1
|
Agbehadzi RK, Kumi G, Adjei-Mensah B, Hamidu JA, Tona K. Impact of late-stage hypoxic stimulation and layer breeder age on embryonic development, hatching and chick quality. Poult Sci 2024; 104:104691. [PMID: 39731869 DOI: 10.1016/j.psj.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
The present study examined the effects of breeder age and oxygen (O₂) concentrations during the late chorioallantoic membrane (CAM) growth stage on embryo development, hatching dynamics, chick quality, bone mineralization and hatchability. A total of 1200 eggs from 33- and 50-week-old ISA layer breeders, weighing 53.85 g and 60.42 g on average respectively, were incubated at 37.7°C and 56 % relative humidity. From embryonic day (ED) 13 to 15, experimental eggs were exposed to hypoxia (15 % or 17 % O₂ for 1 hr/day) while the control was at 21 % O₂. Results showed significant interactions (p = 0.040) between breeder age and oxygen level, with embryos exposed to 15 % and 17 % O₂ exhibiting slower growth by ED 17. However, embryo weight at internal pipping (IP) was unaffected (p > 0.05). At hatch, chick weights were higher in hypoxic groups due to increased yolk sac retention (p = 0.024), while yolk-free weights were influenced only by breeder age (p < 0.001). Hypoxia at 15 % O₂ reduced chick length, toe length, and tibia parameters (p < 0.05), likely due to impaired calcium and phosphorus absorption. Embryos exposed to 15 % O2 had longer internal and external pipping events, delaying hatch time. Embryonic mortality was highest (p < 0.001) at 15 % O₂, contributing to the reduced hatch of fertile eggs. This research demonstrates that controlled hypoxic conditions can slow embryonic development, conserve yolk nutrients, improve organ maturation and chick weight across breeder ages.
Collapse
Affiliation(s)
- R K Agbehadzi
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo.
| | - G Kumi
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo
| | - B Adjei-Mensah
- Department of Animal Science, University of Ghana, P.O. Box LG 25, Legon, Ghana
| | - J A Hamidu
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo; Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, University Post Office, Kumasi, Ghana
| | - K Tona
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo
| |
Collapse
|
2
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Sukumaran V, Mutlu O, Murtaza M, Alhalbouni R, Dubansky B, Yalcin HC. Experimental assessment of cardiovascular physiology in the chick embryo. Dev Dyn 2023; 252:1247-1268. [PMID: 37002896 DOI: 10.1002/dvdy.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 10/04/2023] Open
Abstract
High resolution assessment of cardiac functional parameters is crucial in translational animal research. The chick embryo is a historically well-used in vivo model for cardiovascular research due to its many practical advantages, and the conserved form and function of the chick and human cardiogenesis programs. This review aims to provide an overview of several different technical approaches for chick embryo cardiac assessment. Doppler echocardiography, optical coherence tomography, micromagnetic resonance imaging, microparticle image velocimetry, real-time pressure monitoring, and associated issues with the techniques will be discussed. Alongside this discussion, we also highlight recent advances in cardiac function measurements in chick embryos.
Collapse
Affiliation(s)
| | - Onur Mutlu
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | | - Benjamin Dubansky
- Department of Biological and Agricultural Engineering, Office of Research and Economic Development, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
6
|
Haron A, Ruzal M, Shinder D, Druyan S. Hypoxia during incubation and its effects on broiler's embryonic development. Poult Sci 2021; 100:100951. [PMID: 33652530 PMCID: PMC7936217 DOI: 10.1016/j.psj.2020.12.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
In all vertebrates, hypoxia plays an important role in fetal development, driving vasculogenesis, angiogenesis, hematopoiesis, and chondrogenesis. Therefore, the ability to sense and respond to changes in the availability of oxygen (O2) is crucial for normal embryonic development as well as for developmental plasticity. Moderate levels of hypoxia trigger a regulated process which leads to adaptive responses. Regulation of angiogenesis by hypoxia is an important component of homeostatic control mechanisms that link the cardio-pulmonary-vascular O2 supply to metabolic demands in local tissues. Hypoxia leads to the activation of genes that are important for cell and tissue adaptation to low O2 conditions, such as hypoxia-inducible factor 1. Previous studies have shown a dose-response effect to hypoxia in chicken embryos, with lower and/or prolonged O2 levels affecting multiple mechanisms and providing a spectrum of responses that facilitate the ability to maintain O2 demand despite environmental hypoxia. In chicken embryos, mild to extreme hypoxia during embryogenesis improves chorioallantoic membrane and cardiovascular development, resulting in an increase in O2 carrying capacity and leading to developmental plasticity that may affect post-hatch chick performance and improve adaptation to additional environmental stresses at suboptimal environmental conditions.
Collapse
Affiliation(s)
- Amit Haron
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel; Faculty of Agriculture Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Mark Ruzal
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel
| | - Dmitry Shinder
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel
| | - Shelly Druyan
- Institute of Animal Science, Agricultural Research Organization (ARO), The Volcani Center, Rishon Le Ziyyon 15159, Israel.
| |
Collapse
|
7
|
Stermin AN, David A. Survival of water rail Rallus aquaticus (Aves, Rallidae) embryos exposed to experimental flooding. JOURNAL OF VERTEBRATE BIOLOGY 2020. [DOI: 10.25225/jvb.20069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Alexandru N. Stermin
- Department of Taxonomy and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania; e-mail:
| | - Alin David
- Department of Taxonomy and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania; e-mail:
| |
Collapse
|
8
|
Burggren W, Rojas Antich M. Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. J Cardiovasc Dev Dis 2020; 7:jcdd7040056. [PMID: 33291457 PMCID: PMC7762154 DOI: 10.3390/jcdd7040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The chorioallantoic membrane (CAM) of the avian embryo is an intrinsically interesting gas exchange and osmoregulation organ. Beyond study by comparative biologists, however, the CAM vascular bed has been the focus of translational studies by cardiovascular life scientists interested in the CAM as a model for probing angiogenesis, heart development, and physiological functions. In this perspective article, we consider areas of cardiovascular research that have benefited from studies of the CAM, including the themes of investigation of the CAM's hemodynamic influence on heart and central vessel development, use of the CAM as a model vascular bed for studying angiogenesis, and the CAM as an assay tool. A case study on CAM vascularization effects of very low doses of crude oil as a toxicant is also presented that embraces some of these themes, showing the induction of subtle changes in the pattern of the CAM vasculature growth that are not readily observed by standard vascular assessment methodologies. We conclude by raising several questions in the area of CAM research, including the following: (1) Do changes in patterns of CAM growth, as opposed to absolute CAM growth, have biological significance?; (2) How does the relative amount of CAM vascularization compared to the embryo per se change during development?; and (3) Is the CAM actually representative of the mammalian systemic vascular beds that it is presumed to model?
Collapse
|
9
|
Keller BB, Kowalski WJ, Tinney JP, Tobita K, Hu N. Validating the Paradigm That Biomechanical Forces Regulate Embryonic Cardiovascular Morphogenesis and Are Fundamental in the Etiology of Congenital Heart Disease. J Cardiovasc Dev Dis 2020; 7:E23. [PMID: 32545681 PMCID: PMC7344498 DOI: 10.3390/jcdd7020023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this review is to provide a broad overview of the biomechanical maturation and regulation of vertebrate cardiovascular (CV) morphogenesis and the evidence for mechanistic relationships between function and form relevant to the origins of congenital heart disease (CHD). The embryonic heart has been investigated for over a century, initially focusing on the chick embryo due to the opportunity to isolate and investigate myocardial electromechanical maturation, the ability to directly instrument and measure normal cardiac function, intervene to alter ventricular loading conditions, and then investigate changes in functional and structural maturation to deduce mechanism. The paradigm of "Develop and validate quantitative techniques, describe normal, perturb the system, describe abnormal, then deduce mechanisms" was taught to many young investigators by Dr. Edward B. Clark and then validated by a rapidly expanding number of teams dedicated to investigate CV morphogenesis, structure-function relationships, and pathogenic mechanisms of CHD. Pioneering studies using the chick embryo model rapidly expanded into a broad range of model systems, particularly the mouse and zebrafish, to investigate the interdependent genetic and biomechanical regulation of CV morphogenesis. Several central morphogenic themes have emerged. First, CV morphogenesis is inherently dependent upon the biomechanical forces that influence cell and tissue growth and remodeling. Second, embryonic CV systems dynamically adapt to changes in biomechanical loading conditions similar to mature systems. Third, biomechanical loading conditions dynamically impact and are regulated by genetic morphogenic systems. Fourth, advanced imaging techniques coupled with computational modeling provide novel insights to validate regulatory mechanisms. Finally, insights regarding the genetic and biomechanical regulation of CV morphogenesis and adaptation are relevant to current regenerative strategies for patients with CHD.
