1
|
Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli L, Ghelardini C. Anti-Hyperalgesic Efficacy of Acetyl L-Carnitine (ALCAR) Against Visceral Pain Induced by Colitis: Involvement of Glia in the Enteric and Central Nervous System. Int J Mol Sci 2023; 24:14841. [PMID: 37834289 PMCID: PMC10573187 DOI: 10.3390/ijms241914841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (A.T.); (C.C.); (F.M.); (L.D.C.M.); (C.G.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Rossi A, Rutten MGS, van Dijk TH, Bakker BM, Reijngoud DJ, Oosterveer MH, Derks TGJ. Dynamic Methods for Childhood Hypoglycemia Phenotyping: A Narrative Review. Front Endocrinol (Lausanne) 2022; 13:858832. [PMID: 35789807 PMCID: PMC9249565 DOI: 10.3389/fendo.2022.858832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hypoglycemia results from an imbalance between glucose entering the blood compartment and glucose demand, caused by a defect in the mechanisms regulating postprandial glucose homeostasis. Hypoglycemia represents one of the most common metabolic emergencies in childhood, potentially leading to serious neurologic sequelae, including death. Therefore, appropriate investigation of its specific etiology is paramount to provide adequate diagnosis, specific therapy and prevent its recurrence. In the absence of critical samples for biochemical studies, etiological assessment of children with hypoglycemia may include dynamic methods, such as in vivo functional tests, and continuous glucose monitoring. By providing detailed information on actual glucose fluxes in vivo, proof-of-concept studies have illustrated the potential (clinical) application of dynamic stable isotope techniques to define biochemical and clinical phenotypes of inherited metabolic diseases associated with hypoglycemia. According to the textbooks, individuals with glycogen storage disease type I (GSD I) display the most severe hypoglycemia/fasting intolerance. In this review, three dynamic methods are discussed which may be considered during both diagnostic work-up and monitoring of children with hypoglycemia: 1) functional in vivo tests; 2) in vivo metabolic profiling by continuous glucose monitoring (CGM); 3) stable isotope techniques. Future applications and benefits of dynamic methods in children with hypoglycemia are also discussed.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Martijn G S Rutten
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maaike H Oosterveer
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Vasta LM, Reynolds SM, Sami S, Schacht JP, Emerick JE, Parekh DS, Vogt KS. Hypoglycemia Due to Acquired Carnitine Deficiency in a Pediatric Patient Receiving Chemotherapy. J Pediatr Hematol Oncol 2022; 44:e496-e499. [PMID: 33661167 DOI: 10.1097/mph.0000000000002128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
We describe a 21-month-old male with relapsed clear cell sarcoma of the kidney receiving enteral nutrition who experienced recurrent, ketotic hypoglycemia. During relapse therapy, he had recurrent hypoglycemia episodes, in the setting of hematochezia and diarrhea. Evaluation revealed low carnitine levels. He received supplementation with oral levocarnitine throughout the remainder of treatment, resulting in normalization of serum carnitine levels and no further hypoglycemia. We believe adverse effects of the chemotherapy on his single kidney and gastrointestinal insult resulted in hypoglycemia and carnitine deficiency. Our case highlights that carnitine deficiency should be considered when acute onset hypoglycemia without obvious cause occurs.
Collapse
Affiliation(s)
| | | | - Seppideh Sami
- Department of Patient Services, National Institutes of Health, Bethesda, MD
| | - John P Schacht
- Department of Pediatrics, Division of Genetics, Walter Reed National Military Medical Center
| | | | | | | |
Collapse
|
4
|
Dalmage MR, Nwankwo A, Sur H, Nduom E, Jackson S. A scoping review of pediatric microdialysis: A missed opportunity for microdialysis in the pediatric neuro-oncology setting. Neurooncol Adv 2022; 4:vdac171. [PMID: 36438644 PMCID: PMC9683385 DOI: 10.1093/noajnl/vdac171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Background Brain microdialysis is a minimally invasive technique for monitoring analytes, metabolites, drugs, neurotransmitters, and/or cytokines. Studies to date have centered on adults with traumatic brain injury, with a limited number of pediatric studies performed. This scoping review details past use of brain microdialysis in children and identifies potential use for future neuro-oncology trials. Methods In December 2020, Cochrane Library: CENTRAL, Embase, PubMed, Scopus, and Web of Science: Core Collection were searched. Two reviewers screened all articles by title and abstract review and then full study texts, using microdialysis in patients less than 18 yo. Results Of the 1171 articles screened, 49 were included. The 49 studies included 472 pediatric patients (age range 0-17 years old), in the brain (21), abdominal (16), and musculoskeletal (12) regions. Intracerebral microdialysis was performed in 64 collective patients, with a median age of 11 years old, and predominance in metabolic evaluations. Conclusion Historically, pediatric microdialysis was safely performed within the brain in varied neurologic conditions, except neuro-oncology. Adult brain tumor studies using intratumoral/peritumoral microdialysis sampling can inform future pediatric studies to advance diagnosis and treatment options for such aggressive tumors.
