community Health, Laboratory of Clinical Informatics & Cardiovascular Imaging, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
17
|
Germanakis I, Matsui H, Gardiner HM. Myocardial Strain Abnormalities in Fetal Congenital Heart Disease Assessed by Speckle Tracking Echocardiography. Fetal Diagn Ther 2012; 32:123-30. [DOI: 10.1159/000334413] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022]
|
18
|
Hickey EJ, Caldarone CA, McCrindle BW. Left ventricular hypoplasia: a spectrum of disease involving the left ventricular outflow tract, aortic valve, and aorta. J Am Coll Cardiol 2012; 59:S43-54. [PMID: 22192721 DOI: 10.1016/j.jacc.2011.04.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/28/2011] [Accepted: 05/12/2011] [Indexed: 01/21/2023]
Abstract
"Hypoplastic left heart syndrome" is an unsatisfactory term describing lethal underdevelopment of the left ventricle (LV). It represents the more severe end of a spectrum of LV hypoplasia, mandating single-ventricle palliation or cardiac transplantation. Less severe "borderline" ventricular hypoplasia may instead allow various biventricular therapeutic strategies and better long-term outcomes. In this review, we consider factors causing and modifying the abnormal development of the LV. LV hypoplasia is typically seen in association with left ventricular outflow tract obstruction, itself part of a spectrum of related defects with common etiologies. Secondary responses to outflow obstruction are complex but involve abnormal flow dynamics and shear stresses that result in compromised and poorly orchestrated ventricular growth and development. Subsequent remodeling is likely influenced by genetic modifiers, including intrinsic myocardial growth signaling pathways, possibly including those of HAND transcription factors. In addition, during the latter stages of gestation, cardiomyocytes undergo a switch in myogenic potential and lose the ability to undergo mitosis. Ventricular hyperplasia can therefore no longer occur; remodeling is instead limited to muscular hypertrophy. Subtle differences in this switch in myogenic potential--and modulators thereof--are likely to be of clinical and therapeutic importance, especially in children with "borderline LVs" being considered for fetal interventions or post-natal biventricular repair strategies. Finally, by more clearly understanding the initiators and propagators of abnormal ventricular development, we can hope to lean away from grouping a heterogeneous group of infants together under the unsatisfactory term "hypoplastic left heart syndrome."
Collapse
Affiliation(s)
- Edward J Hickey
- Division of Cardiovascular Surgery, Department of Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
19
|
Lopez-Jaramillo P, Lahera V, Lopez-Lopez J. Epidemic of cardiometabolic diseases: a Latin American point of view. Ther Adv Cardiovasc Dis 2011; 5:119-31. [PMID: 21406494 DOI: 10.1177/1753944711403189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Poor early nutrition has varying effects on subsequent cardiometabolic disease (CMD) rates. Fetal and neonatal periods are critical for the development and growth of the systems involved in CMD. The increased rates of hypertension, metabolic syndrome, diabetes mellitus type 2, renal failure and heart failure observed nowadays in Latin America could be the result of the discrepancy between the nutritional environment during fetal and early life and the adult environment. This discrepancy causes a mismatch between the fetal programming of the subject and its adult circumstances created by the imposition of new life styles. The two largest international studies on cardiovascular risk factors for a first myocardial infarction (INTERHEART) and stroke (INTERSTROKE) demonstrated that in Latin America the factor with the highest attributable population risk was abdominal obesity. The conflict between the earlier programming and the later presence of abdominal obesity produced a higher sensitivity of this population to develop a state of low-degree inflammation, insulin resistance and the epidemic of CMD to lower levels of abdominal adiposity. The relative roles played by genetic and environmental factors and the interaction between the two are the still subjects of great debate. We have reviewed the relationship between maternal malnutrition, early growth restriction, epigenetic adaptations, and the later occurrence of abdominal obesity and CMD in Latin America.