Collapse
Affiliation(s)
- Bradley B. Keller
- Cincinnati Children’s Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY 40202, USA
| | - William J. Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| | - Joseph P. Tinney
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Kimimasa Tobita
- Department of Medical Affairs, Abiomed Japan K.K., Muromachi Higashi Mitsui Bldg, Tokyo 103-0022, Japan;
| | - Norman Hu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
10
|
Nechaeva M, Alekseeva T, Dobretsov M, Kubasov I. Chicken embryos can maintain heart rate during hypoxia on day 4 of incubation. J Comp Physiol B 2020; 190:361-370. [PMID: 32198537 DOI: 10.1007/s00360-020-01274-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 11/24/2022]
Abstract
Acute exposure to hypoxic conditions is a frequent natural event during the development of bird eggs. However, little is known about the effect of such exposure on the ability of young embryos in which cardiovascular regulation is not yet developed to maintain a normal heart rate (HR). To address this question, we studied the effect of 10-20 min of exposure to moderate or severe acute hypoxia (10% or 5% O2, respectively) on the HR of day 4 (D4) chicken embryos. In ovo, video recording of the beating embryo heart inside the egg revealed that severe, but not moderate, hypoxia resulted in significant HR changes. The HR response to severe hypoxia consisted of two phases: the first phase, consisting of an initial decrease in HR, was followed by a phase of partial HR recovery. Upon the restoration of normoxia, after an overshoot period of a few minutes, the HR completely recovered to its basal level. In vitro (isolated heart preparation), the first phase of the HR response to severe hypoxia was strengthened (nearly complete heart silencing) compared to that in ovo, and the HR recovery phase was greatly attenuated. Furthermore, neither an overshoot period nor complete HR recovery after hypoxia was observed. Thus, the D4 chicken embryo heart can partially maintain its rhythm during hypoxia in ovo, but not in vitro. Some factors from the egg, such as catecholamines, are likely to be critical for avian embryo responding to hypoxic condition and survival.
Collapse
Affiliation(s)
- Marina Nechaeva
- Institute of Developmental Biology RAS, Vavilov Str. 26, Moscow, 119334, Russia.
| | - Tatyana Alekseeva
- Institute of Developmental Biology RAS, Vavilov Str. 26, Moscow, 119334, Russia
| | - Maxim Dobretsov
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| | - Igor Kubasov
- Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg, Russia
| |
Collapse
|
11
|
Gas exchange during storage and incubation of Avian eggs: effects on embryogenesis, hatchability, chick quality and post-hatch growth. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001614] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Abstract
Complications of pregnancy remain key drivers of morbidity and mortality, affecting the health of both the mother and her offspring in the short and long term. There is lack of detailed understanding of the pathways involved in the pathology and pathogenesis of compromised pregnancy, as well as a shortfall of effective prognostic, diagnostic and treatment options. In many complications of pregnancy, such as in preeclampsia, there is an increase in uteroplacental vascular resistance. However, the cause and effect relationship between placental dysfunction and adverse outcomes in the mother and her offspring remains uncertain. In this review, we aim to highlight the value of gestational hypoxia-induced complications of pregnancy in elucidating underlying molecular pathways and in assessing candidate therapeutic options for these complex disorders. Chronic maternal hypoxia not only mimics the placental pathology associated with obstetric syndromes like gestational hypertension at morphological, molecular and functional levels, but also recapitulates key symptoms that occur as maternal and fetal clinical manifestations of these pregnancy disorders. We propose that gestational hypoxia provides a useful model to study the inter-relationship between placental dysfunction and adverse outcomes in the mother and her offspring in a wide array of examples of complicated pregnancy, such as in preeclampsia.
Collapse
|
13
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
14
|
Prestipino L, Polson JW, Brolin E, Ritchie HE. Long-term programming effects on blood pressure following gestational exposure to the I Kr blocker Dofetilide. Physiol Rep 2018; 6:e13621. [PMID: 29504284 PMCID: PMC5835481 DOI: 10.14814/phy2.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
A slow embryonic heart rate in early-mid gestation is associated with increased risk of embryonic death and malformation, however, the long-term consequences remain unknown. We administered Dofetilide (Dof, 2.5 mg/kg), a drug that produces embryo-specific bradycardia, to pregnant rats from gestational days 11-14. Embryonic heart rate and rhythm were determined using embryo culture. Cardiovascular function was assessed in surviving adult offspring at rest, during acute psychological stress (air jet stress, AJS), and after 7 days of repeated AJS. Dof reduced embryonic HR by 40% for ~8 h on each of the treatment days. On postnatal day 3, Dof offspring were ~10% smaller. Blood pressure was elevated in adult Dof rats (systolic blood pressure, night: 103.8 ± 3.9 vs. 111.2 ± 3.0 mmHg, P = 0.01). While the pressor response to AJS was similar in both groups (control 17.7 ± 3.4; Dof 18.9 ± 0.9 mmHg, P = 0.74), after 7 days repeated AJS, clear habituation was present in control (P = 0.0001) but not Dof offspring (P = 0.48). Only Dof offspring showed a small increase in resting blood pressure after 7 days repeated stress (+3.9 ± 1.7 mmHg, P = 0.05). The results indicate that embryonic bradycardia programs hypertension and impaired stress adaptation, and have implications for the maternal use of cardioactive drugs during pregnancy.
Collapse
Affiliation(s)
- Louise Prestipino
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Jaimie W. Polson
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Elisabeth Brolin
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Helen E. Ritchie
- School of Medical Sciences and Bosch InstituteSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| |
Collapse
|
15
|
Lock MC, Botting KJ, Tellam RL, Brooks D, Morrison JL. Adverse Intrauterine Environment and Cardiac miRNA Expression. Int J Mol Sci 2017; 18:ijms18122628. [PMID: 29210999 PMCID: PMC5751231 DOI: 10.3390/ijms18122628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs) and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF) activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Kimberley J Botting
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ross L Tellam
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
- CSIRO Agriculture, 306 Carmody Rd, St. Lucia, QLD 4067, Australia.
| | - Doug Brooks
- Mechanisms in Cell Biology and Disease Research Group School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Janna L Morrison
- Early Origins of Adult Health Research Group; School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
16
|
Itani N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J Physiol 2017; 596:2991-3006. [PMID: 28983923 DOI: 10.1113/jp274111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
It is now established that adverse conditions during pregnancy can trigger a fetal origin of cardiovascular dysfunction and/or increase the risk of heart disease in later life. Suboptimal environmental conditions during early life that may promote the development of cardiovascular dysfunction in the offspring include alterations in fetal oxygenation and nutrition as well as fetal exposure to stress hormones, such as glucocorticoids. There has been growing interest in identifying the partial contributions of each of these stressors to programming of cardiovascular dysfunction. However, in humans and in many animal models this is difficult, as the challenges cannot be disentangled. By using the chicken embryo as an animal model, science has been able to circumvent a number of problems. In contrast to mammals, in the chicken embryo the effects on the developing cardiovascular system of changes in oxygenation, nutrition or stress hormones can be isolated and determined directly, independent of changes in the maternal or placental physiology. In this review, we summarise studies that have exploited the chicken embryo model to determine the effects on prenatal growth, cardiovascular development and pituitary-adrenal function of isolated chronic developmental hypoxia.
