1
|
Hambali A, Kumar J, Hashim NFM, Maniam S, Mehat MZ, Cheema MS, Mustapha M, Adenan MI, Stanslas J, Hamid HA. Hypoxia-Induced Neuroinflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Centella asiatica. Front Physiol 2021; 12:712317. [PMID: 34721056 PMCID: PMC8551388 DOI: 10.3389/fphys.2021.712317] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterised by the presence of extracellular beta-amyloid fibrillary plaques and intraneuronal neurofibrillary tau tangles in the brain. Recurring failures of drug candidates targeting these pathways have prompted research in AD multifactorial pathogenesis, including the role of neuroinflammation. Triggered by various factors, such as hypoxia, neuroinflammation is strongly linked to AD susceptibility and/or progression to dementia. Chronic hypoxia induces neuroinflammation by activating microglia, the resident immune cells in the brain, along with an increased in reactive oxygen species and pro-inflammatory cytokines, features that are common to many degenerative central nervous system (CNS) disorders. Hence, interests are emerging on therapeutic agents and plant derivatives for AD that target the hypoxia-neuroinflammation pathway. Centella asiatica is one of the natural products reported to show neuroprotective effects in various models of CNS diseases. Here, we review the complex hypoxia-induced neuroinflammation in the pathogenesis of AD and the potential application of Centella asiatica as a therapeutic agent in AD or dementia.
Collapse
Affiliation(s)
- Aqilah Hambali
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Fariesha Md Hashim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Manraj Singh Cheema
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Johnson Stanslas
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
2
|
Alzheimer's Disease Associated Presenilin 1 and 2 Genes Dysregulation in Neonatal Lymphocytes Following Perinatal Asphyxia. Int J Mol Sci 2021; 22:ijms22105140. [PMID: 34067945 PMCID: PMC8152038 DOI: 10.3390/ijms22105140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Perinatal asphyxia is mainly a brain disease leading to the development of neurodegeneration, in which a number of peripheral lesions have been identified; however, little is known about the expression of key genes involved in amyloid production by peripheral cells, such as lymphocytes, during the development of hypoxic-ischemic encephalopathy. We analyzed the gene expression of the amyloid protein precursor, β-secretase, presenilin 1 and 2 and hypoxia-inducible factor 1-α by RT-PCR in the lymphocytes of post-asphyxia and control neonates. In all examined periods after asphyxia, decreased expression of the genes of the amyloid protein precursor, β-secretase and hypoxia-inducible factor 1-α was noted in lymphocytes. Conversely, expression of presenilin 1 and 2 genes decreased on days 1–7 and 8–14 but increased after survival for more than 15 days. We believe that the expression of presenilin genes in lymphocytes could be a potential biomarker to determine the severity of the post-asphyxia neurodegeneration or to identify the underlying factors for brain neurodegeneration and get information about the time they occurred. This appears to be the first worldwide data on the role of the presenilin 1 and 2 genes associated with Alzheimer’s disease in the dysregulation of neonatal lymphocytes after perinatal asphyxia.
Collapse
|
3
|
Holubiec MI, Galeano P, Romero JI, Hanschmann EM, Lillig CH, Capani F. Thioredoxin 1 Plays a Protective Role in Retinas Exposed to Perinatal Hypoxia-Ischemia. Neuroscience 2019; 425:235-250. [PMID: 31785355 DOI: 10.1016/j.neuroscience.2019.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Thioredoxin family proteins are key modulators of cellular redox regulation and have been linked to several physiological functions, including the cellular response to hypoxia-ischemia. During perinatal hypoxia-ischemia (PHI), the central nervous system is subjected to a fast decrease in O2 and nutrients with a subsequent reoxygenation that ultimately leads to the production of reactive species impairing physiological redox signaling. Particularly, the retina is one of the most affected tissues, due to its high oxygen consumption and exposure to light. One of the main consequences of PHI is retinopathy of prematurity, comprising changes in retinal neural and vascular development, with further compensatory mechanisms that can ultimately lead to retinal detachment and blindness. In this study, we have analyzed long-term changes that occur in the retina using two well established in vivo rat PHI models (perinatal asphyxia and carotid ligation model), as well as the ARPE-19 cell line that was exposed to hypoxia and reoxygenation. We observed significant changes in the protein levels of the cytosolic oxidoreductase thioredoxin 1 (Trx1) in both animal models and a cell model. Knock-down of Trx1 in ARPE-19 cells affected cell morphology, proliferation and the levels of specific differentiation markers. Administration of recombinant Trx1 decreased astrogliosis and improved delayed neurodevelopment in animals exposed to PHI. Taken together, our results suggest therapeutical implications for Trx1 in retinal damage induced by hypoxia-ischemia during birth.
