1
|
Wang J, Wu Y, Lin R, Zhang Y, Li L. TRAM deletion attenuates monocyte exhaustion and alleviates sepsis severity. Front Immunol 2023; 14:1297329. [PMID: 38162637 PMCID: PMC10756061 DOI: 10.3389/fimmu.2023.1297329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Monocyte exhaustion characterized by immune-suppressive features can develop during sepsis and contribute to adverse patient outcomes. However, molecular mechanisms responsible for the establishment of immune-suppressive monocytes with reduced expression of immune-enhancing mediators such as CD86 during sepsis are not well understood. In this study, we identified that the TLR4 intracellular adaptor TRAM plays a key role in mediating the sustained reduction of CD86 expression on exhausted monocytes and generating an immune-suppressive monocyte state. TRAM contributes to the prolonged suppression of CD86 through inducing TAX1BP1 as well as SARM1, collectively inhibiting Akt and NFκB. TRAM deficient mice are protected from cecal slurry-induced experimental sepsis and retain immune-competent monocytes with CD86 expression. Our data reveal a key molecular circuitry responsible for monocyte exhaustion and provide a viable target for rejuvenating functional monocytes and treating sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
2
|
Temporal Characterization of Microglia-Associated Pro- and Anti-Inflammatory Genes in a Neonatal Inflammation-Sensitized Hypoxic-Ischemic Brain Injury Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479626. [PMID: 35281473 PMCID: PMC8906938 DOI: 10.1155/2022/2479626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) mainly affects preterm and term newborns, leading to a high risk of brain damage. Coexisting infection/inflammation and birth asphyxia are key factors associated with intracerebral increase of proinflammatory cytokines linked to HIE. Microglia are key mediators of inflammation during perinatal brain injury, characterized by their phenotypic plasticity, which may facilitate their participation in both the progression and resolution of injury-induced inflammation. The purpose of this study was to investigate the temporal expression of genes associated with pro- and anti-inflammatory cytokines as well as the nucleotide-binding domain, leucine-rich repeat protein (NLRP-3) inflammasome from microglia cells. For this purpose, we used our established neonatal rat model of inflammation-sensitized hypoxic-ischemic (HI) brain injury in seven-day-old rats. We assessed gene expression profiles of 11 cytokines and for NLRP-3 using real-time PCR from sorted CD11b/c microglia of brain samples at different time points (3.5 h after LPS injection and 0, 5, 24, 48, and 72 hours post HI) following different treatments: vehicle, E. coli lipopolysaccharide (LPS), vehicle/HI, and LPS/HI. Our results showed that microglia are early key mediators of the inflammatory response and exacerbate the inflammatory response following HI, polarizing into a predominant proinflammatory M1 phenotype in the early hours post HI. The brains only exposed to HI showed a delay in the expression of proinflammatory cytokines. We also demonstrated that NLRP-3 plays a role in the inflammatory resolution with a high expression after HI insult. The combination of both, a preinfection/inflammation condition and hypoxia-ischemia, resulted in a higher proinflammatory cytokine storm, highlighting the significant contribution of acute inflammation sensitizing prior to a hypoxic insult on the severity of perinatal brain damage.
Collapse
|
3
|
Sävman K, Wang W, Rafati AH, Svedin P, Nair S, Golubinskaya V, Ardalan M, Brown KL, Karlsson-Bengtsson A, Mallard C. Galectin-3 modulates microglia inflammation in vitro but not neonatal brain injury in vivo under inflammatory conditions. Dev Neurosci 2021; 43:296-311. [PMID: 34130282 DOI: 10.1159/000517687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Microglia may contribute to injury but may also have neuroprotective properties. Galectin-3 has immunomodulatory properties that may affect the microglia phenotype and subsequent development of injury. Galectin-3 contributes to experimental hypoxic-ischemic (HI) injury in the neonatal brain, but it is unclear if galectin-3 has similar effects on infectious and sterile inflammation. Thus, we investigated the effect of galectin-3 on microglia in vitro under normal as well as infectious and sterile inflammatory conditions, and the effect of galectin-3 on neonatal brain injury following an infectious challenge in vivo. Conditions mimicking infectious or sterile inflammation were evaluated in primary microglia cell cultures from newborn mice, using LPS (10 ng/mL) and TNF-α (100 ng/mL). The response to galectin-3 was tested alone or together with LPS or TNF-α. Supernatants were collected 24 h after treatment and analyzed for 23 inflammatory mediators including pro- and anti-inflammatory cytokines and chemokines using multiplex protein analysis, as well as ELISA for MCP-1 and insulin-like growth factor (IGF)-1. Phosphorylation of proteins (AKT, ERK1/2, IκB-α, JNK, and p38) was determined in microglia cells. Neonatal brain injury was induced by a combination of LPS and HI (LPS + HI) in postnatal day 9 transgenic mice lacking functional galectin-3 and wild-type controls. LPS and TNF-α induced pro-inflammatory (9/11 vs. 9/10) and anti-inflammatory (6/6 vs. 2/6) cytokines, as well as chemokines (6/6 vs. 4/6) in a similar manner, except generally lower amplitude of the TNF-α-induced response. Galectin-3 alone had no effect on any of the proteins analyzed. Galectin-3 reduced the LPS- and TNF-α-induced microglia response for cytokines, chemokines, and phosphorylation of IκB-α. LPS decreased baseline IGF-1 levels, and the levels were restored by galectin-3. Brain injury or microglia response after LPS + HI was not affected by galectin-3 deficiency. Galectin-3 has no independent effect on microglia but modulates inflammatory activation in vitro. The effect was similar under infectious and sterile inflammatory conditions, suggesting that galectin-3 regulates inflammation not just by binding to LPS or toll-like receptor-4. Galectin-3 restores IGF-1 levels reduced by LPS-induced inflammation, suggesting a potential protective effect on infectious injury. However, galectin-3 deficiency did not affect microglia activation and was not beneficial in an injury model encompassing an infectious challenge.