Collapse
Affiliation(s)
- N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - C E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - M Villena
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - C E Blanco
- Department of Neonatology, The National Maternity Hospital, Holles Street, Dublin, D02 YH21, Ireland
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
17
|
Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Skeffington KL, Beck C, Giussani DA. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J Physiol 2016; 594:1247-64. [PMID: 26926316 PMCID: PMC4771786 DOI: 10.1113/jp271091] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species.
Collapse
Affiliation(s)
- B J Allison
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Brain
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Y Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - A D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - A S Thakor
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Radiology, Stanford University Medical Centre, Palo Alto, CA, 94305, USA
| | - K J Botting
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
18
|
Itani N, Skeffington KL, Beck C, Giussani DA. Sildenafil therapy for fetal cardiovascular dysfunction during hypoxic development: studies in the chick embryo. J Physiol 2016; 595:1563-1573. [PMID: 27861916 DOI: 10.1113/jp273393] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Common complications of pregnancy, such as chronic fetal hypoxia, trigger a fetal origin of cardiovascular dysfunction and programme cardiovascular disease in later life. Sildenafil treatment protects placental perfusion and fetal growth, but whether the effects of sildenafil transcend the placenta to affect the fetus is unknown. Using the chick embryo model, here we show that sildenafil treatment directly protects the fetal cardiovascular system in hypoxic development, and that the mechanisms of sildenafil protection include reduced oxidative stress and increased nitric oxide bioavailability; Sildenafil does not protect against fetal growth restriction in the chick embryo, supporting the idea that the protective effect of sildenafil on fetal growth reported in mammalian studies, including humans, is secondary to improved placental perfusion. Therefore, sildenafil may be a good candidate for human translational antioxidant therapy to protect the chronically hypoxic fetus in adverse pregnancy. ABSTRACT There is a need for developing clinically translatable therapy for preventing fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia. Evidence shows that sildenafil protects placental perfusion and fetal growth. However, whether beneficial effects of sildenafil transcend onto the fetal heart and circulation in complicated development is unknown. We isolated the direct effects of sildenafil on the fetus using the chick embryo and hypothesised that sildenafil also protects fetal cardiovascular function in hypoxic development. Chick embryos (n = 11 per group) were incubated in normoxia or hypoxia (14% O2 ) from day 1 and treated with sildenafil (4 mg kg-1 day-1 ) from day 13 of the 21-day incubation. Hypoxic incubation increased oxidative stress (4-hydroxynonenal, 141.1 ± 17.6% of normoxic control), reduced superoxide dismutase (60.7 ± 6.3%), increased phosphodiesterase type 5 expression (167 ± 13.7%) and decreased nitric oxide bioavailability (54.7 ± 6.1%) in the fetal heart, and promoted peripheral endothelial dysfunction (70.9 ± 5.6% AUC of normoxic control; all P < 0.05). Sildenafil treatment after onset of chronic hypoxia prevented the increase in phosphodiesterase expression (72.5 ± 22.4%), protected against oxidative stress (94.7 ± 6.2%) and normalised nitric oxide bioavailability (115.6 ± 22.3%) in the fetal heart, and restored endothelial function in the peripheral circulation (89.8 ± 2.9%). Sildenafil protects the fetal heart and circulation directly in hypoxic development via mechanisms including decreased oxidative stress and enhanced nitric oxide bioavailability. Sildenafil may be a good translational candidate for human antioxidant therapy to prevent fetal origins of cardiovascular dysfunction in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Christian Beck
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
19
|
Ide R, Ide ST, Mortola JP. The hypometabolic response to repeated or prolonged hypoxic episodes in the chicken embryo. Respir Physiol Neurobiol 2016; 230:29-35. [PMID: 27181329 DOI: 10.1016/j.resp.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
Abstract
Hypoxia (hx) in embryos causes a drop in oxygen consumption ( [Formula: see text] ) that rapidly recovers upon return to normoxia. We asked whether or not this pattern varies with the embryo's hypoxic history. The [Formula: see text] of chicken embryos in the middle (E12) or at end-incubation (E19) was measured by an open-flow methodology during 15-min epochs of moderate (15% O2) or severe hx (10% O2). Each hx-epoch was repeated or alternated with air by various modalities (air-hx-air-hx-air-hx-air, air-2·hx-air-2·hx-air, air-5·hx-air), in randomized sequences. The hx drop in [Formula: see text] was larger with severe than with moderate hx; however, in either case, its magnitude was essentially independent of the preceding hx history. E19 embryos had hx drops in [Formula: see text] of the same magnitude whether their incubation was in air or in moderate hx from E4 to E19. A different protocol (air-12·hx-air) gave variable results; with moderate hx, the [Formula: see text] response was similar to that of the other hx regimes. Differently, with severe hx most embryos progressively decreased [Formula: see text] and eventually died. We interpret these data on the basis of what is known on the 'compensatory partitioning' between costs of growth and maintenance. With moderate hx presumably each episode caused an energy shortfall absorbed entirely by the blunted growth. Hypoxic events of this type, therefore, should have no long-term functional effects other than those related to the small birth weight. Differently, the aerobic energy shortfall with severe hypoxia probably impinged on some maintenance functions and became incompatible with survival.
Collapse
Affiliation(s)
- Ryoji Ide
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Jacopo P Mortola
- Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Xiong F, Lin T, Song M, Ma Q, Martinez SR, Lv J, MataGreenwood E, Xiao D, Xu Z, Zhang L. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart. J Mol Cell Cardiol 2016; 91:160-71. [PMID: 26779948 DOI: 10.1016/j.yjmcc.2016.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/09/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart.
Collapse
Affiliation(s)
- Fuxia Xiong
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Thant Lin
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Minwoo Song
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Qingyi Ma
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shannalee R Martinez
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Juanxiu Lv
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Eugenia MataGreenwood
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhice Xu
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
21
|
Itani N, Skeffington KL, Beck C, Niu Y, Giussani DA. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J Pineal Res 2016; 60:16-26. [PMID: 26444711 PMCID: PMC4832387 DOI: 10.1111/jpi.12283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.
Collapse
Affiliation(s)
- Nozomi Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Katie L. Skeffington
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Christian Beck
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
22
|
Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD, Herrera EA, Giussani DA. Induction of controlled hypoxic pregnancy in large mammalian species. Physiol Rep 2015; 3:3/12/e12614. [PMID: 26660546 PMCID: PMC4760453 DOI: 10.14814/phy2.12614] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Progress in the study of pregnancy complicated by chronic hypoxia in large mammals has been held back by the inability to measure long-term significant reductions in fetal oxygenation at values similar to those measured in human pregnancy complicated by fetal growth restriction. Here, we introduce a technique for physiological research able to maintain chronically instrumented maternal and fetal sheep for prolonged periods of gestation under significant and controlled isolated chronic hypoxia beyond levels that can be achieved by habitable high altitude. This model of chronic hypoxia permits measurement of materno-fetal blood gases as the challenge is actually occurring. Chronic hypoxia of this magnitude and duration using this model recapitulates the significant asymmetric growth restriction, the pronounced cardiomyopathy, and the loss of endothelial function measured in offspring of high-risk pregnancy in humans, opening a new window of therapeutic research.