Collapse
Affiliation(s)
- M I Holubiec
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina.
| | - P Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - J I Romero
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Argentina
| | - E-M Hanschmann
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany; Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - C H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | - F Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini" (ININCA), Facultad de Medicina (UBA-CONICET), Buenos Aires, Argentina; Facultad de Medicina, Universidad Católica Argentina (UCA), Buenos Aires, Argentina; Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
4
|
Ge S, Yan B, Huang J, Chen Y, Chen M, Yang X, Wu Y, Shen D, Ma P. Diisodecyl phthalate aggravates the formaldehyde-exposure-induced learning and memory impairment in mice. Food Chem Toxicol 2019; 126:152-161. [DOI: 10.1016/j.fct.2019.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
|
5
|
Morrison JL, Botting KJ, Darby JRT, David AL, Dyson RM, Gatford KL, Gray C, Herrera EA, Hirst JJ, Kim B, Kind KL, Krause BJ, Matthews SG, Palliser HK, Regnault TRH, Richardson BS, Sasaki A, Thompson LP, Berry MJ. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J Physiol 2018; 596:5535-5569. [PMID: 29633280 PMCID: PMC6265540 DOI: 10.1113/jp274948] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Over 30 years ago Professor David Barker first proposed the theory that events in early life could explain an individual's risk of non-communicable disease in later life: the developmental origins of health and disease (DOHaD) hypothesis. During the 1990s the validity of the DOHaD hypothesis was extensively tested in a number of human populations and the mechanisms underpinning it characterised in a range of experimental animal models. Over the past decade, researchers have sought to use this mechanistic understanding of DOHaD to develop therapeutic interventions during pregnancy and early life to improve adult health. A variety of animal models have been used to develop and evaluate interventions, each with strengths and limitations. It is becoming apparent that effective translational research requires that the animal paradigm selected mirrors the tempo of human fetal growth and development as closely as possible so that the effect of a perinatal insult and/or therapeutic intervention can be fully assessed. The guinea pig is one such animal model that over the past two decades has demonstrated itself to be a very useful platform for these important reproductive studies. This review highlights similarities in the in utero development between humans and guinea pigs, the strengths and limitations of the guinea pig as an experimental model of DOHaD and the guinea pig's potential to enhance clinical therapeutic innovation to improve human health.
Collapse
Affiliation(s)
- Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anna L. David
- Research Department of Maternal Fetal Medicine, Institute for Women's HealthUniversity College LondonLondonUK
| | - Rebecca M. Dyson
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Kathryn L. Gatford
- Robinson Research Institute and Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Clint Gray
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| | - Emilio A. Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jonathan J. Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Bona Kim
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Karen L. Kind
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bernardo J. Krause
- Division of Paediatrics, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | | | - Hannah K. Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynaecology, Physiology and PharmacologyWestern University, and Children's Health Research Institute and Lawson Health Research InstituteLondonOntarioCanada
| | - Aya Sasaki
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Loren P. Thompson
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - Mary J. Berry
- Department of Paediatrics & Child Health and Centre for Translational PhysiologyUniversity of OtagoWellingtonNew Zealand
| |
Collapse
|
6
|
Bala M, Gupta V, Prasad J. A standardized Hippophae extract (SBL-1) counters neuronal tissue injuries and changes in neurotransmitters: implications in radiation protection. PHARMACEUTICAL BIOLOGY 2017; 55:1833-1842. [PMID: 28552029 PMCID: PMC6130468 DOI: 10.1080/13880209.2017.1331365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Effects of a radioprotective, standardized leaf extract (code SBL-1) from traditional medicinal plant, sea buckthorn [Hippophae rhamnoides L. (Elaeagnaceae)], on neurotransmitters and brain injuries in rats showing radiation-induced conditioned taste aversion (CTA), are not known. Understanding CTA in rats is important because its process is considered parallel to nausea and vomiting in humans. OBJECTIVE This study investigated the levels of neurotransmitters, antioxidant defences and histological changes in rats showing radiation CTA, and their modification by SBL-1. MATERIALS AND METHODS The inbred male Sprague-Dawley rats (age 65 days, weighing 190 ± 10 g) were