Collapse
Affiliation(s)
- Patricio Lopez-Jaramillo
- Research Direction, Fundacion Oftalmologica de Santander-Clinica Carlos Ardila-Lulle, Floridablanca, Santander, Colombia.
| | | | | |
Collapse
|
20
|
Abstract
The developing mammalian heart responds to a variety of conditions, including changes in nutrient availability, blood oxygenation, hemodynamics, or tissue homeostasis, with impressive growth plasticity. This ensures the formation of a functional and normal sized organ by birth. During embryonic and fetal development the heart is exposed to various physiological and potentially pathological changes in the intrauterine environment which dramatically impact on normal cardiac function, tissue composition, and morphology. This paper summarizes the mechanisms employed by the embryonic and fetal heart to adapt to various intrauterine challenges to prevent or minimize postnatal consequences of impaired cardiac development. Future investigations of this growth plasticity might lead to new therapeutic strategies for the prevention of cardiac disease in postnatal life.
Collapse
|
21
|
Sedmera D. Factors in ventricular and atrioventricular valve growth: An embryologist's perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2010. [DOI: 10.1016/j.ppedcard.2010.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Koch JM, Wilmoth TA, Wilson ME. Periconceptional growth hormone treatment alters fetal growth and development in lambs. J Anim Sci 2010; 88:1619-25. [PMID: 20118428 DOI: 10.2527/jas.2009-2392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research in the area of fetal programming has focused on intrauterine growth restriction. Few studies have attempted to examine programming mechanisms that ultimately lead to lambs with a greater potential for postnatal growth. We previously demonstrated that treatment of ewes with GH at the time of breeding led to an increase in birth weight. Therefore, the objective of this study was to determine the effects of a single injection of sustained-release GH given during the periconceptional period on fetal growth and development and to determine if the GH axis would be altered in these offspring. Estrus was synchronized using 2 injections of PGF(2alpha); at the time of the second injection, ewes assigned to treatment were also given an injection of sustained-release GH. A maternal jugular vein sample was taken weekly to analyze IGF-I as a proxy for GH to estimate the duration of the treatment effect. In ewes treated with GH, IGF-I increased (P < 0.05) by wk 1 and remained elevated until wk 4 postinjection. Lambs were weighed, crown-rump length and abdominal girth were determined, and a plasma sample was collected. In a subset of male lambs, liver, heart, and brain weights were obtained, as well as left and right ventricular wall thicknesses. On postnatal d 100, a subset of ewe lambs were weighed and challenged with an intravenous injection of GHRH. Lambs from treated ewes had increased (P < 0.05) birth weight and abdominal girth compared with control lambs; however, there was no difference in crown-rump length. Expression of GH receptor and IGF-I were increased (P < 0.05) in lambs gestated by GH-treated ewes compared with control ewes. The left ventricular wall was thinner (P < 0.05) from lambs in the GH-treated group compared with control lambs. On postnatal d 100, those ewe lambs born to ewes treated with GH continued to be heavier (P < 0.05) and had no IGF-I response to GHRH challenge. In conclusion, treating ewes with a single injection of GH appeared to alter fetal growth and development. Lambs born to ewes treated with GH were larger at birth and had altered organ development, which may indicate that early maternal GH treatment may lead to permanent changes in the developing fetus. The ewe lambs maintained their growth performance to at least 100 d of postnatal life and appeared to have an altered GH axis, as demonstrated by the altered response to GHRH.
Collapse
Affiliation(s)
- J M Koch
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown 26506, USA
| | | | | |
Collapse
|
23
|
McElhinney DB, Marshall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, Marx GR, Mizrahi-Arnaud A, Lock JE, Tworetzky W. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 2009; 120:1482-90. [PMID: 19786635 DOI: 10.1161/circulationaha.109.848994] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Aortic stenosis in the midgestation fetus with a normal-sized or dilated left ventricle predictably progresses to hypoplastic left heart syndrome when associated with certain physiological findings. Prenatal balloon aortic valvuloplasty may improve left heart growth and function, possibly preventing evolution to hypoplastic left heart syndrome. METHODS AND RESULTS Between March 2000 and October 2008, 70 fetuses underwent attempted aortic valvuloplasty for critical aortic stenosis with evolving hypoplastic left heart syndrome. We analyzed this experience to determine factors associated with procedural and postnatal outcome. The median gestational age at intervention was 23 weeks. The procedure was technically successful in 52 fetuses (74%). Relative to 21 untreated comparison fetuses, subsequent prenatal growth of the aortic and mitral valves, but not the left ventricle, was improved after intervention. Nine pregnancies (13%) did not reach a viable term or preterm birth. Seventeen patients had a biventricular circulation postnatally, 15 from birth. Larger left heart structures and higher left ventricular pressure at the time of intervention were associated with biventricular outcome. A multivariable threshold scoring system was able to discriminate fetuses with a biventricular outcome with 100% sensitivity and modest positive predictive value. CONCLUSIONS Technically successful aortic valvuloplasty alters left heart valvar growth in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome and, in a subset of cases, appeared to contribute to a biventricular outcome after birth. Fetal aortic valvuloplasty carries a risk of fetal demise. Fetuses undergoing in utero aortic valvuloplasty with an unfavorable multivariable threshold score at the time of intervention are very unlikely to achieve a biventricular circulation postnatally.