Collapse
Affiliation(s)
- Karin Sävman
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Neonatology, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Wei Wang
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Hoseinpoor Rafati
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronika Golubinskaya
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kelly L Brown
- Department of Pediatrics, University of British Columbia and the British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Anna Karlsson-Bengtsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Danladi J, Sabir H. Perinatal Infection: A Major Contributor to Efficacy of Cooling in Newborns Following Birth Asphyxia. Int J Mol Sci 2021; 22:ijms22020707. [PMID: 33445791 PMCID: PMC7828225 DOI: 10.3390/ijms22020707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Neonatal encephalopathy (NE) is a global burden, as more than 90% of NE occurs in low- and middle-income countries (LMICs). Perinatal infection seems to limit the neuroprotective efficacy of therapeutic hypothermia. Efforts made to use therapeutic hypothermia in LMICs treating NE has led to increased neonatal mortality rates. The heat shock and cold shock protein responses are essential for survival against a wide range of stressors during which organisms raise their core body temperature and temporarily subject themselves to thermal and cold stress in the face of infection. The characteristic increase and decrease in core body temperature activates and utilizes elements of the heat shock and cold shock response pathways to modify cytokine and chemokine gene expression, cellular signaling, and immune cell mobilization to sites of inflammation, infection, and injury. Hypothermia stimulates microglia to secret cold-inducible RNA-binding protein (CIRP), which triggers NF-κB, controlling multiple inflammatory pathways, including nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and cyclooxygenase-2 (COX-2) signaling. Brain responses through changes in heat shock protein and cold shock protein transcription and gene-expression following fever range and hyperthermia may be new promising potential therapeutic targets.
Collapse
Affiliation(s)
- Jibrin Danladi
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Correspondence:
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital University of Bonn, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| |
Collapse
|
5
|
Grossen P, Portmann M, Koller E, Duschmalé M, Minz T, Sewing S, Pandya NJ, van Geijtenbeek SK, Ducret A, Kusznir EA, Huber S, Berrera M, Lauer ME, Ringler P, Nordbo B, Jensen ML, Sladojevich F, Jagasia R, Alex R, Gamboni R, Keller M. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides. Eur J Pharm Biopharm 2020; 158:198-210. [PMID: 33248268 DOI: 10.1016/j.ejpb.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
The natural capacity of extracellular vesicles (EVs) to transport their payload to recipient cells has raised big interest to repurpose EVs as delivery vehicles for xenobiotics. In the present study, bovine milk-derived EVs (BMEVs) were investigated for their potential to shuttle locked nucleic acid-modified antisense oligonucleotides (LNA ASOs) into the systemic circulation after oral administration. To this end, a broad array of analytical methods including proteomics and lipidomics were used to thoroughly characterize BMEVs. We found that additional purification by density gradients efficiently reduced levels of non-EV associated proteins. The potential of BMEVs to functionally transfer LNA ASOs was tested using advanced in vitro systems (i.e. hPSC-derived neurons and primary human cells). A slight increase in cellular LNA ASO internalization and target gene reduction was observed when LNA ASOs were delivered using BMEVs. When dosed orally in mice, only a small fraction (about 1% of total administered dose) of LNA ASOs was recovered in the peripheral tissues liver and kidney, however, no significant reduction in target gene expression (i.e. functional knockdown) was observed.