Collapse
Affiliation(s)
- Mahalia R Dalmage
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anthony Nwankwo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hannah Sur
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Edjah Nduom
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Tosi I, Art T, Boemer F, Votion DM, Davis MS. Acylcarnitine profile in Alaskan sled dogs during submaximal multiday exercise points out metabolic flexibility and liver role in energy metabolism. PLoS One 2021; 16:e0256009. [PMID: 34383825 PMCID: PMC8360531 DOI: 10.1371/journal.pone.0256009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Alaskan sled dogs develop a particular metabolic strategy during multiday submaximal exercise, allowing them to switch from intra-muscular to extra-muscular energy substrates thus postponing fatigue. Specifically, a progressively increasing stimulus for hepatic glycogenolysis and gluconeogenesis provides glucose for both fueling exercise and replenishing the depleted muscle glycogen. Moreover, recent studies have shown that with continuation of exercise sled dogs increase their insulin-sensitivity and their capacity to transport and oxidize glucose and carbohydrates rather than oxidizing fatty acids. Carnitine and acylcarnitines (AC) play an essential role as metabolic regulators in both fat and glucose metabolism; they serve as biomarkers in different species in both physiologic and pathologic conditions. We assessed the effect of multiday exercise in conditioned sled dogs on plasma short (SC), medium (MC) and long (LC) chain AC by tandem mass spectrometry (MS/MS). Our results show chain-specific modification of AC profiles during the exercise challenge: LCACs maintained a steady increase throughout exercise, some SCACs increased during the last phase of exercise and acetylcarnitine (C2) initially increased before decreasing during the later phase of exercise. We speculated that SCACs kinetics could reflect an increased protein catabolism and C2 pattern could reflect its hepatic uptake for energy-generating purposes to sustain gluconeogenesis. LCACs may be exported by muscle to avoid their accumulation to preserve glucose oxidation and insulin-sensitivity or they could be distributed by liver as energy substrates. These findings, although representing a “snapshot” of blood as a crossing point between different organs, shed further light on sled dogs metabolism that is liver-centric and more carbohydrate-dependent than fat-dependent and during prolonged submaximal exercise.
Collapse
Affiliation(s)
- Irene Tosi
- Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| | - Tatiana Art
- Department of Functional Sciences, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - François Boemer
- Biochemical Genetics Laboratory, CHU Sart-Tilman, University of Liège, Liège, Belgium
| | - Dominique-Marie Votion
- Equine pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Michael S. Davis
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
6
|
Keppley LJW, Walker SJ, Gademsey AN, Smith JP, Keller SR, Kester M, Fox TE. Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J 2020; 34:15314-15326. [PMID: 32959931 DOI: 10.1096/fj.202000525r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Lipid perturbations contribute to detrimental outcomes in obesity. We previously demonstrated that nervonic acid, a C24:1 ω-9 fatty acid, predominantly acylated to sphingolipids, including ceramides, are selectively reduced in a mouse model of obesity. It is currently unknown if deficiency of nervonic acid-sphingolipid metabolites contribute to complications of obesity. Mice were fed a standard diet, a high fat diet, or these diets supplemented isocalorically with nervonic acid. The primary objective was to determine if dietary nervonic acid content alters the metabolic phenotype in mice fed a high fat diet. Furthermore, we investigated if nervonic acid alters markers of impaired fatty acid oxidation in the liver. We observed that a nervonic acid-enriched isocaloric diet reduced weight gain and adiposity in mice fed a high fat diet. The nervonic acid enrichment led to increased C24:1-ceramides and improved several metabolic parameters including blood glucose levels, and insulin and glucose tolerance. Mechanistically, nervonic acid supplementation increased PPARα and PGC1α expression and improved the acylcarnitine profile in liver. These alterations indicate improved energy metabolism through increased β-oxidation of fatty acids. Taken together, increasing dietary nervonic acid improves metabolic parameters in mice fed a high fat diet. Strategies that prevent deficiency of, or restore, nervonic acid may represent an effective strategy to treat obesity and obesity-related complications.