Collapse
Affiliation(s)
- Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nozomi Itani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emilio A Herrera
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Jonker SS, Giraud GD, Espinoza HM, Davis EN, Crossley DA. Effects of chronic hypoxia on cardiac function measured by pressure-volume catheter in fetal chickens. Am J Physiol Regul Integr Comp Physiol 2015; 308:R680-9. [PMID: 25652537 DOI: 10.1152/ajpregu.00484.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
Abstract
Hypoxia is a common component of many developmental insults and has been studied in early-stage chicken development. However, its impact on cardiac function and arterial-ventricular coupling in late-stage chickens is relatively unknown. To test the hypothesis that hypoxic incubation would reduce baseline cardiac function but protect the heart during acute hypoxia in late-stage chickens, white Leghorn eggs were incubated at 21% O2 or 15% O2. At 90% of incubation (19 days), hypoxic incubation caused growth restriction (-20%) and increased the LV-to-body ratio (+41%). Left ventricular (LV) pressure-volume loops were measured in anesthetized chickens in normoxia and acute hypoxia (10% O2). Hypoxic incubation lowered the maximal rate of pressure generation (ΔP/ΔtMax; -22%) and output (-57%), whereas increasing end-systolic elastance (ELV; +31%) and arterial elastance (EA; +122%) at similar heart rates to normoxic incubation. Both hypoxic incubation and acute hypoxia lengthened the half-time of relaxation (τ; +24%). Acute hypoxia reduced heart rate (-8%) and increased end-diastolic pressure (+35%). Hearts were collected for mRNA analysis. Hypoxic incubation was marked by decreased mRNA expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2, Na(+)/Ca(2+) exchanger 1, phospholamban, and ryanodine receptor. In summary, hypoxic incubation reduces LV function in the late-stage chicken by slowing pressure generation and relaxation, which may be driven by altered intracellular excitation-contraction coupling. Cardiac efficiency is greatly reduced after hypoxic incubation. In both incubation groups acute hypoxia reduced diastolic function.
Collapse
Affiliation(s)
- Sonnet S Jonker
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon;
| | - George D Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon; and
| | - Herbert M Espinoza
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Erica N Davis
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
24
|
Awasthy N, Radhakrishnan S, Iyer KS, Sharma R. Reversible ventricular dysfunction in cyanotic heart disease. Indian Heart J 2015; 66:704-6. [PMID: 25634410 DOI: 10.1016/j.ihj.2014.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 05/13/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022] Open
Abstract
Ventricular dysfunction is a matter of concern for any preoperative cardiac patient. We describe 2 cases of cyanotic congenital heart disease (CCHD) awaiting on pump repair with hypoxia as a cause of ventricular dysfunction. Any Cyanotic Congenital heart disease presenting with ventricular dysfunction should be evaluated for treatable causes like hypoxia after exclusion of structural causes for the same.
Collapse
Affiliation(s)
- Neeraj Awasthy
- Consultant (Pediatric Cardiology), Department of Pediatric and Congenital Heart Diseases, Fortis Escorts Heart Institute, New Delhi, India.
| | - S Radhakrishnan
- Director and HOD (Pediatric Cardiology), Department of Pediatric and Congenital Heart Diseases, Fortis Escorts Heart Institute, New Delhi, India
| | - K S Iyer
- Director, Department of Pediatric Cardiac Surgery, Fortis Escorts Heart Institute, New Delhi, India
| | - Rajesh Sharma
- Director, Department of Pediatric Cardiac Surgery, Fortis Escorts Heart Institute, New Delhi, India
| |
Collapse
|
25
|
Robin E, Marcillac F, Raddatz E. A hypoxic episode during cardiogenesis downregulates the adenosinergic system and alters the myocardial anoxic tolerance. Am J Physiol Regul Integr Comp Physiol 2015; 308:R614-26. [PMID: 25632022 DOI: 10.1152/ajpregu.00423.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
To what extent hypoxia alters the adenosine (ADO) system and impacts on cardiac function during embryogenesis is not known. Ectonucleoside triphosphate diphosphohydrolase (CD39), ecto-5'-nucleotidase (CD73), adenosine kinase (AdK), adenosine deaminase (ADA), equilibrative (ENT1,3,4), and concentrative (CNT3) transporters and ADO receptors A1, A2A, A2B, and A3 constitute the adenosinergic system. During the first 4 days of development chick embryos were exposed in ovo to normoxia followed or not followed by 6 h hypoxia. ADO and glycogen content and mRNA expression of the genes were determined in the atria, ventricle, and outflow tract of the normoxic (N) and hypoxic (H) hearts. Electrocardiogram and ventricular shortening of the N and H hearts were recorded ex vivo throughout anoxia/reoxygenation ± ADO. Under basal conditions, CD39, CD73, ADK, ADA, ENT1,3,4, CNT3, and ADO receptors were differentially expressed in the atria, ventricle, and outflow tract. In H hearts ADO level doubled, glycogen decreased, and mRNA expression of all the investigated genes was downregulated by hypoxia, except for A2A and A3 receptors. The most rapid and marked downregulation was found for ADA in atria. H hearts were arrhythmic and more vulnerable to anoxia-reoxygenation than N hearts. Despite downregulation of the genes, exposure of isolated hearts to ADO 1) preserved glycogen through activation of A1 receptor and Akt-GSK3β-GS pathway, 2) prolonged activity and improved conduction under anoxia, and 3) restored QT interval in H hearts. Thus hypoxia-induced downregulation of the adenosinergic system can be regarded as a coping response, limiting the detrimental accumulation of ADO without interfering with ADO signaling.
Collapse
Affiliation(s)
- Elodie Robin
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and National Center for Scientific Research, Center for Molecular Biophysics, Orléans, France
| | - Fabrice Marcillac
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| | - Eric Raddatz
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland; and
| |
Collapse
|
26
|
Ostadal B, Ostadalova I, Kolar F, Sedmera D. Developmental determinants of cardiac sensitivity to hypoxia. Can J Physiol Pharmacol 2014; 92:566-74. [DOI: 10.1139/cjpp-2013-0498] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac sensitivity to oxygen deprivation changes significantly during ontogenetic development. However, the mechanisms for the higher tolerance of the immature heart, possibilities of protection, and the potential impact of perinatal hypoxia on cardiac tolerance to oxygen deprivation in adults have not yet been satisfactorily clarified. The hypoxic tolerance of an isolated rat heart showed a triphasic pattern: significant decrease from postnatal day 1 to 7, followed by increase to the weaning period, and final decline to adulthood. We have observed significant ontogenetic changes in mitochondrial oxidative phosphorylation and mitochondrial membrane potential, as well as in the role of the mitochondrial permeability transition pores in myocardial injury. These results support the hypothesis that cardiac mitochondria are deeply involved in the regulation of cardiac tolerance to oxygen deprivation during ontogenetic development. Ischemic preconditioning failed to increase tolerance to oxygen deprivation in the highly tolerant hearts of newborn rats. Chronic hypoxic exposure during early development may cause in-utero or neonatal programming of several genes that can change the susceptibility of the adult heart to ischemia–reperfusion injury; this effect is sex dependent. These results would have important clinical implications, since cardiac sensitivity in adult patients may be significantly affected by perinatal hypoxia in a sex-dependent manner.
Collapse
Affiliation(s)
- Bohuslav Ostadal
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - Ivana Ostadalova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - Frantisek Kolar
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - David Sedmera
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
- Institute of Anatomy, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Giussani DA, Niu Y, Herrera EA, Richter HG, Camm EJ, Thakor AS, Kane AD, Hansell JA, Brain KL, Skeffington KL, Itani N, Wooding FBP, Cross CM, Allison BJ. Heart Disease Link to Fetal Hypoxia and Oxidative Stress. ADVANCES IN FETAL AND NEONATAL PHYSIOLOGY 2014; 814:77-87. [DOI: 10.1007/978-1-4939-1031-1_7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Abstract
It is now recognized that the quality of the fetal environment during early development is important in programming cardiovascular health and disease in later life. Fetal hypoxia is one of the most common consequences of complicated pregnancies worldwide. However, in contrast to the extensive research effort on pregnancy affected by maternal nutrition or maternal stress, the contribution of pregnancy affected by fetal chronic hypoxia to developmental programming is only recently becoming delineated and established. This review discusses the increasing body of evidence supporting the programming of cardiac susceptibility to ischaemia and reperfusion (I/R) injury, of endothelial dysfunction in peripheral resistance circulations, and of indices of the metabolic syndrome in adult offspring of hypoxic pregnancy. An additional focus of the review is the identification of plausible mechanisms and the implementation of maternal and early life interventions to protect against adverse programming.