used. Saccharin-preferring rats were selected using standard procedure and divided into groups. Group I (untreated control) was administered sterile water, group II was 60Co-γ-irradiated (2 Gy), and group III was administered SBL-1 before irradiation. Observations were recorded up to day 5. RESULTS Irradiation (2 Gy) caused (i) non-recoverable CTA (≥ 64.7 ± 5.0%); (ii) degenerative changes in cerebral cortex, amygdala and hippocampus; (iii) increases in brain dopamine (DA, 63.4%), norepinephrine (NE, 157%), epinephrine (E, 233%), plasma NE (103%) and E (160%); and (iv) decreases in brain superoxide dismutase (67%), catalase (60%) and glutathione (51%). SBL-1 treatment (12 mg/kg body weight) 30 min before irradiation (i) countered brain injuries, (ii) reduced CTA (38.7 ± 3.0%, day 1) and (iii) normalized brain DA, NE, E, superoxide dismutase, catalase and CTA from day 3 onwards. DISCUSSION AND CONCLUSION Radiation CTA was coupled with brain injuries, disturbances in neurotransmitters and antioxidant defences. SBL-1 pretreatment countered these disturbances, indicating neuroprotective action.
Collapse
Affiliation(s)
- Madhu Bala
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| | - Vanita Gupta
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| | - Jagdish Prasad
- Division of Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, Brig. S K Mazumdar Marg, Delhi, INDIA
| |
Collapse
|
7
|
Barkhuizen M, van den Hove DLA, Vles JSH, Steinbusch HWM, Kramer BW, Gavilanes AWD. 25 years of research on global asphyxia in the immature rat brain. Neurosci Biobehav Rev 2017; 75:166-182. [PMID: 28161509 DOI: 10.1016/j.neubiorev.2017.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system.
Collapse
Affiliation(s)
- M Barkhuizen
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, South Africa
| | - D L A van den Hove
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - J S H Vles
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Child Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - H W M Steinbusch
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - B W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Ecuador.
| |
Collapse
|
8
|
Huang W, Besar K, LeCover R, Dulloor P, Sinha J, Martínez Hardigree JF, Pick C, Swavola J, Everett AD, Frechette J, Bevan M, Katz HE. Label-free brain injury biomarker detection based on highly sensitive large area organic thin film transistor with hybrid coupling layer. Chem Sci 2014. [DOI: 10.1039/c3sc52638k] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
9
|
Kesby JP, Cui X, Burne THJ, Eyles DW. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia. Front Cell Neurosci 2013; 7:111. [PMID: 23882183 PMCID: PMC3713405 DOI: 10.3389/fncel.2013.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/26/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.
Collapse
Affiliation(s)
- James P. Kesby
- Department of Psychiatry, School of Medicine, University of California San DiegoLa Jolla, CA, USA
| | - Xiaoying Cui
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| | - Darryl W. Eyles
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia
- Queensland Centre for Mental Health Research, The Park Centre for Mental HealthWacol, QLD, Australia
| |
Collapse
|
10
|
Souza SK, Martins TL, Ferreira GD, Vinagre AS, Silva RSMD, Frizzo ME. Metabolic effects of perinatal asphyxia in the rat cerebral cortex. Metab Brain Dis 2013. [PMID: 23196669 DOI: 10.1007/s11011-012-9367-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reported previously that intrauterine asphyxia acutely affects the rat hippocampus. For this reason, the early effects of this injury were studied in the cerebral cortex, immediately after hysterectomy (acute condition) or following a recovery period at normoxia (recovery condition). Lactacidemia and glycemia were determined, as well as glycogen levels in the muscle, liver and cortex. Cortical tissue was also used to assay the ATP levels and glutamate uptake. Asphyxiated pups exhibited bluish coloring, loss of movement, sporadic gasping and hypertonia. However, the appearance of the controls and asphyxiated pups was similar at the end of the recovery period. Lactacidemia and glycemia were significantly increased by asphyxia in both the acute and recovery conditions. Concerning muscle and hepatic glycogen, the control group showed significantly higher levels than the asphyxic group in the acute condition and when compared with groups of the recovery period. In the recovery condition, the control and asphyxic groups showed similar glycogen levels. However, in the cortex, the control groups showed significantly higher glycogen levels than the asphyxic group, in both the acute and recovery conditions. In the cortical tissue, asphyxia reduced ATP levels by 70 % in the acute condition, but these levels increased significantly in asphyxic pups after the recovery period. Asphyxia did not affect glutamate transport in the cortex of both groups. Our results suggest that the cortex uses different energy resources to restore ATP after an asphyxia episode followed by a reperfusion period. This strategy could sustain the activity of essential energy-dependent mechanisms.
