1
|
Wang F, Reece EA, Yang P. Oxidative stress is responsible for maternal diabetes-impaired transforming growth factor beta signaling in the developing mouse heart. Am J Obstet Gynecol 2015; 212:650.e1-11. [PMID: 25595579 DOI: 10.1016/j.ajog.2015.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/20/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Oxidative stress plays a causal role in diabetic embryopathy. Maternal diabetes induces heart defects and impaired transforming growth factor beta (TGFβ) signaling, which is essential for cardiogenesis. We hypothesize that mitigating oxidative stress through superoxide dismutase 1 (SOD1) overexpression in transgenic (Tg) mice reverses maternal hyperglycemia-impaired TGFβ signaling and its downstream effectors. STUDY DESIGN Day 12.5 embryonic hearts from wild-type (WT) and SOD1 overexpressing embryos of nondiabetic (ND) and diabetic mellitus (DM) dams were used for the detection of oxidative stress markers: 4-hydroxynonenal (4-HNE) and malondlaldehyde (MDA), and TGFβ1, 2, and 3, phosphor (p)-TGFβ receptor II (TβRII), p-phosphorylated mothers against decapentaplegic (Smad)2, and p-Smad3. The expression of 3 TGFβ-responsive genes was also assessed. Day 11.5 embryonic hearts were explanted and cultured ex vivo, with or without treatments of a SOD1 mimetic (Tempol; Enzo Life Science, Farmingdale, NY) or a TGFβ recombinant protein for the detection of TGFβ signaling intermediates. RESULTS Levels of 4-HNE and MDA were significantly increased by maternal diabetes, and SOD1 overexpression blocked the increase of these 2 oxidative stress markers. Maternal diabetes suppresses the TGFβ signaling pathway by down-regulating TGFβ1 and TGFβ3 expression. Consequently, phosphorylation of TβRII, Smad2, and Smad3, downstream effectors of TGFβ, and expression of 3 TGFβ-responsive genes were reduced by maternal diabetes, and these reductions were prevented by SOD1 overexpression. Treatment with Tempol or TGFβ recombinant protein restored high-glucose-suppressed TGFβ signaling intermediates and responsive gene expression. CONCLUSION Oxidative stress mediates the inhibitory effect of hyperglycemia in the developing heart. Antioxidants, TGFβ recombinant proteins, or TGFβ agonists may have potential therapeutic values in the prevention of heart defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
2
|
Yang P, Reece EA, Wang F, Gabbay-Benziv R. Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling. Am J Obstet Gynecol 2015; 212:569-79. [PMID: 25434839 PMCID: PMC4417047 DOI: 10.1016/j.ajog.2014.11.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 12/25/2022]
Abstract
Maternal diabetes-induced birth defects occur in 6-10% of babies born to mothers with pregestational diabetes, representing a significant maternal-fetal health problem. Currently, these congenital malformations represent a significant maternal-fetal medicine issue, but are likely to create an even greater public health threat as 3 million women of reproductive age (19-44 years) have diabetes in the United States alone, and this number is expected to double by 2030. Neural tube defects (NTDs) and congenital heart defects are the most common types of birth defects associated with maternal diabetes. Animal studies have revealed that embryos under hyperglycemic conditions exhibit high levels of oxidative stress resulting from enhanced production of reactive oxygen species and impaired antioxidant capability. Oxidative stress activates a set of proapoptotic kinase signaling intermediates leading to abnormal cell death in the embryonic neural tube, which causes NTD formation. Work in animal models also has revealed that maternal diabetes triggers a series of signaling intermediates: protein kinase C (PKC) isoforms, PKCα, βII and δ; apoptosis signal-regulating kinase 1; c-Jun-N-terminal kinase (JNK)1/2; caspase; and apoptosis. Specifically, maternal diabetes in rodent models activates the proapoptotic unfolded protein response and endoplasmic reticulum (ER) stress. A reciprocal causation between JNK1/2 activation and ER stress exists in diabetic embryopathy. Molecular studies further demonstrate that deletion of the genes for Prkc, Ask1, Jnk1, or Jnk2 abolishes maternal diabetes-induced neural progenitor apoptosis and ameliorates NTD formation. Similar preventive effects are also observed when apoptosis signal-regulating kinase 1, JNK1/2, or ER stress is inhibited. Cell membrane stabilizers and antioxidant supplements are also effective in prevention of diabetes-induced birth defects. Mechanistic studies have revealed important insights into our understanding the cause of diabetic embryopathy and have provided a basis for future interventions against birth defects or other pregnancy complications associated with maternal diabetes. The knowledge of a molecular pathway map identified in animal studies has created unique opportunities to identify molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Abstract