Collapse
|
29
|
Zhang H, Burggren W. Hypoxic level and duration differentially affect embryonic organ system development of the chicken (Gallus gallus). Poult Sci 2012; 91:3191-201. [DOI: 10.3382/ps.2012-02449] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Ontogeny of hypoxic modulation of cardiac performance and its allometry in the African clawed frog Xenopus laevis. J Comp Physiol B 2012; 183:123-33. [PMID: 22752075 DOI: 10.1007/s00360-012-0686-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
Abstract
The ontogeny of cardiac hypoxic responses, and how such responses may be modified by rearing environment, are poorly understood in amphibians. In this study, cardiac performance was investigated in Xenopus laevis from 2 to 25 days post-fertilization (dpf). Larvae were reared under either normoxia or moderate hypoxia (PO₂ = 110 mmHg), and each population was assessed in both normoxia and acute hypoxia. Heart rate (f(H)) of normoxic-reared larvae exhibited an early increase from 77 ± 1 beats min⁻¹ at 2 dpf to 153 ± 1 beats min⁻¹ at 4 dpf, followed by gradual decreases to 123 ± 3 beats min⁻¹ at 25 dpf. Stroke volume (SV), 6 ± 1 nl, and cardiac output (CO), 0.8 ± 0.1 μl min⁻¹, at 5 dpf both increased by more than 40-fold to 25 dpf with rapid larval growth (~30-fold increase in body mass). When exposed to acute hypoxia, normoxic-reared larvae increased f(H) and CO between 5 and 25 dpf. Increased SV in acute hypoxia, produced by increased end-diastolic volume (EDV), only occurred before 10 dpf. Hypoxic-reared larvae showed decreased acute hypoxic responses of EDV, SV and CO at 7 and 10 dpf. Over the period of 2-25 dpf, cardiac scaling with mass showed scaling coefficients of -0.04 (f(H)), 1.23 (SV) and 1.19 (CO), contrary to the cardiac scaling relationships described in birds and mammals. In addition, f(H) scaling in hypoxic-reared larvae was altered to a shallower slope of -0.01. Collectively, these results indicate that acute cardiac hypoxic responses develop before 5 dpf. Chronic hypoxia at a moderate level can not only modulate this cardiac reflex, but also changes cardiac scaling relationship with mass.
Collapse
|
31
|
Gu S, Jenkins MW, Peterson LM, Doughman YQ, Rollins AM, Watanabe M. Optical coherence tomography captures rapid hemodynamic responses to acute hypoxia in the cardiovascular system of early embryos. Dev Dyn 2012; 241:534-44. [PMID: 22275053 DOI: 10.1002/dvdy.23727] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The trajectory to heart defects may start in tubular and looping heart stages when detailed analysis of form and function is difficult by currently available methods. We used a novel method, Doppler optical coherence tomography (OCT), to follow changes in cardiovascular function in quail embryos during acute hypoxic stress. Chronic fetal hypoxia is a known risk factor for congenital heart diseases (CHDs). Decreased fetal heart rates during maternal obstructive sleep apnea suggest that studying fetal heart responses under acute hypoxia is warranted. RESULTS We captured responses to hypoxia at the critical looping heart stages. Doppler OCT revealed detailed vitelline arterial pulsed Doppler waveforms. Embryos tolerated 1 hr of hypoxia (5%, 10%, or 15% O(2) ), but exhibited changes including decreased systolic and increased diastolic duration in 5 min. After 5 min, slower heart rates, arrhythmic events and an increase in retrograde blood flow were observed. These changes suggested slower filling of the heart, which was confirmed by four-dimensional Doppler imaging of the heart itself. CONCLUSIONS Doppler OCT is well suited for rapid noninvasive screening for functional changes in avian embryos under near physiological conditions. Analysis of the accessible vitelline artery sensitively reflected changes in heart function and can be used for rapid screening. Acute hypoxia caused rapid hemodynamic changes in looping hearts and may be a concern for increased CHD risk.
Collapse
Affiliation(s)
- Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hidalgo M, Le Bouffant R, Bello V, Buisson N, Cormier P, Beaudry M, Darribère T. The translational repressor 4E-BP mediates the hypoxia-induced defects in myotome cells. J Cell Sci 2012; 125:3989-4000. [DOI: 10.1242/jcs.097998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell growth, proliferation, differentiation, and survival are influenced by the availability of oxygen. The effect of hypoxia on embryonic cells and the underlying molecular mechanisms to maintain cellular viability are still poorly understood. In this study, we show that hypoxia during Xenopus embryogenesis rapidly leads to a significant developmental delay and to cell apoptosis after prolonged exposure. We provide strong evidence that hypoxia does not affect somitogenesis but affects the number of mitotic cells and muscle-specific protein accumulation in somites, without interfering with the expression of MyoD and MRF4 transcription factors. We also demonstrate that hypoxia reversibly decreases Akt phosphorylation and increases the total amount of the translational repressor 4E-BP, in combination with an increase of the 4E-BP associated with eIF4E. Interestingly, the inhibition of PI3-Kinase or mTOR, with LY29002 or rapamycin respectively, triggers the 4E-BP accumulation in Xenopus embryos. Finally, the overexpression of the non-phosphorylatable 4E-BP protein induces, similar to hypoxia, a decrease in mitotic cells and a decrease in muscle-specific protein accumulation in somites. Taken together, our studies suggest that 4E-BP plays a central role under hypoxia in promoting the cap-independent translation at the expense of cap-dependent translation and triggers specific defects in muscle development.
Collapse
|
33
|
Sahan U, Ipek A, Yilmaz-Dıkmen B, Aydin C, Kederlı E. Effect of oxygen supplementation in the hatcher at high altitude on the incubation results of broiler eggs laid at low altitude. Br Poult Sci 2011; 52:388-94. [PMID: 21732886 DOI: 10.1080/00071668.2011.578122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The object of this research was to investigate the effects of high altitude with supplementary oxygen during the last stage of incubation of broiler eggs laid at low altitude and incubated at low and high altitude. We analysed thyroid hormones and haematological variables. 2. The treatment groups were: low altitude (LA), high altitude with oxygen supplementation in the hatcher (HA-OX) and high altitude non-oxygen-supplemented (HA-NOX). 3. High altitude affected relative egg weight loss and early embryonic mortality. The hatchability of fertile eggs was lower at high than at low altitude. 4. Oxygen supplementation into the hatcher cabinet during the last stage of incubation decreased late embryonic mortality ratio (LEM(1)) and improved survival rates of embryos incubated at high altitude. 5. Eggs incubated at low altitude had a higher hatched chick weight and relative chick weight than those incubated at high altitude. Hatched chick weight and relative chick weight did not change with oxygen supplementation at high altitude. 6. High altitude caused an increase in plasma T(3) and T(4) concentrations as well as in the ratio of T(3):T(4) in embryos. High altitude newly hatched chicks showed a higher T(3):T(4) ratio than low altitude chicks; this ratio decreased with oxygen supplementation at high altitude. Altitude and oxygen supplementation did not affect the mean plasma T(4). 7. Newly-hatched chicks incubated at high altitude showed a higher plasma haematocrit (PCV) than the newly-hatched chicks from eggs incubated at low altitude. High altitude without supplementation increased haemoglobin (Hb), while oxygen supplementation returned the value to low altitude values.