Collapse
Affiliation(s)
- Philip Grossen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, DMPK, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martina Duschmalé
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tanja Minz
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nikhil Janak Pandya
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland; Roche Pharma Research and Early Development, Neurology and Rare Diseases Disease Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabine Kux van Geijtenbeek
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Eric-André Kusznir
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
| | - Bettina Nordbo
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd, Fremtidsvej3, 2970 Hoersholm, Denmark
| | - Marianne Lerbech Jensen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd, Fremtidsvej3, 2970 Hoersholm, Denmark
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neurology and Rare Diseases Disease Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rainer Alex
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Remo Gamboni
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
6
|
Pek JH, Yap BJ, Gan MY, Seethor STT, Greenberg R, Hornik CPV, Tan B, Lee JH, Chong SL. Neurocognitive impairment after neonatal sepsis: protocol for a systematic review and meta-analysis. BMJ Open 2020; 10:e038816. [PMID: 32532785 PMCID: PMC7295426 DOI: 10.1136/bmjopen-2020-038816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The effect of neonatal sepsis on the developing brain is not well documented. We aim to perform evidence synthesis to determine the outcome of neurodevelopmental impairment and intellectual disability among survivors of neonatal sepsis. The data gathered will inform on the long-term neurocognitive outcomes of neonates with sepsis and the measures used to document their developmental disability. METHODS AND ANALYSIS We will perform a search based on the following parameters: neonates and infants less than 90 days old diagnosed with sepsis who had neurocognitive outcomes or measures of developmental disability reported. We will search PubMed, Cochrane Central, Embase and Web of Science for articles in English language published between January 2010 and December 2019. Clinical trials and observational studies will be included. Two independent reviewers will screen studies for eligibility. Data extraction will then be performed using a standardised form. The quality of evidence and risk of bias will be assessed using Cochrane Collaboration's tool and Risk of Bias in Non-randomised Studies of Intervention (ROBINS-I). The results will be synthesised qualitatively and pooled for meta-analysis. ETHICS AND DISSEMINATION No formal ethical approval is required as there is no collection of primary data. This systematic review and meta-analysis will be disseminated through conference meetings and peer-reviewed publications. PROSPERO REGISTRATION NUMBER Registration submitted CRD42020164334.
Collapse
Affiliation(s)
- Jen Heng Pek
- Department of Emergency Medicine, Sengkang General Hospital, Singapore
| | - Bei Jun Yap
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ming Ying Gan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Rachel Greenberg
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christoph Paul Vincent Hornik
- Division of Quantitative Sciences, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bobby Tan
- Department of Emergency Medicine, KK Women's and Children's Hospital, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Shu-Ling Chong
- Department of Emergency Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
7
|
Liang M, Zhong H, Rong J, Li Y, Zhu C, Zhou L, Zhou R. Postnatal Lipopolysaccharide Exposure Impairs Adult Neurogenesis and Causes Depression-like Behaviors Through Astrocytes Activation Triggering GABAA Receptor Downregulation. Neuroscience 2019; 422:21-31. [DOI: 10.1016/j.neuroscience.2019.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/20/2023]
|
8
|
Yun H, Park ES, Choi S, Shin B, Yu J, Yu J, Amarasekara DS, Kim S, Lee N, Choi JS, Choi Y, Rho J. TDAG51 is a crucial regulator of maternal care and depressive-like behavior after parturition. PLoS Genet 2019; 15:e1008214. [PMID: 31251738 PMCID: PMC6599150 DOI: 10.1371/journal.pgen.1008214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Postpartum depression is a severe emotional and mental disorder that involves maternal care defects and psychiatric illness. Postpartum depression is closely associated with a combination of physical changes and physiological stress during pregnancy or after parturition in stress-sensitive women. Although postpartum depression is relatively well known to have deleterious effects on the developing fetus, the influence of genetic risk factors on the development of postpartum depression remains unclear. In this study, we discovered a novel function of T cell death-associated gene 51 (TDAG51/PHLDA1) in the regulation of maternal and depressive-like behavior. After parturition, TDAG51-deficient dams showed impaired maternal behavior in pup retrieving, nursing and nest building tests. In contrast to the normal dams, the TDAG51-deficient dams also exhibited more sensitive depressive-like behaviors after parturition. Furthermore, changes in the expression levels of various maternal and depressive-like behavior-associated genes regulating neuroendocrine factor and monoamine neurotransmitter levels were observed in TDAG51-deficient postpartum brain tissues. These findings indicate that TDAG51 plays a protective role against maternal care defects and depressive-like behavior after parturition. Thus, TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition. Postpartum depression is a severe emotional and mental disease that can affect women typically after parturition. However, the genetic risk factors associated with the development of postpartum depression are still largely unknown. We discovered a novel function of T cell death-associated gene 51 (TDAG51) in the regulation of maternal behavior and postpartum depression. We report that TDAG51 deficiency induces depressive-like and abnormal maternal behavior after parturition. The loss of TDAG51 in postpartum brain tissues induces changes in the expression levels of various maternal and depressive-like behavior-associated genes that regulate the levels of neuroendocrine factors and monoamine neurotransmitters. TDAG51 is a maternal care-associated gene that functions as a crucial regulator of maternal and depressive-like behavior after parturition.