Collapse
Affiliation(s)
- Samir Khal Souza
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Zhang X, Li L, Zhang X, Xie W, Li L, Yang D, Heng X, Du Y, Doody RS, Le W. Prenatal hypoxia may aggravate the cognitive impairment and Alzheimer's disease neuropathology in APPSwe/PS1A246E transgenic mice. Neurobiol Aging 2012; 34:663-78. [PMID: 22795785 DOI: 10.1016/j.neurobiolaging.2012.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 01/06/2023]
Abstract
Most cases of Alzheimer's disease (AD) arise through interactions between genetic and environmental factors. It is believed that hypoxia is an important environmental factor influencing the development of AD. Our group has previously demonstrated that hypoxia increased β-amyloid (Aβ) generation in aged AD mice. Here, we further investigate the pathological role of prenatal hypoxia in AD. We exposed the pregnant APP(Swe)/PS1(A246E) transgenic mice to high-altitude hypoxia in a hypobaric chamber during days 7-20 of gestation. We found that prenatal hypoxic mice exhibited a remarkable deficit in spatial learning and memory and a significant decrease in synapses. We also documented a significantly higher level of amyloid precursor protein, lower level of the Aβ-degrading enzyme neprilysin, and increased Aβ accumulation in the brain of prenatal hypoxic mice. Finally, we demonstrated striking neuropathologic changes in prenatal hypoxic AD mice, showing increased phosphorylation of tau, decreased hypoxia-induced factor, and enhanced activation of astrocytes and microglia. These data suggest that although the characteristic features of AD appear later in life, hypoxemia in the prenatal stage may contribute to the pathogenesis of the disease, supporting the notion that environmental factors can trigger or aggravate AD.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haukvik UK, Saetre P, McNeil T, Bjerkan PS, Andreassen OA, Werge T, Jönsson EG, Agartz I. An exploratory model for G x E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1259-65. [PMID: 20638435 DOI: 10.1016/j.pnpbp.2010.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/22/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Smaller hippocampal volume has repeatedly been reported in schizophrenia patients. Obstetric complications (OCs) and single nucleotide polymorphism (SNP) variation in schizophrenia susceptibility genes have independently been related to hippocampal volume. We investigated putative independent and interaction effects of severe hypoxia-related OCs and variation in four hypoxia-regulated schizophrenia susceptibility genes (BDNF, DTNBP1, GRM3 and NRG1) on hippocampal volume in schizophrenia patients and healthy controls. METHODS Clinical assessment, structural MRI scans, and blood samples for genotyping of 32 SNPs were obtained from 54 schizophrenia patients and 53 control subjects. Information on obstetric complications was collected from original birth records. RESULTS Severe OCs were related to hippocampal volume in both patients with schizophrenia and healthy control subjects. Of the 32 SNPs studied, effects of severe OCs on hippocampal volume were associated with allele variation in GRM3 rs13242038, but the interaction effect was not specific for schizophrenia. SNP variation in any of the four investigated genes alone did not significantly affect hippocampal volume. CONCLUSIONS The findings suggest a gene-environment (G x E) interaction between GRM3 gene variants and severe obstetric complications on hippocampus volume, independent of a diagnosis of schizophrenia. Due to the modest sample size, the results must be considered preliminary and require replication in independent samples.