Collapse
Affiliation(s)
- U Sahan
- Department of Animal Science, Faculty of Agriculture, Uludag University, Bursa, Turkey.
| | | | | | | | | |
Collapse
|
34
|
Disease embryo development network reveals the relationship between disease genes and embryo development genes. J Theor Biol 2011; 287:100-8. [PMID: 21824480 PMCID: PMC7094120 DOI: 10.1016/j.jtbi.2011.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/15/2011] [Accepted: 07/22/2011] [Indexed: 11/20/2022]
Abstract
A basic problem for contemporary biology and medicine is exploring the correlation between human disease and underlying cellular mechanisms. For a long time, several efforts were made to reveal the similarity between embryo development and disease process, but few from the system level. In this article, we used the human protein-protein interactions (PPIs), disease genes with their classifications and embryo development genes and reconstructed a human disease-embryo development network to investigate the relationship between disease genes and embryo development genes. We found that disease genes and embryo development genes are prone to connect with each other. Furthermore, diseases can be categorized into three groups according to the closeness with embryo development in gene overlapping, interacting pattern in PPI network and co-regulated by microRNAs or transcription factors. Embryo development high-related disease genes show their closeness with embryo development at least in three biological levels. But it is not for embryo development medium-related disease genes and embryo development low-related disease genes. We also found that embryo development high-related disease genes are more central than other disease genes in the human PPI network. In addition, the results show that embryo development high-related disease genes tend to be essential genes compared with other diseases' genes. This network-based approach could provide evidence for the intricate correlation between disease process and embryo development, and help to uncover potential mechanisms of human complex diseases.
Collapse
|
35
|
Ho DH, Reed WL, Burggren WW. Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. ACTA ACUST UNITED AC 2011; 214:619-28. [PMID: 21270311 DOI: 10.1242/jeb.046714] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal effects are important in epigenetic determination of offspring phenotypes during all life stages. In the chicken (Gallus gallus domesticus), transgenerational transfer of egg yolk factors may set the stage for morphological and physiological phenotypic differences observed among breeds. To investigate the effect of breed-specific yolk composition on embryonic broiler and layer chicken phenotypes, we employed an ex ovo, xenobiotic technique that allowed the transfer of broiler and layer chicken embryos from their natural yolks to novel yolk environments. Embryonic day two broiler embryos developing on broiler yolk culture medium (YCM) had significantly higher heart rates than layer embryos developing on layer YCM (176±7 beats min(-1) and 147±7 beats min(-1), respectively). Broiler embryos developing on layer YCM exhibited heart rates typical of layer embryos developing normally on layer YCM. However, layer embryo heart rates were not affected by development on broiler YCM. Unlike O(2) consumption, development rate and body mass of embryos were significantly affected by exposure to different yolk types, with both broiler and layer embryos displaying traits that reflected yolk source rather than embryo genotype. Analysis of hormone concentrations of broiler and layer egg yolks revealed that testosterone concentrations were higher in broiler yolk (4.63±2.02 pg mg(-1) vs 3.32±1.92 pg mg(-1)), whereas triiodothyronine concentrations were higher in layer yolk (1.05±0.18 pg mg(-1) vs 0.46±0.22 pg mg(-1)). Thus, a complex synergistic effect of breed-specific genotype and yolk environment exists early in chicken development, with yolk thyroid hormone and yolk testosterone as potential mediators of the physiological and morphological effects.
Collapse
Affiliation(s)
- Dao H Ho
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| | | | | |
Collapse
|
36
|
Happel CM, Thrane L, Thommes J, Männer J, Yelbuz TM. Integration of an optical coherence tomography (OCT) system into an examination incubator to facilitate in vivo imaging of cardiovascular development in higher vertebrate embryos under stable physiological conditions. Ann Anat 2011; 193:425-35. [PMID: 21641190 DOI: 10.1016/j.aanat.2011.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 12/12/2022]
Abstract
High-resolution in vivo imaging of higher vertebrate embryos over short or long time periods under constant physiological conditions is a technically challenging task for researchers working on cardiovascular development. In chick embryos, for example, various studies have shown that without appropriate maintenance of temperature, as one of the main environmental factors, the embryonic heart rate drops rapidly and often results in an increase in regurgitant flow. Hemodynamic parameters are critical stimuli for cardiovascular development that, for a correct evaluation of their developmental significance, should be documented under physiological conditions. However, previous studies were mostly carried out outside of an incubator or under suboptimal environmental conditions. Here we present, to the best of our knowledge, the first detailed description of an optical coherence tomography (OCT) system integrated into an examination incubator to facilitate real-time in vivo imaging of cardiovascular development under physiological environmental conditions. We demonstrate the suitability of this OCT examination incubator unit for use in cardiovascular development studies by examples of proof of principle experiments. We, furthermore, point out the need for use of examination incubators for physiological OCT examinations by documenting the effects of room climate (22°C) on the performance of the cardiovascular system of chick embryos (HH-stages 16/17). Upon exposure to room climate, chick embryos showed a fast drop in the heart rate and striking changes in the cardiac contraction behaviour and the blood flow through the vitelline circulation. We have documented these changes for the first time by M-mode OCT and Doppler M-mode OCT.
Collapse
Affiliation(s)
- Christoph M Happel
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Germany.
| | | | | | | | | |
Collapse
|
37
|
Patterson AJ, Zhang L. Hypoxia and fetal heart development. Curr Mol Med 2011; 10:653-66. [PMID: 20712587 DOI: 10.2174/156652410792630643] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022]
Abstract
Fetal hearts show a remarkable ability to develop under hypoxic conditions. The metabolic flexibility of fetal hearts allows sustained development under low oxygen conditions. In fact, hypoxia is critical for proper myocardial formation. Particularly, hypoxia inducible factor 1 (HIF-1) and vascular endothelial growth factor play central roles in hypoxia-dependent signaling in fetal heart formation, impacting embryonic outflow track remodeling and coronary vessel growth. Although HIF is not the only gene involved in adaptation to hypoxia, its role places it as a central figure in orchestrating events needed for adaptation to hypoxic stress. Although "normal" hypoxia (lower oxygen tension in the fetus as compared with the adult) is essential in heart formation, further abnormal hypoxia in utero adversely affects cardiogenesis. Prenatal hypoxia alters myocardial structure and causes a decline in cardiac performance. Not only are the effects of hypoxia apparent during the perinatal period, but prolonged hypoxia in utero also causes fetal programming of abnormality in the heart's development. The altered expression pattern of cardioprotective genes such as protein kinase c epsilon, heat shock protein 70, and endothelial nitric oxide synthase, likely predispose the developing heart to increased vulnerability to ischemia and reperfusion injury later in life. The events underlying the long-term changes in gene expression are not clear, but likely involve variation in epigenetic regulation.
Collapse
Affiliation(s)
- A J Patterson
- Center for Perinatal Biology, Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
38
|
Wendler CC, Poulsen RR, Ghatpande S, Greene RW, Rivkees SA. Identification of the heart as the critical site of adenosine mediated embryo protection. BMC DEVELOPMENTAL BIOLOGY 2010; 10:57. [PMID: 20509906 PMCID: PMC2890593 DOI: 10.1186/1471-213x-10-57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Our understanding of the mechanisms that protect the developing embryo from intrauterine stress is limited. Recently, adenosine has been demonstrated to play a critical role in protecting the embryo against hypoxia via adenosine A1 receptors (A1ARs), which are expressed in the heart, nervous system, and other sites during development. However, the sites of A1AR action that mediate embryo protection are not known. To determine if the heart is a key site of adenosine-mediated embryo protection, A1ARs were selectively deleted in the embryonic heart using a Cre-LoxP system in which the alpha-myosin heavy chain promoter drives Cre-recombinase expression and excision of the A1AR gene from cardiomyocytes. RESULTS With increasing exposure of maternal hypoxia (10% O2) from 48-96 hours beginning at embryonic day (E) 8.5, embryo viability decreased in the cardiac-A1AR deleted embryos. 48 hours of hypoxia reduced embryonic viability by 49% in embryos exposed from E10.5-12.5 but no effect on viability was observed in younger embryos exposed to hypoxia from E8.5-10.5. After 72 hours of hypoxia, 57.8% of the cardiac-A1AR deleted embryos were either dead or re-absorbed compared to 13.7% of control littermates and after 96 hours 81.6% of cardiac-A1AR deleted embryos were dead or re-absorbed. After 72 hours of hypoxia, cardiac size was reduced significantly more in the cardiac-A1AR deleted hearts compared to controls. Gene expression analysis revealed clusters of genes that are regulated by both hypoxia and A1AR expression. CONCLUSIONS These data identify the embryonic heart as the critical site where adenosine acts to protect the embryo against hypoxia. As such these studies identify a previously unrecognized mechanism of embryo protection.