Collapse
Affiliation(s)
- Laura J W Keppley
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Alexis N Gademsey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jason P Smith
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Susanna R Keller
- Medicine: Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
7
|
Giacco A, delli Paoli G, Simiele R, Caterino M, Ruoppolo M, Bloch W, Kraaij R, Uitterlinden AG, Santillo A, Senese R, Cioffi F, Silvestri E, Iervolino S, Lombardi A, Moreno M, Goglia F, Lanni A, de Lange P. Exercise with food withdrawal at thermoneutrality impacts fuel use, the microbiome, AMPK phosphorylation, muscle fibers, and thyroid hormone levels in rats. Physiol Rep 2020; 8:e14354. [PMID: 32034884 PMCID: PMC7007447 DOI: 10.14814/phy2.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
Exercise under fasting conditions induces a switch to lipid metabolism, eliciting beneficial metabolic effects. Knowledge of signaling responses underlying metabolic adjustments in such conditions may help to identify therapeutic strategies. Therefore, we studied the effect of mild exercise on rats submitted to food withdrawal at thermoneutrality (28°C) for 3 days. Animals were housed at thermoneutrality rather than the standard housing temperature (22°C) to avoid beta-adrenergic signaling responses that themselves affect metabolism and well-being. Quantitative analysis of multi-organ mRNA levels, myofibers, and serum metabolites shows that this protocol (a) boosts fat oxidation in muscle and liver, (b) reduces lipogenesis and increases gluconeogenesis in liver, (c) increases serum acylcarnitines (especially C4 OH) and ketone bodies and the use of the latter as fuel in muscle, (d) increases Type I myofibers, and (e) is associated with an increased thyroid hormone uptake and metabolism in muscle. In addition, stool microbiome DNA analysis revealed that food withdrawal dramatically alters the presence of bacterial genera associated with ketone metabolism. Taken together, this protocol induces a drastic switch toward increased lipid and ketone metabolism compared to exercise or food withdrawal alone, which may prove beneficial and may involve local thyroid hormones, which may be regarded as exercise mimetics.
Collapse
Affiliation(s)
- Antonia Giacco
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Giuseppe delli Paoli
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Roberta Simiele
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- Ceinge–Biotecnologie AvanzateNaplesItaly
- Divulgazione Scientifica Multidisciplinare per la Sostenibilità Ricerca, FormazioneCultura (DiSciMuS RCF)NaplesItaly
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico IINaplesItaly
- Ceinge–Biotecnologie AvanzateNaplesItaly
- Divulgazione Scientifica Multidisciplinare per la Sostenibilità Ricerca, FormazioneCultura (DiSciMuS RCF)NaplesItaly
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport MedicineInstitute of Cardiovascular Research and Sport MedicineGerman Sport University CologneCologneGermany
| | - Robert Kraaij
- Genetic LaboratoryDepartment of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
| | - André G. Uitterlinden
- Genetic LaboratoryDepartment of Internal MedicineErasmus Medical CenterRotterdamThe Netherlands
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Federica Cioffi
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Elena Silvestri
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Stefania Iervolino
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Assunta Lombardi
- Dipartimento di BiologiaUniversità degli Studi di Napoli "Federico II"NaplesItaly
| | - Maria Moreno
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Fernando Goglia
- Dipartimento di Scienze e TecnologieUniversità degli Studi del SannioBeneventoItaly
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| | - Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania Luigi VanvitelliCasertaItaly
| |
Collapse
|
8
|
Libert DM, Nowacki AS, Natowicz MR. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018; 6:e5410. [PMID: 30186675 PMCID: PMC6120443 DOI: 10.7717/peerj.5410] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022] Open
Abstract