Collapse
Affiliation(s)
- Doff B McElhinney
- Department of Cardiology, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Linkage analysis of left ventricular outflow tract malformations (aortic valve stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). Eur J Hum Genet 2009; 17:811-9. [PMID: 19142209 DOI: 10.1038/ejhg.2008.255] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The left ventricular outflow tract (LVOT) malformations aortic valve stenosis (AVS), coarctation of the aorta (CoA), and hypoplastic left heart syndrome (HLHS) are significant causes of infant mortality. These three malformations are thought to share developmental pathogenetic mechanisms. A strong genetic component has been demonstrated earlier, but the underlying genetic etiologies are unknown. Our objective was to identify genetic susceptibility loci for the broad phenotype of LVOT malformations. We genotyped 411 microsatellites spaced at an average of 10 cM in 43 families constituting 289 individuals, with an additional 5 cM spaced markers for fine mapping. A non-parametric linkage (NPL) analysis of the combined LVOT malformations gave three suggestive linkage peaks on chromosomes 16p12 (NPL score (NPLS)=2.52), 2p23 (NPLS=2.41), and 10q21 (NPLS=2.14). Individually, suggestive peaks for AVS families occurred on chromosomes 16p12 (NPLS=2.64), 7q36 (NPLS=2.31), and 2p25 (NPLS=2.14); and for CoA families on chromosome 1q24 (NPLS=2.61), 6p23 (NPLS=2.29), 7p14 (NPLS=2.27), 10q11 (NPLS=1.98), and 2p15 (NPLS=2.02). Significant NPLS in HLHS families were noted for chromosome 2p15 (NPLS=3.23), with additional suggestive peaks on 19q13 (NPLS=2.16) and 10q21 (NPLS=2.07). Overlapping linkage signals on 10q11 (AVS and CoA) and 16p12 (AVS, CoA, and HLHS) led to higher NPL scores when all malformations were analyzed together. In conclusion, we report suggestive evidence for linkage to chromosomes 2p23, 10q21, and 16p12 for the LVOT malformations of AVS, CoA, and HLHS individually and in a combined analysis, with a significant peak on 2p15 for HLHS. Overlapping linkage peaks provide evidence for a common genetic etiology.