Collapse
Affiliation(s)
- Christopher C Wendler
- Department of Pediatrics, Section of Developmental Endocrinology and Biology, Yale Child Health Research Center, Yale University School of Medicine, New Haven, CT 06520 USA.
| | | | | | | | | |
Collapse
|
39
|
Gardier S, Pedretti S, Sarre A, Raddatz E. Transient anoxia and oxyradicals induce a region-specific activation of MAPKs in the embryonic heart. Mol Cell Biochem 2010; 340:239-47. [DOI: 10.1007/s11010-010-0423-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
40
|
Interactive effects of temperature and hypoxia on heart rate and oxygen consumption of the 3-day old chicken embryo. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:301-8. [DOI: 10.1016/j.cbpa.2009.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 10/30/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
|
41
|
Tintu A, Rouwet E, Verlohren S, Brinkmann J, Ahmad S, Crispi F, van Bilsen M, Carmeliet P, Staff AC, Tjwa M, Cetin I, Gratacos E, Hernandez-Andrade E, Hofstra L, Jacobs M, Lamers WH, Morano I, Safak E, Ahmed A, le Noble F. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences. PLoS One 2009; 4:e5155. [PMID: 19357774 PMCID: PMC2663815 DOI: 10.1371/journal.pone.0005155] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/13/2009] [Indexed: 12/01/2022] Open
Abstract
Background Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.
Collapse
Affiliation(s)
- Andrei Tintu
- Laboratory for Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ellen Rouwet
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stefan Verlohren
- Laboratory for Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Department of Obstetrics, Charité University Medicine, Berlin, Germany
| | - Joep Brinkmann
- Laboratory for Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Shakil Ahmad
- Department of Reproductive & Vascular Biology, Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Fatima Crispi
- Department of Maternal-Fetal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Peter Carmeliet
- Center of Transgene Technology and Gene Therapy, University of Leuven, Leuven, Belgium
| | - Anne Cathrine Staff
- Department of Obstetrics and Gynecology, Ulleval University Hospital, Oslo, Norway
| | - Marc Tjwa
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, University of Frankfurt, Frankfurt, Germany
| | - Irene Cetin
- Institute of Obstetrics and Gynecology, IRCCS Foundation Policlinico, Mangiagalli & Regina Elena, University of Milan, Milan, Italy
| | - Eduard Gratacos
- Department of Maternal-Fetal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Edgar Hernandez-Andrade
- Department of Maternal-Fetal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Leo Hofstra
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Michael Jacobs
- Department of Surgery, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Wouter H. Lamers
- Department of Embryology, Nutrition and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ingo Morano
- Research Group Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Erdal Safak
- Department of Cardiology, Franz Volhard Clinic, Helios Clinic Berlin-Buch, Charité University, Berlin, Germany
| | - Asif Ahmed
- Department of Reproductive & Vascular Biology, Centre for Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Ferdinand le Noble
- Laboratory for Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
42
|
Zhang H, Wang XT, Chamba Y, Ling Y, Wu CX. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult Sci 2008; 87:2112-6. [PMID: 18809874 DOI: 10.3382/ps.2008-00122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The experiments were conducted to assess how hatching performance is affected by chicken breeds and environment of high altitude and to analyze the vital factor of the low hatchability at a 2,900-m altitude. Eggs of Tibetan and Dwarf chickens were incubated at conditions of normobaric normoxia, normobaric hypoxia, hypobaric hypoxia, and supplemental O2 at high altitude (hypobaric normoxia) during the whole incubation or at 0 to 7, 8 to 14, and 15 to 22 d of incubation, respectively. The results showed that the Tibetan chickens had greater hatchability (79.72%), lower water loss (12.90%), greater relative embryo weight (38.08%), and relative chick weight (68.41%) compared with the Dwarf chickens (31.69, 15.79, 30.71, and 65.21%, respectively) when both of them were incubated at a 2,900-m altitude. The hatchability was 71.60% in Tibetan chicken and 36.23% in Dwarf chicken under the normobaric hypoxia condition. The hatchability of chicken was efficiently increased with supplemental O2. The previous results indicated that the O2 deficit is the main factor resulting in the low hatchability and the poor chick quality of the lowland chicken breed when incubated at a 2,900-m altitude. Breeding chickens for adaptability to hypoxia and supplemental O2 is a good way to improve the hatchability and chick quality at that altitude.
Collapse
Affiliation(s)
- H Zhang
- College of Animal Science and Technology, China Agricultural University, Bejing, China 100193
| | | | | | | | | |
Collapse
|
43
|
Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, Sedmera D. Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia. Anat Rec (Hoboken) 2008; 291:1187-99. [DOI: 10.1002/ar.20738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Sundt-Hansen L, Sundström LF, Einum S, Hindar K, Fleming IA, Devlin RH. Genetically enhanced growth causes increased mortality in hypoxic environments. Biol Lett 2008; 3:165-8. [PMID: 17272234 PMCID: PMC2375932 DOI: 10.1098/rsbl.2006.0598] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid growth and development are associated with several fitness-related benefits. Yet, organisms usually grow more slowly than their physiological maximum, suggesting that rapid growth may carry costs. Here we use coho salmon (Oncorhynchus kisutch) eggs of wild and transgenic genotypes to test whether rapid growth causes reduced tolerance to low levels of oxygen (hypoxia). Eggs were exposed to four different durations of hypoxia, and survival and growth were recorded until the end of the larval stage. Survival rates decreased with increasing duration of hypoxia, but this decrease was most pronounced for the transgenic group. Larval mass was also negatively affected by hypoxia; however, transgenic genotypes were significantly larger than wild genotypes at the end of the larval stage. Oxygen can be a limiting factor for survival and development in a wide range of organisms, particularly during the egg stage. Thus, the reduced ability of fast-growing genotypes to cope with low oxygen levels identified in the present study may represent a general constraint on evolution of rapid growth across taxa.
Collapse
Affiliation(s)
- L Sundt-Hansen
- Norwegian Institute for Nature Research, Tungasletta 2, 7485 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
45
|
Ream M, Ray AM, Chandra R, Chikaraishi DM. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol Regul Integr Comp Physiol 2008; 295:R583-95. [PMID: 18509101 DOI: 10.1152/ajpregu.00771.2007] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypoxia is necessary for fetal development; however, excess hypoxia is detrimental. Hypoxia has been extensively studied in the near-term fetus, but less is known about earlier fetal effects. The purpose of this study was to determine the window of vulnerability to severe hypoxia, what organ system(s) is most sensitive, and why hypoxic fetuses die. We induced hypoxia by reducing maternal-inspired O2 from 21% to 8%, which decreased fetal tissue oxygenation assessed by pimonidazole binding. The mouse fetus was most vulnerable in midgestation: 24 h of hypoxia killed 89% of embryonic day 13.5 (E13.5) fetuses, but only 5% of E11.5 and 51% of E17.5 fetuses. Sublethal hypoxia at E12.5 caused growth restriction, reducing fetal weight by 26% and protein by 45%. Hypoxia induced HIF-1 target genes, including vascular endothelial growth factor (Vegf), erythropoietin, glucose transporter-1 and insulin-like growth factor binding protein-1 (Igfbp-1), which has been implicated in human intrauterine growth restriction (IUGR). Hypoxia severely compromised the cardiovascular system. Signs of heart failure, including loss of yolk sac circulation, hemorrhage, and edema, were caused by 18-24 h of hypoxia. Hypoxia induced ventricular dilation and myocardial hypoplasia, decreasing ventricular tissue by 50% and proliferation by 21% in vivo and by 40% in isolated cultured hearts. Epicardial detachment was the first sign of hypoxic damage in the heart, although expression of epicardially derived mitogens, such as FGF2, FGF9, and Wnt9b was not reduced. We propose that hypoxia compromises the fetus through myocardial hypoplasia and reduced heart rate.