Background Metabolic syndrome (MS) is a construct used to separate “healthy” from “unhealthy” obese patients, and is a major risk factor for type 2 diabetes (T2D) and cardiovascular disease. There is controversy over whether obese “metabolically well” persons have a higher morbidity and mortality than lean counterparts, suggesting that MS criteria do not completely describe physiologic risk factors or consequences of obesity. We hypothesized that metabolomic analysis of plasma would distinguish obese individuals with and without MS and T2D along a spectrum of obesity-associated metabolic derangements, supporting metabolomic analysis as a tool for a more detailed assessment of metabolic wellness than currently used MS criteria. Methods Fasting plasma samples from 90 adults were assigned to groups based on BMI and ATP III criteria for MS: (1) lean metabolically well (LMW; n = 24); (2) obese metabolically well (OBMW; n = 26); (3) obese metabolically unwell (OBMUW; n = 20); and (4) obese metabolically unwell with T2D (OBDM; n = 20). Forty-one amino acids/dipeptides, 33 acylcarnitines and 21 ratios were measured. Obesity and T2D effects were analyzed by Wilcoxon rank-sum tests comparing obese nondiabetics vs LMW, and OBDM vs nondiabetics, respectively. Metabolic unwellness was analyzed by Jonckheere-Terpstra trend tests, assuming worsening health from LMW → OBMW → OBMUW. To adjust for multiple comparisons, statistical significance was set at p < 0.005. K-means cluster analysis of aggregated amino acid and acylcarnitine data was also performed. Results Analytes and ratios significantly increasing in obesity, T2D, and with worsening health include: branched-chain amino acids (BCAAs), cystine, alpha-aminoadipic acid, phenylalanine, leucine + lysine, and short-chain acylcarnitines/total carnitines. Tyrosine, alanine and propionylcarnitine increase with obesity and metabolic unwellness. Asparagine and the tryptophan/large neutral amino acid ratio decrease with T2D and metabolic unwellness. Malonylcarnitine decreases in obesity and 3-OHbutyrylcarnitine increases in T2D; neither correlates with unwellness. Cluster analysis did not separate subjects into discreet groups based on metabolic wellness. Discussion Levels of 15 species and metabolite ratios trend significantly with worsening metabolic health; some are newly recognized. BCAAs, aromatic amino acids, lysine, and its metabolite, alpha-aminoadipate, increase with worsening health. The lysine pathway is distinct from BCAA metabolism, indicating that biochemical derangements associated with MS involve pathways besides those affected by BCAAs. Even those considered “obese, metabolically well” had metabolite levels which significantly trended towards those found in obese diabetics. Overall, this analysis yields a more granular view of metabolic wellness than the sole use of cardiometabolic MS parameters. This, in turn, suggests the possible utility of plasma metabolomic analysis for research and public health applications.
Collapse
Affiliation(s)
- Diane M Libert
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Amy S Nowacki
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.,Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States of America
| | - Marvin R Natowicz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America.,Pathology and Laboratory Medicine, Genomic Medicine, Pediatrics and Neurological Institutes, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
9
|
Steinhauser ML, Olenchock BA, O'Keefe J, Lun M, Pierce KA, Lee H, Pantano L, Klibanski A, Shulman GI, Clish CB, Fazeli PK. The circulating metabolome of human starvation. JCI Insight 2018; 3:121434. [PMID: 30135314 DOI: 10.1172/jci.insight.121434] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The human adaptive starvation response allows for survival during long-term caloric deprivation. Whether the physiology of starvation is adaptive or maladaptive is context dependent: activation of pathways by caloric restriction may promote longevity, yet in the context of caloric excess, the same pathways may contribute to obesity. Here, we performed plasma metabolite profiling of longitudinally collected samples during a 10-day, 0-calorie fast in humans. We identify classical milestones in adaptive starvation, including the early consumption of gluconeogenic amino acids and the subsequent surge in plasma nonesterified fatty acids that marks the shift from carbohydrate to lipid metabolism, and demonstrate findings, including (a) the preferential release of unsaturated fatty acids and an associated shift in plasma lipid species with high degrees of unsaturation and (b) evidence that acute, starvation-mediated hypoleptinemia may be a driver of the transition from glucose to lipid metabolism in humans.