Collapse
|
25
|
Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Harding R, Tare M. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol 2006; 578:871-81. [PMID: 17124269 PMCID: PMC2151351 DOI: 10.1113/jphysiol.2006.121160] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is now extensive evidence suggesting that intrauterine perturbations are linked with an increased risk of developing cardiovascular disease. Human epidemiological studies, supported by animal models, have demonstrated an association between low birth weight, a marker of intrauterine growth restriction (IUGR), and adult cardiovascular disease. However, little is known of the early influence of IUGR on the fetal heart and vessels. The aim of this study was to determine the effects of late gestational IUGR on coronary artery function and cardiomyocyte maturation in the fetus. IUGR was induced by placental embolization in fetal sheep from 110 to 130 days of pregnancy (D110-130); term approximately D147; control fetuses received saline. At necropsy (D130), wire and pressure myography was used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in small branches of left descending coronary arteries. Myocardium was dissociated for histological analysis of cardiomyocytes. At D130, IUGR fetuses (2.7 +/- 0.1 kg) were 28% lighter than controls (3.7 +/- 0.3 kg; P = 0.02). Coronary arteries from IUGR fetuses had enhanced responsiveness to the vasoconstrictors, angiotensin II and the thromboxane analogue U46619, than controls (P < 0.01). Endothelium-dependent and -independent relaxations were not different between groups. Coronary arteries of IUGR fetuses were more compliant (P = 0.02) than those of controls. The incidence of cardiomyocyte binucleation was lower in the left ventricles of IUGR fetuses (P = 0.02), suggestive of retarded cardiomyocyte maturation. We conclude that late gestational IUGR alters the reactivity and mechanical wall properties of coronary arteries and cardiomyocyte maturation in fetal sheep, which could have lifelong implications for cardiovascular function.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Angiotensin II/pharmacology
- Animals
- Bradykinin/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Coronary Vessels/drug effects
- Coronary Vessels/embryology
- Coronary Vessels/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Fetal Growth Retardation/physiopathology
- Heart/embryology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/physiology
- Pregnancy
- Sheep
- Vasoconstrictor Agents/pharmacology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Kristen J Bubb
- Department of Physiology, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jonker SS, Faber JJ, Anderson DF, Thornburg KL, Louey S, Giraud GD. Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. Am J Physiol Regul Integr Comp Physiol 2006; 292:R913-9. [PMID: 17023664 DOI: 10.1152/ajpregu.00484.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While the fetal heart grows by myocyte enlargement and proliferation, myocytes lose their capacity for proliferation in the perinatal period after terminal differentiation. The relationship between myocyte enlargement, proliferation, and terminal differentiation has not been studied under conditions of combined arterial and venous hypertension, as occurs in some clinical conditions. We hypothesize that fetal arterial and venous hypertension initially leads to cardiomyocyte proliferation, followed by myocyte enlargement. Two groups of fetal sheep received intravascular plasma infusions for 4 or 8 days (from 130 days gestation) to increase vascular pressures. Fetal hearts were arrested in diastole and dissociated. Myocyte size, terminal differentiation (%binucleation), and cell cycle activity (Ki-67[+] cells as a % of mononucleated myocytes) were measured. We found that chronic plasma infusion greatly increased venous and arterial pressures. Heart (but not body) weights were approximately 30% greater in hypertensive fetuses than controls. The incidence of cell cycle activity doubled in hypertensive fetuses compared with controls. After 4 days of hypertension, myocytes were (approximately 11%) longer, but only after 8 days were they wider (approximately 12%). After 8 days, %binucleation was approximately 50% greater in hypertensive fetuses. We observed two phases of cardiomyocyte growth and maturation in response to fetal arterial and venous hypertension. In the early phase, the incidence of cell cycle activity increased and myocytes elongated. In the later phase, the incidence of cell cycle activity remained elevated, %binucleation increased, and cross sections were greater. This study highlights unique fetal adaptations of the myocardium and the importance of experimental duration when interpreting fetal cardiac growth data.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Heart Research Center, Oregon Health and Science University, Portland, Oregon, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Han HC, Austin KJ, Nathanielsz PW, Ford SP, Nijland MJ, Hansen TR. Maternal nutrient restriction alters gene expression in the ovine fetal heart. J Physiol 2004; 558:111-21. [PMID: 15133065 PMCID: PMC1664914 DOI: 10.1113/jphysiol.2004.061697] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adequate maternal nutrient supply is critical for normal fetal organogenesis. We previously demonstrated that a global 50% nutrient restriction during the first half of gestation causes compensatory growth of both the left and right ventricles of the fetal heart by day 78 of gestation. Thus, it was hypothesized that maternal nutrient restriction significantly altered gene expression in the fetal cardiac left ventricle (LV). Pregnant ewes were randomly grouped into control (100% national research council (NRC) requirements) or nutrient-restricted groups (50% NRC requirements) from day 28 to day 78 of gestation, at which time fetal LV were collected. Fetal LV mRNA was used to construct a suppression subtraction cDNA library from which 11 cDNA clones were found by differential dot blot hybridization and virtual Northern analysis to be up-regulated by maternal nutrient restriction: caveolin, stathmin, G-1 cyclin, alpha-actin, titin, cardiac ankyrin repeat protein (CARP), cardiac-specific RNA-helicase activated by MEF2C (CHAMP), endothelial and smooth muscle derived neuropilin (ESDN), prostatic binding protein, NADH dehydrogenase subunit 2, and an unknown protein. Six of these clones (cardiac alpha-actin, cyclin G1, stathmin, NADH dehydrogenase subunit 2, titin and prostatic binding protein) have been linked to cardiac hypertrophy in other species including humans. Of the remaining clones, caveolin, CARP and CHAMP have been shown to inhibit remodelling of hypertrophic tissue. Compensatory growth of fetal LV in response to maternal undernutrition is concluded to be associated with increased transcription of genes related to cardiac hypertrophy, compensatory growth or remodelling. Counter-regulatory gene transcription may be increased, in part, as a response to moderating the degree of cardiac remodelling. The short- and long-term consequences of these changes in fetal heart gene expression and induction of specific homeostatic mechanisms in response to maternal undernutrition remain to be determined.