Collapse
Affiliation(s)
- Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Eui-Soon Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Seunga Choi
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Bongjin Shin
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jungeun Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | | | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon, Korea
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
9
|
Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Mol Neurobiol 2019; 56:6883-6900. [PMID: 30941732 PMCID: PMC6728419 DOI: 10.1007/s12035-019-1548-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) is one of the most common childhood-onset motor disabilities, attributed to injuries of the immature brain in the foetal or early postnatal period. The underlying mechanisms are poorly understood, rendering prevention and treatment strategies challenging. The aim of the present study was to establish a mouse model of CP for preclinical assessment of new interventions. For this purpose, we explored the impact of a double neonatal insult (i.e. systemic inflammation combined with hypoxia) on behavioural and cellular outcomes relevant to CP during the prepubertal to adolescent period of mice. Pups were subjected to intraperitoneal lipopolysaccharide (LPS) injections from postnatal day (P) 3 to P6 followed by hypoxia at P7. Gene expression analysis at P6 revealed a strong inflammatory response in a brain region-dependent manner. A comprehensive battery of behavioural assessments performed between P24 and P47 showed impaired limb placement and coordination when walking on a horizontal ladder in both males and females. Exposed males also displayed impaired performance on a forelimb skilled reaching task, altered gait pattern and increased exploratory activity. Exposed females showed a reduction in grip strength and traits of anxiety-like behaviour. These behavioural alterations were not associated with gross morphological changes, white matter lesions or chronic inflammation in the brain. Our results indicate that the neonatal double-hit with LPS and hypoxia can induce subtle long-lasting deficits in motor learning and fine motor skills, which partly reflect the symptoms of children with CP who have mild gross and fine motor impairments.
Collapse
Affiliation(s)
- Adamantia F Fragopoulou
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Yu Qian
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden.,INSERM U1239, University of Rouen Normandy, 76130, Mont-Saint-Aignan, France
| | - Hans Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| |
Collapse
|
10
|
Consequences of cesarean delivery for neural development. Proc Natl Acad Sci U S A 2018; 115:11664-11666. [PMID: 30373843 DOI: 10.1073/pnas.1816335115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Birth delivery mode alters perinatal cell death in the mouse brain. Proc Natl Acad Sci U S A 2018; 115:11826-11831. [PMID: 30322936 DOI: 10.1073/pnas.1811962115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Labor and a vaginal delivery trigger changes in peripheral organs that prepare the mammalian fetus to survive ex utero. Surprisingly little attention has been given to whether birth also influences the brain, and to how alterations in birth mode affect neonatal brain development. These are important questions, given the high rates of cesarean section (C-section) delivery worldwide, many of which are elective. We examined the effect of birth mode on neuronal cell death, a widespread developmental process that occurs primarily during the first postnatal week in mice. Timed-pregnant dams were randomly assigned to C-section deliveries that were yoked to vaginal births to carefully match gestation length and circadian time of parturition. Compared with rates of cell death just before birth, vaginally-born offspring had an abrupt, transient decrease in cell death in many brain regions, suggesting that a vaginal delivery is neuroprotective. In contrast, cell death was either unchanged or increased in C-section-born mice. Effects of delivery mode on cell death were greatest for the paraventricular nucleus of the hypothalamus (PVN), which is central to the stress response and brain-immune interactions. The greater cell death in the PVN of C-section-delivered newborns was associated with a reduction in the number of PVN neurons expressing vasopressin at weaning. C-section-delivered mice also showed altered vocalizations in a maternal separation test and greater body mass at weaning. Our results suggest that vaginal birth acutely impacts brain development, and that alterations in birth mode may have lasting consequences.
Collapse
|
12
|
Kaindlstorfer C, Jellinger KA, Eschlböck S, Stefanova N, Weiss G, Wenning GK. The Relevance of Iron in the Pathogenesis of Multiple System Atrophy: A Viewpoint. J Alzheimers Dis 2018; 61:1253-1273. [PMID: 29376857 PMCID: PMC5798525 DOI: 10.3233/jad-170601] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Abstract
Iron is essential for cellular development and maintenance of multiple physiological processes in the central nervous system. The disturbance of its homeostasis leads to abnormal iron deposition in the brain and causes neurotoxicity via generation of free radicals and oxidative stress. Iron toxicity has been established in the pathogenesis of Parkinson's disease; however, its contribution to multiple system atrophy (MSA) remains elusive. MSA is characterized by cytoplasmic inclusions of misfolded α-synuclein (α-SYN) in oligodendrocytes referred to as glial cytoplasmic inclusions (GCIs). Remarkably, the oligodendrocytes possess high amounts of iron, which together with GCI pathology make a contribution toward MSA pathogenesis likely. Consistent with this observation, the GCI density is associated with neurodegeneration in central autonomic networks as well as olivopontocerebellar and striatonigral pathways. Iron converts native α-SYN into a β-sheet conformation and promotes its aggregation either directly or via increasing levels of oxidative stress. Interestingly, α-SYN possesses ferrireductase activity and α-SYN expression underlies iron mediated translational control via RNA stem loop structures. Despite a correlation between progressive putaminal atrophy and iron accumulation as well as clinical decline, it remains unclear whether pathologic iron accumulation in MSA is a secondary event in the cascade of neuronal degeneration rather than a primary cause. This review summarizes the current knowledge of iron in MSA and gives evidence for perturbed iron homeostasis as a potential pathogenic factor in MSA-associated neurodegeneration.