Collapse
Affiliation(s)
- Matthew L Steinhauser
- Department of Medicine, Division of Genetics, and.,Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Benjamin A Olenchock
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - John O'Keefe
- Department of Medicine, Division of Genetics, and
| | - Mingyue Lun
- Department of Medicine, Division of Genetics, and
| | - Kerry A Pierce
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Hang Lee
- Harvard Medical School, Boston, Massachusetts, USA.,MGH Biostatistics Center, Boston, Massachusetts, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anne Klibanski
- Harvard Medical School, Boston, Massachusetts, USA.,Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular and Molecular Physiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Pouneh K Fazeli
- Harvard Medical School, Boston, Massachusetts, USA.,Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Zhong H, Fang C, Fan Y, Lu Y, Wen B, Ren H, Hou G, Yang F, Xie H, Jie Z, Peng Y, Ye Z, Wu J, Zi J, Zhao G, Chen J, Bao X, Hu Y, Gao Y, Zhang J, Yang H, Wang J, Madsen L, Kristiansen K, Ni C, Li J, Liu S. Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals. Gigascience 2017; 6:1-12. [PMID: 28505362 PMCID: PMC5502363 DOI: 10.1093/gigascience/gix036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/04/2017] [Accepted: 05/09/2017] [Indexed: 01/09/2023] Open
Abstract
The relationship between dyslipidemia and type 2 diabetes mellitus (T2D) has been extensively reported, but the global lipid profiles, especially in the East Asia population, associated with the development of T2D remain to be characterized. Liquid chromatography coupled to tandem mass spectrometry was applied to detect the global lipidome in the fasting plasma of 293 Chinese individuals, including 114 T2D patients, 81 prediabetic subjects, and 98 individuals with normal glucose tolerance (NGT). Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features with T2D patients exhibiting characteristics close to those of prediabetic individuals, whereas they differed significantly from individuals with NGT. We constructed and validated a random forest classifier with 28 lipidomic features that effectively discriminated T2D from NGT or prediabetes. Most of the selected features significantly correlated with diabetic clinical indices. Hydroxybutyrylcarnitine was positively correlated with fasting plasma glucose, 2-hour postprandial glucose, glycated hemoglobin, and insulin resistance index (HOMA-IR). Lysophosphatidylcholines such as lysophosphatidylcholine (18:0), lysophosphatidylcholine (18:1), and lysophosphatidylcholine (18:2) were all negatively correlated with HOMA-IR. The altered plasma lipidome in Chinese T2D and prediabetic subjects suggests that lipid features may play a role in the pathogenesis of T2D and that such features may provide a basis for evaluating risk and monitoring disease development.
Collapse
Affiliation(s)
- Huanzi Zhong
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China
| | | | - Yan Lu
- Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen 518083, China
| | - Guixue Hou
- Proteomics Division, BGI-Shenzhen, Shenzhen 518083, China
| | - Fangming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
| | - Hailiang Xie
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Ye Peng
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiqiang Ye
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Jiegen Wu
- BGI-Shenzhen, Shenzhen 518083, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jin Zi
- Proteomics Division, BGI-Shenzhen, Shenzhen 518083, China
| | - Guoqing Zhao
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Jiayu Chen
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Bao
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
| | - Yihe Hu
- Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
| | - Yan Gao
- Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
| | - Jun Zhang
- Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Lise Madsen
- BGI-Shenzhen, Shenzhen 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- National Institute of Nutrition and Seafood Research (NIFES), 5817 Bergen, Norway
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Chuanming Ni
- Suzhou Center for Disease Prevention and Control, Suzhou 215007, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen 518083, China
- Proteomics Division, BGI-Shenzhen, Shenzhen 518083, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, Lewandowski ED, Crawford PA, Muoio DM, Kelly DP. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016; 133:698-705. [PMID: 26819376 PMCID: PMC4766035 DOI: 10.1161/circulationaha.115.017355] [Citation(s) in RCA: 549] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. METHODS AND RESULTS Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of β-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. CONCLUSIONS These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Gregory Aubert
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ola J Martin
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Julie L Horton
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Ling Lai
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Rick B Vega
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Teresa C Leone
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Timothy Koves
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Stephen J Gardell
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Marcus Krüger
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Charles L Hoppel
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - E Douglas Lewandowski
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Peter A Crawford
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Deborah M Muoio
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.)