Collapse
Affiliation(s)
- Unn Kristin Haukvik
- Department of Clinical Medicine, section Vinderen, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia. Behav Brain Res 2010; 208:609-18. [DOI: 10.1016/j.bbr.2010.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/10/2009] [Accepted: 01/09/2010] [Indexed: 11/24/2022]
|
14
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
15
|
Ondicova K, Mravec B. Do monoamine-synthesizing cells constitute a complex network of oxygen sensors? Med Hypotheses 2009; 74:547-51. [PMID: 19846259 DOI: 10.1016/j.mehy.2009.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/23/2009] [Indexed: 11/17/2022]
Abstract
Oxygen represents an essential molecule for organisms. Because of this, sophisticated systems of sensors have evolved to monitor oxygenation of tissues. We propose that monoamine-synthesizing cells represent an important part of this system. It is well known that the carotid body, which contains chromaffin cells, serves as a chemical sensor of blood oxygenation. Similarly, the activity of adrenal medullary chromaffin cells is increased during hypoxia. Moreover, neurons located in the central nervous system containing catecholamines, serotonin, and histamine are also sensitive to hypoxia. On the basis of this common sensitivity of monoamine-synthesizing cells to changes in oxygenation we propose the hypothesis that these cells constitute a widely distributed network of sensors that monitor oxygen levels. The role of monoamine-synthesizing cells in monitoring tissue oxygen supply during both physiological and pathological conditions is also discussed.
Collapse
Affiliation(s)
- K Ondicova
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
16
|
Advancement of reproductive senescence and changes in the early expression of estrogen, progesterone and µ-opioid receptors induced by neonatal hypoxia in the female rat. Brain Res 2008; 1214:73-83. [DOI: 10.1016/j.brainres.2008.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 02/06/2023]
|
17
|
Buller KM, Wixey JA, Pathipati P, Carty M, Colditz PB, Williams CE, Scheepens A. Selective losses of brainstem catecholamine neurons after hypoxia-ischemia in the immature rat pup. Pediatr Res 2008; 63:364-9. [PMID: 18356740 DOI: 10.1203/pdr.0b013e3181659774] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoxic-ischemic (HI) injury in the preterm neonate incurs numerous functional deficits, however little is known about the neurochemically-defined brain nuclei that may underpin them. Key candidates are the brainstem catecholamine neurons. Using an immature animal model, the postnatal day (P)-3 (P3) rat pup, we investigated the effects of HI on brainstem catecholamine neurons in the locus coeruleus, nucleus tractus solitarius (NTS), and ventrolateral medulla (VLM). On P21, we found that prior P3 HI significantly reduced numbers of catecholaminergic neurons in the locus coeruleus, NTS, and VLM. Only locus coeruleus A6, NTS A2, and VLM A1 noradrenergic neurons, but not NTS C2 and VLM C1 adrenergic neurons, were lost. There was also an associated reduction in dopamine-beta-hydroxylase-positive immunolabeling in the forebrain. These findings suggest neonatal HI can affect specific neurochemically-defined neuronal populations in the brainstem and that noradrenergic neurons are particularly vulnerable to HI injury.
Collapse
Affiliation(s)
- Kathryn M Buller
- Perinatal Research Centre, University of Queensland, Queensland 4029, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Weitzdörfer R, Höger H, Burda G, Pollak A, Lubec G. Differences in Hippocampal Protein Expression at 3 Days, 3 Weeks, and 3 Months Following Induction of Perinatal Asphyxia in the Rat. J Proteome Res 2008; 7:1945-52. [DOI: 10.1021/pr700835y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rachel Weitzdörfer
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Harald Höger
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gudrun Burda
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| |
Collapse
|
19
|
Simola N, Bustamante D, Pinna A, Pontis S, Morales P, Morelli M, Herrera-Marschitz M. Acute perinatal asphyxia impairs non-spatial memory and alters motor coordination in adult male rats. Exp Brain Res 2007; 185:595-601. [PMID: 17989968 DOI: 10.1007/s00221-007-1186-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
Abstract
A large body of clinical evidence suggests a possible association between perinatal asphyxia and the onset of early, as well as long-term, neurological and psychiatric disorders including cognitive deficits. The present study investigated cognitive and motor function modifications in a well characterized and clinically relevant experimental rat model of human perinatal asphyxia. The results reported here show that adult rats exposed to a single (20 min) asphyctic episode at delivery displayed: (a) a deficit in non-spatial memory, assessed in a novel object recognition task; (b) an impaired motor coordination, measured by the rotarod test. On the other hand, gross motor activity and spatial memory, evaluated in both the Y maze and the Barnes maze, were not affected by perinatal asphyxia. The results of this study provide further insights into the long-term effects of perinatal asphyxia on neurobehavioural functions.