Collapse
Affiliation(s)
| | | | - Sabine Eschlböck
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Sasaki-Hamada S, Funane T, Nakao Y, Sasaki R, Nagai M, Ueta Y, Yoshizawa K, Horiguchi M, Yamashita C, Oka JI. Intranasal administration of neuromedin U derivatives containing cell-penetrating peptides and a penetration-accelerating sequence induced memory improvements in mice. Peptides 2018; 99:241-246. [PMID: 29079533 DOI: 10.1016/j.peptides.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/28/2017] [Accepted: 10/19/2017] [Indexed: 01/19/2023]
Abstract
Neuromedin U (NMU) is a neuropeptide that is expressed and secreted in the brain and gut. We previously demonstrated that the intracerebroventricular (i.c.v.) administration of NMU inhibited inflammation-mediated memory impairment in mice. In order to utilize NMU as a clinical treatment tool for inflammation-mediated amnesia, we herein focused on non-invasive intranasal delivery because the i.c.v. administration route is invasive and impractical. In the present study, we prepared two NMU derivatives containing cell-penetrating peptides (CPPs), octaarginine (R8), and each penetration-accelerating sequence, namely FFLIPKG (PASR8-NMU) and FFFFG (F4R8-NMU), for intranasal (i.n.) administration. In the Y-maze test, the i.c.v. administration of lipopolysaccharide (LPS) (10μg/mouse) significantly decreased spontaneous alternation behavior, and this was prevented by the prior administration of PASR8-NMU or F4R8-NMU (5.6μg/mouse, i.n.). Moreover, the administration of PASR8-NMU or F4R8-NMU (5.6μg/mouse, i.n.) just before the Y-maze test also improved LPS-induced memory impairment. Indocyanine green (ICG)-labeled PASR8-NMU (i.n.) was significantly observed in the hippocampus and paraventricular hypothalamic nucleus 30min after its i.n. administration. PASR8-NMU, but not F4R8-NMU guaranteed the stability of the administration liquid for 24h. These results suggest that PASR8-NMU is effective for i.n. delivery to the brain, and may be useful in the clinical treatment of inflammation-mediated amnesia.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Center for Translational Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Taichi Funane
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yusuke Nakao
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Rie Sasaki
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Mio Nagai
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yudai Ueta
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumi Yoshizawa
- Laboratory of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Michiko Horiguchi
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chikamasa Yamashita
- Laboratory of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Center for Drug Delivery Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Center for Translational Research, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
14
|
Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155. Mol Neurobiol 2017; 55:5798-5808. [PMID: 29079998 DOI: 10.1007/s12035-017-0801-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Neuroinflammation is one of the most important mechanisms underlying neurodegeneration. Lipopolysaccharide (LPS) is a potent inflammogen which causes cognitive dysfunction. Boswellia serrata is known since many years as a powerful anti-inflammatory herbal drug. Its beneficial effect mainly arises from inhibition of 5-lipoxygenase (5-LO) enzyme. 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent 5-LO inhibitor extracted from the oleo-gum-resin of Boswellia serrata. The aim of the present work is to study the molecular mechanisms underlying the anti-inflammatory and neuroprotective effects of AKBA and dexamethasone (DEX) in LPS-induced neuroinflammatory model. A single intraperitoneal (i.p.) dose of LPS (0.8 mg/kg) was injected to induce cognitive dysfunction. The LPS-treated mice were administered for 7 days with either AKBA or DEX at intraperitoneal doses of 5 and 1 mg/kg, respectively. Cognitive, locomotor functions, and anxiety level were first examined. The level of the phosphorylated inhibitory protein for NF-κB, IκB-α (P-IκB-α), was measured, and the expression levels of the inflammatory microRNA-155 (miR-155) and its target gene, suppressor of cytokine signaling-1 (SOCS-1), were determined in the brain. Moreover, the level of carbonyl proteins as a measure of oxidative stress and several cytokines as well as markers for apoptosis and amyloidogenesis was detected. Results showed that AKBA and DEX reversed the behavioral dysfunction induced by LPS. AKBA decreased P-IκB-α, miRNA-155 expression level, and carbonyl protein content. It restored normal cytokine level and increased SOCS-1 expression level. It also showed anti-apoptotic and anti-amyloidogenic effects in LPS-injected mice. These findings suggest AKBA as a therapeutic drug for alleviating the symptoms of neuroinflammatory disorders.
Collapse
|
15
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
16
|
Ke Z, Li M, Liu X, Tan S, Zhou Z, Huang C. 2-Hydroxyeupatolide attenuates inflammatory responses via the inhibiting of NF-κB signaling pathways. RSC Adv 2017. [DOI: 10.1039/c7ra06006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2-Hydroxyeupatolide (2-HE), a sesquiterpene lactone, is a potential agent to improve LPS-induced acute mouse inflammation damage.