Collapse
Affiliation(s)
- Hyung-Chul Han
- Center for the Study of Fetal Programming and Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hohimer AR, Mysliwiec M, Lee K, Davis LE, Pantely GA. Perinatal hypoxia causes ventricular enlargement associated with increased atrial natriuretic peptide (ANP) mRNA levels in newborn mice. High Alt Med Biol 2003; 4:241-54. [PMID: 12855055 DOI: 10.1089/152702903322022839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We sought to examine both the short-term and residual effects of perinatal hypoxia on ventricular mass and function of mice. We postulated that the magnitude of the ventricular hypertrophy would be determined by the timing of the exposure, be linked to augmented atrial natriuretic peptide (ANP) expression, and would persist to young adulthood. Furthermore, mice deficient in the ANP receptor type A (ANPRA) would have even greater hypertrophy. Newborns were placed in a 12% oxygen (O(2)) chamber either shortly after birth or at 8 days of age. Controls were raised in room air. After 8 or 16 days, pups were terminated and the right ventricle (RV) and left ventricle including the septum (LVS) were excised and weighed and total RNA was extracted. Hypoxia caused a reduction in body weight (BW) with an increase in right ventricle (RV) weight, rendering an increased RV to BW ratio and increased LVS/BW, albeit less. Hypertrophy was most pronounced in pups exposed to hypoxia in the first days of extrauterine life. A rapid postnatal decline in both RV and LVS ANP mRNA levels was observed in control animals, while the hypoxia elevated ANP mRNA. In mice missing the ANPRA, both ventricles were more massive than in wild type and hypoxia further augmented RV/BW and LVS/BW. In normal adult animals returned to room air after 16 days of hypoxia, RV but not LVS hypertrophy persisted in both sexes; there was an interaction between gender and the perinatal hypoxic stress on LVS dimension and perhaps on contractility. Thus perinatal hypoxia may "program" the adult mouse heart and vasculature.
Collapse
Affiliation(s)
- A Roger Hohimer
- Departments of Obstetrics and Gynecology and Medicine and the Oregon Heart Research Center, Oregon Health & Science University, Portland OR, USA.
| | | | | | | | | |
Collapse
|
29
|
Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 274:952-61. [PMID: 12973719 DOI: 10.1002/ar.a.10110] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Right (RVFW) and left (LVFW) ventricular free wall cardiac myocytes were collected from 25 fetal sheep aged 77-146 days gestation (term = 150 days gestation), six saline-infused catheterized fetal sheep (129 GD), and five lambs to measure gestational changes in uni- and binucleated cardiac myocyte numbers and cell volumes by confocal microscopy. At 77 days gestation, 2% of the myocytes were binucleated, which increased to 50% at 135 days gestation and 90% at 4-6 weeks after birth. RVFW uni- and binucleated myocytes were larger than those in the LVFW, and cell volumes of RVFW uni- and binucleated and LVFW binucleated myocytes (but not LVFW uninucleated myocytes) increased with gestation. Before birth, the approximate number of myocytes was greater in the LVFW than in the RVFW (P < 0.001). Before 110 GD, cardiac growth appeared to be due to myocyte hyperplasia, as approximate myocyte numbers and VFW weight increased at the same rate. After 110 days gestation, the approximate myocyte number/g VFW weight decreased, which suggests that myocyte hypertrophy, as well as hyperplasia, was occurring in association with the appearance of a greater proportion of binucleated cells after that time. By 4-6 weeks of age, there was marked hypertrophy of myocytes and an apparent reduction in myocyte number.