| | - Daniel P Kelly
- From Cardiovascular Metabolism Program, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (G.A., O.J.M., J.L.H., L.L., R.B.V., T.C.L., S.J.G., P.A.C., D.P.K.); Departments of Medicine, Pharmacology, and Cancer Biology, Duke University, Durham, NC (T.K., D.M.M.); CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany (M.K.); Departments of Pharmacology and Medicine, Case Western Reserve University, Cleveland, OH (C.L.H.); College of Medicine, University of Illinois at Chicago, Chicago, IL (E.D.L.); and Department of Medicine, Washington University School of Medicine, St. Louis, MO (P.A.C.).
| |
Collapse
|
12
|
Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine. Neurochem Res 2015; 41:86-95. [DOI: 10.1007/s11064-015-1728-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
|
13
|
Himebauch AS, Zuppa A. Methods for pharmacokinetic analysis in young children. Expert Opin Drug Metab Toxicol 2014; 10:497-509. [DOI: 10.1517/17425255.2014.885502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Analytical approaches to determination of carnitine in biological materials, foods and dietary supplements. Food Chem 2014; 142:220-32. [DOI: 10.1016/j.foodchem.2013.06.137] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/24/2013] [Accepted: 06/26/2013] [Indexed: 12/30/2022]
|
15
|
Soeters MR, Soeters PB, Schooneman MG, Houten SM, Romijn JA. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303:E1397-407. [PMID: 23074240 DOI: 10.1152/ajpendo.00397.2012] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Soeters MR, Serlie MJ, Sauerwein HP, Duran M, Ruiter JP, Kulik W, Ackermans MT, Minkler PE, Hoppel CL, Wanders RJA, Houten SM. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism 2012; 61:966-73. [PMID: 22209095 DOI: 10.1016/j.metabol.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/21/2022]
Abstract
Hydroxybutyrylcarnitine (HB-carnitine) is a metabolite that has been associated with insulin resistance and type 2 diabetes mellitus. It is currently unknown whether HB-carnitine can be produced from D-3-hydroxybutyrate (D-3HB), a ketone body; but its formation from L-3-HB-CoA, a fatty acid β-oxidation intermediate, is well established. We aimed to assess which stereoisomers of 3-HB-carnitine are present in vivo. Ketosis and increased fatty acid oxidation were induced in 12 lean healthy men by a 38-hour fasting period. The D-3HB kinetics (stable isotope technique) and stereoisomers of muscle 3-HB-carnitine (high-performance liquid chromatography/ultra-performance liquid chromatography-tandem mass spectrometry) were measured. Muscle D-3HB-carnitine content was much higher compared with L-3HB-carnitine. In addition, muscle D-3HB-carnitine correlated significantly with D-3-HB production. Following the finding that a ketone body can be converted into a carnitine ester in vivo, we show in vitro that D-3-HB can be converted into HB-carnitine (ketocarnitine) via an acyl-CoA synthetase reaction in several tissues including human muscle. During fasting, HB-carnitine in muscle is derived mainly from the ketone body D-3HB. The role of D-3HB-carnitine synthesis in metabolism remains to be elucidated.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clinckers R, Smolders I, Vermoesen K, Michotte Y, Danhof M, Voskuyl R, Della Pasqua O. Prediction of antiepileptic drug efficacy: the use of intracerebral microdialysis to monitor biophase concentrations. Expert Opin Drug Metab Toxicol 2009; 5:1267-77. [PMID: 19611404 DOI: 10.1517/17425250903146903] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biophase concentrations of antiepileptic drugs can differ significantly from pharmacokinetics in plasma. A crucial determinant in the disposition of antiepileptic drugs to the brain is represented by the blood-brain barrier. There is growing evidence that this barrier can alter the availability of antiepileptic drugs at the target site. The permeability of the blood-brain barrier becomes particularly relevant in epileptic conditions and in drug refractory situations. In vivo, intracerebral microdialysis is a valuable technique to determine biophase drug concentrations as it enables investigation of antiepileptic drug transport and distribution in the brain as a function of time. The present review illustrates that intracerebral microdialysis is an indispensable tool for the assessment of the pharmacokinetics of antiepileptic drugs. In addition, we demonstrate how microdialysis data can be used in conjunction with mechanism-based pharmacokinetic/pharmacodynamic modeling for dose selection and optimization of the therapeutic regimen for novel compounds.
Collapse
Affiliation(s)
- Ralph Clinckers
- Vrije Universiteit Brussel (VUB), Pharmaceutical Institute, Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry and Drug Analysis (labo FASC), Laarbeeklaan 103, Building G, 1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|