Collapse
Affiliation(s)
- Zunli Ke
- Drug Discovery Lab
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Mingxia Li
- Drug Discovery Lab
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Xin Liu
- Drug Discovery Lab
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Si Tan
- Life Science and Technology Institute
- Yangtze Normal University
- Chongqing
- PR China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture
- Southwest University
- Chongqing 400716
- China
| | - Cheng Huang
- Drug Discovery Lab
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
17
|
Smith MR, Burman P, Sadahiro M, Kidd BA, Dudley JT, Morishita H. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity. eNeuro 2016; 3:ENEURO.0240-16.2016. [PMID: 28101530 PMCID: PMC5241709 DOI: 10.1523/eneuro.0240-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/01/2016] [Accepted: 11/12/2016] [Indexed: 01/04/2023] Open
Abstract
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Milo R. Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Brian A. Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Joel T. Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
18
|
Rourke KS, Mayer CA, MacFarlane PM. A critical postnatal period of heightened vulnerability to lipopolysaccharide. Respir Physiol Neurobiol 2016; 232:26-34. [DOI: 10.1016/j.resp.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
19
|
Glaser K, Speer CP. Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant? Expert Rev Anti Infect Ther 2016; 13:233-48. [PMID: 25578885 DOI: 10.1586/14787210.2015.999670] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.
Collapse
Affiliation(s)
- Kirsten Glaser
- University Children's Hospital, University of Würzburg, Josef-Schneider-Str. 2, D-97080 Würzburg, Germany
| | | |
Collapse
|
20
|
Role of sex steroids and their receptors in human preterm infants: Impacts on future treatment strategies for cerebral development. Biochem Pharmacol 2015; 98:556-63. [DOI: 10.1016/j.bcp.2015.08.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
|
21
|
Dhillon SK, Gunn AJ, Jung Y, Mathai S, Bennet L, Fraser M. Lipopolysaccharide-Induced Preconditioning Attenuates Apoptosis and Differentially Regulates TLR4 and TLR7 Gene Expression after Ischemia in the Preterm Ovine Fetal Brain. Dev Neurosci 2015; 37:497-514. [PMID: 26184807 DOI: 10.1159/000433422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/13/2015] [Indexed: 11/19/2022] Open
Abstract
Acute exposure to subclinical infection modulates subsequent hypoxia-ischemia (HI) injury in a time-dependent manner, likely by cross-talk through Toll-like receptors (TLRs), but the specific pathways are unclear in the preterm-equivalent brain. In the present study, we tested the hypothesis that repeated low-dose exposure to lipopolysaccharide (LPS) before acute ischemia would be associated with induction of specific TLRs that are potentially neuroprotective. Fetal sheep at 0.65 gestation (term is ∼145 days) received intravenous boluses of low-dose LPS for 5 days (day 1, 50 ng/kg; days 2-5, 100 ng/kg) or the same volume of saline. Either 4 or 24 h after the last bolus of LPS, complete carotid occlusion was induced for 22 min. Five days after LPS, brains were collected. Pretreatment with LPS for 5 days decreased cellular apoptosis, microglial activation and reactive astrogliosis in response to HI injury induced 24 but not 4 h after the last dose of LPS. This was associated with upregulation of TLR4, TLR7 and IFN-β mRNA, and increased fetal plasma IFN-β concentrations. The association of reduced white matter apoptosis and astrogliosis after repeated low-dose LPS finishing 24 h but not 4 h before cerebral ischemia, with central and peripheral induction of IFN-β, suggests the possibility that IFN-β may be an important mediator of endogenous neuroprotection in the developing brain.