Collapse
Affiliation(s)
- Nicola Simola
- Department of Toxicology and Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Coq JO, Strata F, Russier M, Safadi FF, Merzenich MM, Byl NN, Barbe MF. Impact of neonatal asphyxia and hind limb immobilization on musculoskeletal tissues and S1 map organization: implications for cerebral palsy. Exp Neurol 2007; 210:95-108. [PMID: 18061167 DOI: 10.1016/j.expneurol.2007.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/18/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre-, peri- or postnatal damage to the developing brain. In a previous study (Strata, F., Coq, J.O., Byl, N.N., Merzenich, M.M., 2004. Comparison between sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 129, 141-156.), CP-like movement disorders were more reliably reproduced in rats by hind limb sensorimotor restriction (disuse) during development rather than perinatal asphyxia (PA). To gain new insights into the underpinning mechanisms of CP symptoms we investigated the long-term effects of PA and disuse on the hind limb musculoskeletal histology and topographical organization in the primary somatosensory cortex (S1) of adult rats. Developmental disuse (i.e. hind limb immobilization) associated with PA induced muscle fiber atrophy, extracellular matrix changes in the muscle, and mild to moderate ankle and knee joint degeneration at levels greater than disuse alone. Sensorimotor restricted rats with or without PA exhibited a topographical disorganization of the S1 cortical hind limb representation with abnormally large, multiple and overlapping receptive fields. This disorganization was enhanced when disuse and PA were associated. Altered cortical neuronal properties included increased cortical responsiveness and a decrease in neuronal selectivity to afferent inputs. These data support previous observations that asphyxia per se can generate the substrate for peripheral tissue and brain damage, which are worsened by aberrant sensorimotor experience during maturation, and could explain the disabling movement disorders observed in children with CP.
Collapse
Affiliation(s)
- Jacques-Olivier Coq
- UMR 6149 Neurobiologie Intégrative et Adaptative, Aix-Marseille Université-CNRS, Pôle 3C, Case B, 3 Place Victor Hugo, Marseille Cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Morales P, Reyes P, Klawitter V, Huaiquín P, Bustamante D, Fiedler J, Herrera-Marschitz M. Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures. Neuroscience 2006; 135:421-31. [PMID: 16112481 DOI: 10.1016/j.neuroscience.2005.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/24/2005] [Accepted: 05/30/2005] [Indexed: 10/25/2022]
Abstract
The present report summarizes studies combining an in vivo and in vitro approach, where asphyxia is induced in vivo at delivery time of Wistar rats, and the long term effects on hippocampus neurocircuitry are investigated in vitro with organotypic cultures plated at postnatal day seven. The cultures preserved hippocampus layering and regional subdivisions shown in vivo, and only few dying cells were observed when assayed with a viability test at day in vitro 27. When properly fixed, cultures from asphyxia-exposed animals showed a decreased amount of microtubule-associated protein-2 immunocytochemically positive cells (approximately 30%), as compared with that from controls. The decrease in microtubule-associated protein-2 immunocytochemistry was particularly prominent in Ammon's horn 1 and dentate gyrus regions (approximately 40%). 5-Bromo-2'deoxyuridine labeling revealed a two-fold increase in cellular proliferation in cultures from asphyxia-exposed, compared with that from control animals. Furthermore, confocal microscopy and quantification using the optical disector technique demonstrated that in cultures from asphyxia-exposed animals approximately 30% of 5-bromo-2'deoxyuridine-positive cells were also positive to microtubule-associated protein-2, a marker for neuronal phenotype. That proportion was approximately 20% in cultures from control animals. Glial fibrillary acidic protein-immunocytochemistry and Fast Red nuclear staining revealed that the core of the hippocampus culture was surrounded by a well-developed network of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein-processes providing an apparent protective shield around the hippocampus. That shield was less developed in cultures from asphyxia-exposed animals. The increased mitotic activity observed in this study suggests a compensatory mechanism for the long-term impairment induced by perinatal asphyxia, although it is not clear yet if that mechanism leads to neurogenesis, astrogliogenesis, or to further apoptosis.