Collapse
Affiliation(s)
- Judith H Burrell
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Vonnahme KA, Hess BW, Hansen TR, McCormick RJ, Rule DC, Moss GE, Murdoch WJ, Nijland MJ, Skinner DC, Nathanielsz PW, Ford SP. Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol Reprod 2003; 69:133-40. [PMID: 12606329 DOI: 10.1095/biolreprod.102.012120] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Early gestation is critical for placentomal growth, differentiation, and vascularization, as well as fetal organogenesis. The fetal origins of adult disease hypothesis proposes that alterations in fetal nutrition and endocrine status result in developmental adaptations that permanently change structure, physiology, and metabolism, thereby predisposing individuals to cardiovascular, metabolic, and endocrine disease in adult life. Multiparous ewes were fed to 50% (nutrient restricted) or 100% (control fed) of total digestible nutrients from Days 28 to 78 of gestation. All ewes were weighed weekly and diets adjusted for individual weight loss or gain. Ewes were killed on Day 78 of gestation and gravid uteri recovered. Fetal body and organ weights were determined, and numbers, morphologies, diameters, and weights of all placentomes were obtained. From Day 28 to Day 78, restricted ewes lost 7.4% of body weight, while control ewes gained 7.5%. Maternal and fetal blood glucose concentrations were reduced in restricted versus control pregnancies. Fetuses were markedly smaller in the restricted group than in the control group. Further, restricted fetuses exhibited greater right- and left-ventricular and liver weights per unit fetal weight than control fetuses. No treatment differences were observed in any gross placentomal measurement. However, caruncular vascularity was enhanced in conceptuses from nutrient-restricted ewes but only in twin pregnancies. While these alterations in fetal/placental development may be beneficial to early fetal survival in the face of a nutrient restriction, their effects later in gestation as well as in postnatal life need further investigation.
Collapse
Affiliation(s)
- Kimberly A Vonnahme
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schroder EA, Tobita K, Tinney JP, Foldes JK, Keller BB. Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ Res 2002; 91:353-9. [PMID: 12193469 DOI: 10.1161/01.res.0000030179.78135.fa] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanical load regulates ventricular growth, function, and structure from the earliest stages of cardiac morphogenesis through senescence. Dramatic changes in cardiac form and function have been defined for developing cardiovascular systems, and changes in mechanical loading conditions can produce structural malformations such as left heart hypoplasia. To date, relatively little is known regarding the interactions between changes in mechanical load, morphogenesis, and the material properties of the embryonic heart. We tested the hypothesis that passive material properties in the embryonic heart change in response to altered mechanical load and that microtubules play an important role in this adaptive response. We measured biaxial passive stress-strain relations in left ventricular (LV) myocardial strips in chick embryos at Hamburger-Hamilton stage 27 following left atrial ligation (LAL) at stage 21 to reduce LV volume load and create left heart hypoplasia. Following LAL, myocardial stresses at given strains and circumferential stiffness increased versus control strips. Western blot analysis of LAL embryos showed an increase in both total and polymerized beta-tubulin and confocal microscopy confirmed an increase in microtubule density in the LV compact layer versus control. Following colchicine treatment, LV stresses and stiffness normalized in LAL specimens and microtubule density following colchicine was similar in LAL to control. In contrast, Taxol treatment increased myocardial stresses and stiffness in control strips to levels beyond LAL specimens. Thus, the material properties of the developing myocardium are regulated by mechanical load and microtubules play a role in this adaptive response during cardiac morphogenesis.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Cardiovascular Development Research Program, Department of Pediatrics, University of Kentucky, Lexington, Ky, USA
| | | | | | | | | |
Collapse
|
32
|
|