Collapse
|
22
|
Eimerbrink M, White J, Pendry R, Hodges S, Sadler L, Wiles J, Weintraub M, Chumley M, Boehm G. Administration of the inverse benzodiazepine agonist MRK-016 rescues acquisition and memory consolidation following peripheral administration of bacterial endotoxin. Behav Brain Res 2015; 288:50-3. [DOI: 10.1016/j.bbr.2015.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 12/17/2022]
|
23
|
Osredkar D, Sabir H, Falck M, Wood T, Maes E, Flatebø T, Puchades M, Thoresen M. Hypothermia Does Not Reverse Cellular Responses Caused by Lipopolysaccharide in Neonatal Hypoxic-Ischaemic Brain Injury. Dev Neurosci 2015; 37:390-7. [PMID: 26087775 DOI: 10.1159/000430860] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Bacterial lipopolysaccharide (LPS) injection prior to hypoxia-ischaemia significantly increases hypoxia-ischaemic brain injury in 7-day-old (P7) rats. In addition, therapeutic hypothermia (HT) is not neuroprotective in this setting. However, the mechanistic aspects of this therapeutic failure have yet to be elucidated. This study was designed to investigate the underlying cellular mechanisms in this double-hit model of infection-sensitised hypoxia-ischaemic brain injury. MATERIAL AND METHODS P7 rat pups were injected with either vehicle or LPS, and after a 4-hour delay were exposed to left carotid ligation followed by global hypoxia inducing a unilateral stroke-like hypoxia-ischaemic injury. Pups were randomised to the following treatments: (1) vehicle-treated pups receiving normothermia treatment (NT) (Veh-NT; n = 40), (2) LPS-treated pups receiving NT treatment (LPS-NT; n = 40), (3) vehicle-treated pups receiving HT treatment (Veh-HT; n = 38) and (4) LPS-treated pups receiving HT treatment (LPS-HT; n = 35). On postnatal day 8 or 14, Western blot analysis or immunohistochemistry was performed to examine neuronal death, apoptosis, astrogliosis and microglial activation. RESULTS LPS sensitisation prior to hypoxia-ischaemia significantly exacerbated apoptotic neuronal loss. NeuN, a neuronal biomarker, was significantly reduced in the LPS-NT and LPS-HT groups (p = 0.008). Caspase-3 activation was significantly increased in the LPS-sensitised groups (p < 0.001). Additionally, a significant increase in astrogliosis (glial fibrillary acidic expression, p < 0.001) was seen, as well as a trend towards increased microglial activation (Iba 1 expression, p = 0.051) in LPS-sensitised animals. Treatment with HT did not counteract these changes. CONCLUSION LPS-sensitised hypoxia-ischaemic brain injury in newborn rats is mediated through neuronal death, apoptosis, astrogliosis and microglial activation. In this double-hit model, treatment with HT does not ameliorate these changes.
Collapse
Affiliation(s)
- Damjan Osredkar
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brain damage of the preterm infant: new insights into the role of inflammation. Biochem Soc Trans 2015; 42:557-63. [PMID: 24646278 DOI: 10.1042/bst20130284] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have shown a strong association between perinatal infection/inflammation and brain damage in preterm infants and/or neurological handicap in survivors. Experimental studies have shown a causal effect of infection/inflammation on perinatal brain damage. Infection including inflammatory factors can disrupt programmes of brain development and, in particular, induce death and/or blockade of oligodendrocyte maturation, leading to myelin defects. Alternatively, in the so-called multiple-hit hypothesis, infection/inflammation can act as predisposing factors, making the brain more susceptible to a second stress (sensitization process), such as hypoxic-ischaemic or excitotoxic insults. Epidemiological data also suggest that perinatal exposure to inflammatory factors could predispose to long-term diseases including psychiatric disorders.
Collapse
|
25
|
Fleiss B, Tann CJ, Degos V, Sigaut S, Van Steenwinckel J, Schang AL, Kichev A, Robertson NJ, Mallard C, Hagberg H, Gressens P. Inflammation-induced sensitization of the brain in term infants. Dev Med Child Neurol 2015; 57 Suppl 3:17-28. [PMID: 25800488 DOI: 10.1111/dmcn.12723] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Perinatal insults are a leading cause of infant mortality and amongst survivors are frequently associated with neurocognitive impairment, cerebral palsy (CP), and seizure disorders. The events leading to perinatal brain injury are multifactorial. This review describes how one subinjurious factor affecting the brain sensitizes it to a second injurious factor, causing an exacerbated injurious cascade. We will review the clinical and experimental evidence, including observations of high rates of maternal and fetal infections in term-born infants with neonatal encephalopathy and cerebral palsy. In addition, we will discuss preclinical evidence for the sensitizing effects of inflammation on injuries, such as hypoxia-ischaemia, our current understanding of the mechanisms underpinning the sensitization process, and the possibility for neuroprotection.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Inserm, U1141, Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris, France; Department of Child Neurology, APHP, Robert Debré Hospital, Paris, France; PremUP, Paris, France; Division of Imaging Sciences, Department of Perinatal Imaging and Health, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bonestroo HJC, Heijnen CJ, Groenendaal F, van Bel F, Nijboer CH. Development of cerebral gray and white matter injury and cerebral inflammation over time after inflammatory perinatal asphyxia. Dev Neurosci 2015; 37:78-94. [PMID: 25634435 DOI: 10.1159/000368770] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Antenatal inflammation is associated with increased severity of hypoxic-ischemic (HI) encephalopathy and adverse outcome in human neonates and experimental rodents. We investigated the effect of lipopolysaccharide (LPS) on the timing of HI-induced cerebral tissue loss and gray matter injury, white matter injury and integrity, and the cerebral inflammatory response. On postnatal day 9, mice underwent HI by unilateral carotid artery occlusion followed by systemic hypoxia which resulted in early neuronal damage (MAP2 loss) at 3 h that did not increase up to day 15. LPS injection 14 h before HI (LPS+HI) significantly and gradually aggravated MAP2 loss from 3 h up to day 15, resulting in an acellular cystic lesion. LPS+HI increased white matter damage, reduced myelination in the corpus callosum and increased white matter fiber coherency in the cingulum. The number of oligodendrocytes throughout the lineage (Olig2-positive) was increased whereas more mature myelinating (CNPase-positive) oligodendrocytes were strongly decreased after LPS+HI. LPS+HI induced an increased and prolonged expression of cerebral cytokines/chemokines compared to HI. Additionally, LPS+HI increased macrophage/microglia activation and influx of neutrophils in the brain compared to HI. This study demonstrates the sensitizing effect of LPS on neonatal HI brain injury for an extended time-frame up to 15 days postinsult. LPS before HI induced a gradual increase in gray and white matter deficits, including reduced numbers of more mature myelinating oligodendrocytes and a decrease in white matter integrity. Moreover, LPS+HI prolonged and intensified the cerebral inflammatory response, including cellular infiltration. In conclusion, as the timing of damage and/or involved pathways are changed when HI is preceded by inflammation, experimental therapies might require modifications in the time window, dosage or combinations of therapies for efficacious neuroprotection.