Collapse
Affiliation(s)
- P Morales
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, P.O. Box 70.000 Santiago 7, Chile
| | | | | | | | | | | | | |
Collapse
|
22
|
Kaur C, Sivakumar V, Zhang Y, Ling EA. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum. Glia 2006; 54:826-39. [PMID: 16977604 DOI: 10.1002/glia.20420] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hypoxia is an important factor linked to induction of vascular leakage and formation of brain edema. In this connection, astrocytes associated closely with the blood vessels are deemed to be involved. This study investigated the response of astrocytes to hypoxia in the adult rat cerebellum, and along with this, the integrity of the blood-brain barrier (BBB) was assessed using fluorescent and electron dense tracers. In rats subjected to hypoxia, mRNA and protein expression of hypoxia inducible factor-1alpha (HIF-1alpha), vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), and aquaporin-4 (AQ4) was significantly increased. VEGF and AQ4 immunoreactive cells were identified as astrocytes by double immunofluorescence labeling. Increased VEGF tissue concentration and astrocytic swelling as observed in hypoxic rats were reduced after melatonin administration. Following intraperitoneal or intravenous injection of rhodamine isothiocyanate (RhIC) or horseradish peroxidase (HRP), leakage of both tracers was observed in hypoxic rats but not in the controls indicating that functional integrity of BBB is compromised in hypoxia/reoxygenation. Enhanced gene and protein expression of VEGF may contribute to increased permeability of blood vessels. AQ4, a water transporting protein, is upregulated in astrocytes in hypoxia suggesting the cells are involved in edema formation. To this end, melatonin may be beneficial in reducing edema as it reduced VEGF concentration and, hence, vascular permeability.
Collapse
MESH Headings
- Animals
- Aquaporin 4/genetics
- Aquaporin 4/metabolism
- Astrocytes/physiology
- Astrocytes/ultrastructure
- Biomarkers/analysis
- Biomarkers/metabolism
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/pathology
- Blood-Brain Barrier/physiopathology
- Brain Edema/drug therapy
- Brain Edema/etiology
- Brain Edema/physiopathology
- Capillary Permeability/drug effects
- Capillary Permeability/physiology
- Cell Size
- Cerebral Arteries/physiopathology
- Disease Models, Animal
- Fluorescent Antibody Technique
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Horseradish Peroxidase
- Hypoxia, Brain/complications
- Hypoxia, Brain/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Male
- Melatonin/pharmacology
- Melatonin/therapeutic use
- Microscopy, Electron, Transmission
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Rhodamines
- Up-Regulation/physiology
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
23
|
Abstract
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.
Collapse
Affiliation(s)
- Lalini Ramanathan
- Department of Psychiatry, University of California at Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
24
|
Jones M, Drut R, Valencia M, Mijalovsky A. Empty sella syndrome, panhypopituitarism, and diabetes insipidus. Fetal Pediatr Pathol 2005; 24:191-204. [PMID: 16338880 DOI: 10.1080/15227950500305843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We present an 18-month-old girl with short stature, obesity, panhypopituitarism, diabetes insipidus, and visual defects. Postmortem examination revealed brain atrophy due to a diffuse encephalopathy, numerous calcified neurons in cerebral cortex, deep telencephalic and diencephalic nuclei, diffuse neuronal necrosis in hypothalamic nuclei, moderate atrophy of optic nerves, very thin hypophyseal stalk, and empty sella with the hypophysis compressed to the dorsal aspect of the concavity. Our hypothesis is that the presence of an empty sella in a child with hypophyseal-hypothalamic abnormalities should alert physicians to the existence of hypothalamic lesions secondary to a perinatal insult. We discuss the possible pathogenesis of these findings as well as lines of evidence available in the literature.
Collapse
Affiliation(s)
- Marta Jones
- Department of Pathology, Children's Hospital Superiora Sor María Ludovica, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
25
|
Fernandes AMAP, Maurer-Morelli CV, Campos CBL, Mello MLS, Castilho RF, Langone F. Fluoro-Jade, but not Fluoro-Jade B, stains non-degenerating cells in brain and retina of embryonic and neonatal rats. Brain Res 2005; 1029:24-33. [PMID: 15533312 DOI: 10.1016/j.brainres.2004.09.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2004] [Indexed: 11/15/2022]
Abstract
Fluoro-Jade (FJ) and Fluoro-Jade B (FJB) are fluorescein derivatives currently used to stain brain cells under degeneration. In this study, we investigated the FJ staining of nondegenerating cells in embryonic and neonatal rat brain and retina. In embryonic rat brain (embryonic day 15; E15), very intense staining of cells was observed. The number of FJ-stained cells and the intensity of staining decreased with increasing in animal age, being almost absent by postnatal day 16 (P16). Only a few cells in neonatal rat brain were in the process of cell death, as verified by the TUNEL technique. The FJ-stained cells in neonatal brain were positive for the neuronal marker neuronal nuclei antigen (NeuN). In retina, FJ stained mainly cells from the ganglion cell layer at P2 and the neuroblastic layer at P2 and P6. In contrast to FJ, FJB did not stain nondegenerating cells in embryonic and neonatal rats. These results show that in addition to staining degenerating brain cells, FJ also stains nondegenerating central nervous system cells in embryonic and neonatal stages.