Diabetes mellitus is responsible for nearly 10% of fetal anomalies in diabetic pregnancies. Although aggressive perinatal care and glycemic control are available in developed countries, the birth defect rate in diabetic pregnancies remains higher than that in the general population. Major cellular activities (ie, proliferation and apoptosis) and intracellular metabolic conditions (ie, nitrosative, oxidative, and endoplasmic reticulum stress) have been shown to be associated with diabetic embryopathy using animal models. Translating advances made in animal studies into clinical applications in humans requires collaborative efforts across the basic research, preclinical, and clinical communities.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
4
|
Deepa D, Jayakumari N, Thomas SV. Oxidative stress is increased in women with epilepsy: Is it a potential mechanism of anti-epileptic drug-induced teratogenesis? Ann Indian Acad Neurol 2013; 15:281-6. [PMID: 23349593 PMCID: PMC3548366 DOI: 10.4103/0972-2327.104336] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/13/2012] [Accepted: 07/05/2012] [Indexed: 11/18/2022] Open
Abstract
Context: Oxidative stress can be a final common pathway for AED-induced teratogenesis. Aims: To compare the oxidative stress of women with epilepsy (WWE) and unfavorable pregnancy outcome (fetal malformation or spontaneous abortion - group EM) with that of WWE with normal pregnancy outcome (group ENM) and healthy women with normal pregnancy outcome (group C). Materials and Methods: We identified WWE under group EM (n = 43) and group ENM (n = 22) from the Kerala Registry of Epilepsy and Pregnancy (KREP). Group C was constituted of healthy volunteers (N = 20). Oxidative stress was assessed by estimating serum levels of malondialdehyde (MDA) and isoprostane (ISP). The antioxidant profile was evaluated as activity of superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT), total antioxidant status (TAO), and glutathione (GSH) content. Results: The MDA and ISP levels for group EM (3.46 + 0.82 and 17.77 + 3.0) were higher than that of group ENM (3.07 + 1.02 and 14.0 + 5.3), and both were significantly higher than that of group C (2.42 + 0.51 and 10.77 + 4.1). Their levels of SOD (146.82 + 42.64 vs. 175.81 + 42.61) and GSH (0.98 + 0.98 vs. 1.55 + 1.3) were significantly lower than those of controls. No significant changes were seen in TAO and GR. WWE on polytherapy showed significant increase in MDA when compared to monotherapy group. Conclusion: WWE (group EM and ENM) had higher oxidative stress and reduced antioxidant activity. The subgroup of WWE with unfavorable pregnancy outcome (group EM) had higher oxidative stress. Excess oxidative stress can be a final common pathway, by which AEDs exert teratogenic effects.
Collapse
Affiliation(s)
- Damayanthi Deepa
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | |
Collapse
|
5
|
Abstract
Congenital malformations are more common in infants of diabetic women than in children of non-diabetic women. The etiology, pathogenesis and prevention of the diabetes-induced malformations have spurred considerable clinical and basic research efforts. The ultimate aim of these studies has been to obtain an understanding of the teratogenic process, which may enable precise preventive therapeutic measures in diabetic pregnancies. The results of the clinical and basic studies support the view of an early gestational induction of the malformations in diabetic pregnancy by a teratogenic process of multifactorial etiology. There may be possible targets for new therapeutic efforts revealed by the research work. Thus, future additions to the therapeutic efforts may include supplementation with antioxidants and/or folic acid, although more research is needed to delineate the dosages and compounds to be used. As the research into genetic predisposition for the teratogenic induction of malformations by maternal diabetes starts to reveal new genes and gene products involved in the etiology of the malformations, a set of new targets for intervention may arise.
Collapse
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-75123 Uppsala, Sweden.
| |
Collapse
|
6
|
Zhu H, Cabrera RM, Wlodarczyk BJ, Bozinov D, Wang D, Schwartz RJ, Finnell RH. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity. BMC DEVELOPMENTAL BIOLOGY 2007; 7:128. [PMID: 18028541 PMCID: PMC2206038 DOI: 10.1186/1471-213x-7-128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/20/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs), it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRalpha) gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. RESULTS We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage), heart tube looping (28-somite stage), and outflow track septation (38-somite stage). Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. CONCLUSION The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and motility as well as cellular redox status, which may contribute to cardiovascular abnormalities in mouse embryos lacking Folr1 gene activity.