Collapse
Affiliation(s)
- Margie Ream
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
46
|
Ghatpande SK, Billington CJ, Rivkees SA, Wendler CC. Hypoxia induces cardiac malformations via A1 adenosine receptor activation in chicken embryos. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2008; 82:121-30. [PMID: 18186126 PMCID: PMC3752680 DOI: 10.1002/bdra.20438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The current understanding of the effects of hypoxia on early embryogenesis is limited. Potential mediators of hypoxic effects include adenosine, which increases dramatically during hypoxic conditions and activates A(1) adenosine receptors (A(1)ARs). METHODS To examine the influences of hypoxia and adenosine signaling on cardiac development, chicken embryos were studied. Real time RT-PCR assay was used to examine the A(1)AR gene expression during embryogenesis and after siRNA- mediated knock down. Cell proliferation was determined by counting cell nuclei and PhosphoHistone H3 positive cells. Apoptosis was determined by TUNEL assay. RESULTS A(1)ARs were found to be expressed in chicken embryos during early embryogenesis. Treatment of Hamburger and Hamilton stage 4 embryos with the A(1)AR agonist N(6)-cyclopentyladenosine caused cardiac bifida and looping defects in 55% of embryos. Hamburger and Hamilton stage 4 embryos exposed to 10% oxygen for 6, 12, 18, and 24 h followed by recovery in room air until stage 11, exhibited cardia bifida and looping defects in 34, 45, 60, and 86% of embryos respectively. Hypoxia-induced abnormalities were reduced when A(1)AR signaling was inhibited by the A(1)AR antagonist 1,3 dipropyl-8-cyclopentylxanthine or by siRNA-targeting A(1)ARs. Hypoxia treatment did not increase apoptosis, but decreased embryonic cell proliferation. CONCLUSIONS These data indicate that hypoxia adversely influences cardiac malformations during development, in part by A(1)AR signaling.
Collapse
Affiliation(s)
- Satish K Ghatpande
- Section of Developmental Endocrinology and Biology, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
47
|
Druyan S, Cahaner A, Ashwell C. The Expression Patterns of Hypoxia-Inducing Factor Subunit α-1, Heme Oxygenase, Hypoxia Upregulated Protein 1, and Cardiac Troponin T During Development of the Chicken Heart. Poult Sci 2007; 86:2384-9. [DOI: 10.3382/ps.2007-00152] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Furukawa S, Tinney JP, Tobita K, Keller BB. Hemodynamic vulnerability to acute hypoxia in day 10.5-16.5 murine embryos. J Obstet Gynaecol Res 2007; 33:114-27. [PMID: 17441882 DOI: 10.1111/j.1447-0756.2007.00499.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM We tested the hypothesis that murine embryonic cardiovascular (CV) function is vulnerable to transient changes in maternal transplacental oxygen support during the critical period of CV morphogenesis. METHODS We measured maternal heart rate (MHR), maternal blood pressure (MBP), and embryonic heart rate (EHR) during mechanical ventilatory support, then induced transient maternal hypoxia daily from gestation day (ED) 10.5 to ED16.5 in pregnant ICR mice. Hypoxia was induced by suspending mechanical ventilation for 30 s or by the replacement of inspired oxygen with nitrogen (75% or 100%) for 30 s while maintaining ventilation. RESULTS We noted a rapid onset of maternal hypotension in response to hypoxia that quickly recovered following reoxygenation. Following a brief lag time that was not gestation specific, EHR decreased in response to hypoxia. The magnitude of embryo bradycardia and the rate of EHR decline and recovery displayed gestation specific patterns. The magnitude of embryo bradycardia was similar from ED10.5 to ED13.5 and then increased with gestation. Before ED13.5, only 40% of embryos recovered to the baseline EHR following transient maternal hypoxia (vs 80% of embryos after ED 13.5). EHR following recovery exceeded baseline EHR after ED15.5. Nitrogen inhalation (75% or 100%) produced changes in maternal and embryonic hemodynamics similar to suspended ventilation induced hypoxia. CONCLUSIONS The mammalian embryo is vulnerable to transient decreases in maternal oxygenation during the critical period of organogenesis and the gestational specific EHR response to hypoxia may reflect both increased embryonic oxygen demand and the maturation of neurohumoral heart rate regulation.
Collapse
Affiliation(s)
- Seishi Furukawa
- Department of Obstetrics and Gynecology, Miyazaki Medical College, Miyazaki, Japan, and Department of Pediatrics, Children's Hospital of Pittsburgh Heart Center, PA 15213, USA
| | | | | | | |
Collapse
|
49
|
Wendler CC, Amatya S, McClaskey C, Ghatpande S, Fredholm BB, Rivkees SA. A1 adenosine receptors play an essential role in protecting the embryo against hypoxia. Proc Natl Acad Sci U S A 2007; 104:9697-702. [PMID: 17522253 PMCID: PMC1887547 DOI: 10.1073/pnas.0703557104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Embryos can be exposed to environmental factors that induce hypoxia. Currently, our understanding of the effects of hypoxia on early mammalian development is modest. Potential mediators of hypoxia action include the nucleoside adenosine, which acts through A(1) adenosine receptors (A(1)ARs) and mediates adverse effects of hypoxia on the neonatal brain. We hypothesized that A(1)ARs may also play a role in mediating effects of hypoxia on the embryo. When pregnant dams were exposed to hypoxia (10% O(2)) beginning at embryonic day (E) 7.5 or 8.5 and continued for 24-96 h, A(1)AR+/+ embryos manifested growth inhibition and a disproportionate reduction in heart size, including thinner ventricular walls. Yet, when dams were exposed to hypoxia, embryos lacking A(1)ARs (A(1)AR-/-) had much more severe growth retardation than A(1)AR+/+ or +/- embryos. When levels of hypoxia-inducible factor 1alpha (HIF1alpha) were examined, A(1)AR-/- embryos had less stabilized HIF1alpha protein than A(1)AR+/- littermates. Normal patterns of cardiac gene expression were also disturbed in A(1)AR-/- embryos exposed to hypoxia. These results show that short periods of hypoxia during early embryogenesis can result in intrauterine growth retardation. We identify adenosine and A(1)ARs as playing an essential role in protecting the embryo from hypoxia.
Collapse
Affiliation(s)
- Christopher C Wendler
- Section of Developmental Endocrinology and Biology, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Johansson S, Norman M, Legnevall L, Dalmaz Y, Lagercrantz H, Vanpée M. Increased catecholamines and heart rate in children with low birth weight: perinatal contributions to sympathoadrenal overactivity. J Intern Med 2007; 261:480-7. [PMID: 17444887 DOI: 10.1111/j.1365-2796.2007.01776.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Low birth weight is associated with cardiovascular disease. The underlying mechanisms are unknown. We hypothesized that perinatal stress alters autonomic regulation of the cardiovascular system. In this study, catecholamines, heart rate (HR) and blood pressure (BP) were measured in healthy children with low birth weight. METHODS This clinical study included 105 children (mean age 9.6 years) in three groups; born at term with normal birth weight (controls, n=37), born at term but small for gestational age (SGA, n=29) and born preterm (Preterm, n=39). Dopamine, adrenaline and noradrenaline were determined in urine. HR and BP were measured at rest, during an orthostatic test and after a mathematical mental stress test. RESULTS Children in the Preterm and SGA groups excreted higher levels of catecholamines when compared with controls. HR (mean [SD] values) were higher at rest and after mental stress in Preterm (at rest 76 [9] and after mental stress 82 [12] min(-1)) and in SGA (79 [8] and 82 [10]) when compared with controls (70 [9] and 75 [9]). HR correlated with urinary catecholamines (r=0.24-0.27, P<0.05). Blood pressures measured at rest, during orthostatic testing and after mental stress did not differ between the groups. CONCLUSIONS Preterm birth and fetal growth restriction are associated with increased sympathoadrenal activity in childhood, as indicated by stress-induced increases in HR and urinary catecholamines. These findings suggest that the cardiovascular control is differently programmed in these children with possibly higher risk of developing hypertension in adulthood.
Collapse
Affiliation(s)
- S Johansson
- Department of Woman & Child Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|