Collapse
Affiliation(s)
- Anna M A P Fernandes
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Strata F, Coq JO, Byl N, Merzenich MM. Effects of sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 2005; 129:141-56. [PMID: 15489037 DOI: 10.1016/j.neuroscience.2004.07.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Chronic or acute perinatal asphyxia (PA) has been correlated with the subsequent development of cerebral palsy (CP), a developmental neurological disorder characterized by spasticity and motor abnormalities often associated with cognitive deficits. Despite the prevalence of CP, an animal model that mimics the lifetime hypertonic motor deficits is still not available. In the present study, the consequences of PA on motor behavior, gait and organization of the primary motor cortex were examined in rats, and compared with the behavioral and neurological consequences of early postnatal movement-restriction with or without oxygen deprivation. Rats subjected to PA had mild increases in muscular tone accompanied by subtle differences in walking patterns, paralleled by significantly altered but relatively modest disorganization of their primary motor cortices. Movement-restricted rats, suffering PA or not, had reduced body growth rate, markedly increased muscular tone at rest and with active flexion and extension around movement-restricted joints that resulted in abnormal walking patterns and in a profoundly distorted representation of the hind limbs in the primary motor cortex. Within the sensorimotor-restricted groups, non-anoxic rats presented the most abnormal pattern and the greatest cortical representational degradation. This outcome further supports the argument that PA per se may represent a substrate for subtle altered motor behaviors, and that PA alone is sufficient to alter the organization of the primary motor cortex. At the same time, they also show that early experience-dependent movements play a crucial role in shaping normal behavioral motor abilities, and can make a powerful contribution to the genesis of aberrant movement abilities.
Collapse
Affiliation(s)
- F Strata
- Keck Center for Integrative Neuroscience, Coleman Laboratory and Department of Otolaryngology-Head and Neck Surgery, University of California at San Francisco, 513 Parnassus Avenue HSE-832, San Francisco, CA 94143-0732, USA.
| | | | | | | |
Collapse
|
27
|
Kirchner L, Weitzdoerfer R, Hoeger H, Url A, Schmidt P, Engelmann M, Villar SR, Fountoulakis M, Lubec G, Lubec B. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements. Nitric Oxide 2004; 11:316-30. [PMID: 15604044 DOI: 10.1016/j.niox.2004.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/13/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.
Collapse
Affiliation(s)
- Liselotte Kirchner
- Department of Neonatology, University of Vienna, Währinger Gürtel 18, A 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Boksa P. Animal models of obstetric complications in relation to schizophrenia. ACTA ACUST UNITED AC 2004; 45:1-17. [PMID: 15063096 DOI: 10.1016/j.brainresrev.2004.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2004] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have provided strong evidence that exposure to obstetric complications is associated with an increased risk for later development of schizophrenia. These human studies have now begun to tease out which specific pregnancy, labor/delivery or neonatal complications might confer greatest risk for schizophrenia. Animal modeling can be a useful tool to directly ask if a particular obstetric complication can actually cause changes in brain function or behavior resembling changes in schizophrenia. This review describes currently available animal models for some of the obstetric complications with greatest effect size for schizophrenia, including maternal diabetes, preeclampsia, infection and stress during pregnancy, intrauterine growth retardation and fetal/neonatal hypoxia. Where available, evidence that these types of obstetric complications in animals produce alterations in CNS function or behavior, related to features of schizophrenic pathology, is presented. Animal models might provide insights into the mechanisms by which specific obstetric complications have long-term influence on brain development leading to increased risk for schizophrenia. Factors common to several obstetric complications associated with schizophrenia may also be discerned. In this way, animal modeling may provide the framework for human studies to ask further more refined questions concerning the role of specific obstetric factors contributing to schizophrenia, and may provide clues to prevention.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec, Canada H4H 1R3.
| |
Collapse
|