Collapse
Affiliation(s)
- Huiping Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | - Robert M Cabrera
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | - Bogdan J Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | - Daniel Bozinov
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | - Deli Wang
- Biostatistics and Bioinformatics Unit, Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert J Schwartz
- Center for Molecular Development and Diseases, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
| | - Richard H Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030, USA
- Department of Pediatrics, UNMC, Omaha, NE 68158, USA
| |
Collapse
|
7
|
Al Ghafli MHM, Padmanabhan R, Kataya HH, Berg B. Effects of alpha-lipoic acid supplementation on maternal diabetes-induced growth retardation and congenital anomalies in rat fetuses. Mol Cell Biochem 2005; 261:123-35. [PMID: 15362495 DOI: 10.1023/b:mcbi.0000028747.92084.42] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanism of diabetic embryopathy is not known. Excessive reactive oxygen species (ROS) produced in diabetes may be causally related to foetal anomalies. The objective of this study was to determine whether supplementation with the antioxidant lipoic acid (LA) could prevent maternal diabetes-related foetal malformations and intrauterine growth retardation (IUGR) in rats. Pregnant rats were non-treated (Group I) or made diabetic on gestation day (GD) 2 by injecting streptozotocin (Group II). Group III was injected with 20 mg kg(-1) of LA daily starting on GD 6 and continued through GD 19. Group IV was administered only Tris buffer on the corresponding days. Group V was a set of STZ-treated animals, which were supplemented with a daily dose of 20 mg kg(-1) of LA from GD 6 through GD 19. All fetuses were collected on GD 20. Lipoic acid did not affect the blood sugar levels of diabetic animals significantly but improved their body weight gain and reduced food and water consumption. Diabetic group had a high incidence of embryonic resorption, IUGR, craniofacial malformations, supernumerary ribs and skeletal hypoplasia. Lipoic acid significantly reduced these abnormalities. These data support the hypothesis that ROS are causally related to fetal maldevelopment and IUGR associated with maternal diabetes in the rat. They also highlight the possible role of antioxidants in the normal processes of embryo survival, growth and development.
Collapse
Affiliation(s)
- M H M Al Ghafli
- Faculty of Science, UAE University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
8
|
Holmes VA, Young IS, Maresh MJA, Pearson DWM, Walker JD, McCance DR. The Diabetes and Pre-eclampsia Intervention Trial. Int J Gynaecol Obstet 2004; 87:66-71. [PMID: 15464786 DOI: 10.1016/j.ijgo.2004.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 06/23/2004] [Accepted: 06/30/2004] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Rates of pre-eclampsia in women with type 1 diabetes are two to four times higher than in normal pregnancies. Diabetes is associated with antioxidant depletion and increased free radical production, and an increasing body of evidence suggests that oxidative stress and endothelial cell activation may be relevant to disease pathogenesis in pre-eclampsia. The Diabetes and Pre-eclampsia Intervention Trial (DAPIT) aims to establish if pregnant women with type 1 diabetes supplemented with vitamins C and E have lower rates of pre-eclampsia and endothelial activation compared with placebo treatment. METHODS DAPIT is a randomised multicentre double-blind placebo-controlled trial that will recruit 756 pregnant women with type 1 diabetes from 20 metabolic-antenatal clinics in the UK over 4 years. Women are randomised to daily vitamin C (1000 mg) and vitamin E (400 IU) or placebo at 8-22 weeks of gestation until delivery. Maternal venous blood is obtained at randomisation, 26 and 34 weeks, for markers of endothelial activation and oxidative stress and to assess glycaemic control. The primary outcome of DAPIT is pre-eclampsia. Secondary outcomes include endothelial activation (PAI-1/PAI-2) and birthweight centile.
Collapse
Affiliation(s)
- V A Holmes
- Department of Medicine, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | |
Collapse
|
9
|
Wentzel P, Ejdesjö A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 2003; 52:1222-8. [PMID: 12716756 DOI: 10.2337/diabetes.52.5.1222] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to investigate whether diabetic embryopathy may be associated with the inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) resulting from an excess of reactive oxygen species (ROS) in the embryo. Recent demonstrations of enhanced ROS production in mitochondria of bovine aortic endothelial cells exposed to high glucose have supported the idea that the pathogenesis of diabetic complications may involve ROS-induced GAPDH inhibition. We investigated whether a teratogenic diabetic environment also inhibits embryonic GAPDH activity and alters GAPDH gene expression and whether antioxidants diminish such GAPDH inhibition. In addition, we determined whether the inhibition of GAPDH with iodoacetate induces dysmorphogenesis, analogous to that caused by high glucose concentration, and whether antioxidants modulated the putative teratogenic effect of such direct GAPDH inhibition. We found that embryos from diabetic rats and embryos cultured in high glucose concentrations showed decreased activity of GAPDH (by 40-60%) and severe dysmorphogenesis on gestational days 10.5 and 11.5. GAPDH mRNA was decreased in embryos of diabetic rats compared to control embryos. Supplementing the high-glucose culture with the antioxidant N-acetylcysteine (NAC) increased GAPDH activity and diminished embryonic dysmorphogenesis. Embryos cultured with iodoacetate showed both decreased GAPDH activity and dysmorphogenesis; supplementing the culture with NAC increased both parameters toward normal values. In conclusion, dysmorphogenesis caused by maternal diabetes is correlated with ROS-induced inhibition of GAPDH in embryos, which could indicate that inhibition of GAPDH plays a causal role in diabetic embryopathy.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, PO Box 571, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
10
|
Obermuller-Jevic b U, Packer a L. Vitamin E in Disease Prevention and Therapy. Antioxidants (Basel) 2003. [DOI: 10.1201/9781439822173.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|