Collapse
Affiliation(s)
- Hilde J C Bonestroo
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Wang LW, Chang YC, Chen SJ, Tseng CH, Tu YF, Liao NS, Huang CC, Ho CJ. TNFR1-JNK signaling is the shared pathway of neuroinflammation and neurovascular damage after LPS-sensitized hypoxic-ischemic injury in the immature brain. J Neuroinflammation 2014; 11:215. [PMID: 25540015 PMCID: PMC4300587 DOI: 10.1186/s12974-014-0215-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
Background Hypoxic-ischemia (HI) and inflammation are the two major pathogenic mechanisms of brain injury in very preterm infants. The neurovascular unit is the major target of HI injury in the immature brain. Systemic inflammation may worsen HI by up-regulating neuroinflammation and disrupting the blood–brain barrier (BBB). Since neurons and oligodendrocytes, microvascular endothelial cells, and microglia may closely interact with each other, there may be a common signaling pathway leading to neuroinflammation and neurovascular damage after injury in the immature brain. TNF-α is a key pro-inflammatory cytokine that acts through the TNF receptor (TNFR), and c-Jun N-terminal kinases (JNK) are important stress-responsive kinases. Objective To determine if TNFR1-JNK signaling is a shared pathway underlying neuroinflammation and neurovascular injury after lipopolysaccharide (LPS)-sensitized HI in the immature brain. Methods Postpartum (P) day-5 mice received LPS or normal saline (NS) injection before HI. Immunohistochemistry, immunoblotting and TNFR1- and TNFR2-knockout mouse pups were used to determine neuroinflammation, BBB damage, TNF-α expression, JNK activation, and cell apoptosis. The cellular distribution of p-JNK, TNFR1/TNFR2 and cleaved caspase-3 were examined using immunofluorescent staining. Results The LPS + HI group had significantly greater up-regulation of activated microglia, TNF-α and TNFR1 expression, and increases of BBB disruption and cleaved caspase-3 levels at 24 hours post-insult, and showed more cortical and white matter injury on P17 than the control and NS + HI groups. Cleaved caspase-3 was highly expressed in microvascular endothelial cells, neurons, and oligodendroglial precursor cells. LPS-sensitized HI also induced JNK activation and up-regulation of TNFR1 but not TNFR2 expression in the microglia, endothelial cells, neurons, and oligodendrocyte progenitors, and most of the TNFR1-positive cells co-expressed p-JNK. Etanercept (a TNF-α inhibitor) and AS601245 (a JNK inhibitor) protected against LPS-sensitized HI brain injury. The TNFR1-knockout but not TNFR2-knockout pups had significant reduction in JNK activation, attenuation of microglial activation, BBB breakdown and cleaved caspase-3 expression, and showed markedly less cortical and white matter injury than the wild-type pups after LPS-sensitized HI. Conclusion TNFR1-JNK signaling is the shared pathway leading to neuroinflammation and neurovascular damage after LPS-sensitized HI in the immature brain. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0215-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan, 710, Taiwan. .,Department of Pediatrics, College of Medicine, Taipei Medical University, #250, Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Pediatrics, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan.
| | - Ying-Chao Chang
- Department of Pediatrics, Chang Gung Memorial Hospital - Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan.
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| | - Chien-Hang Tseng
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Yi-Fang Tu
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan.
| | - Chao-Ching Huang
- Department of Pediatrics, College of Medicine, Taipei Medical University, #250, Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Pediatrics, Wan-Fang Hospital, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
| | - Chien-Jung Ho
- Department of Pediatrics, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 704, Taiwan.
| |
Collapse
|
28
|
Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 2014; 96:70-82. [PMID: 25445483 DOI: 10.1016/j.neuropharm.2014.10.027] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023]
Abstract
Increasing evidence underlines that prototypical inflammatory cytokines (IL-1β, TNF-α and IL-6) either synthesized in the central (CNS) or peripheral nervous system (PNS) by resident cells, or imported by immune blood cells, are involved in several pathophysiological functions, including an unexpected impact on synaptic transmission and neuronal excitability. This review describes these unconventional neuromodulatory properties of cytokines, that are distinct from their classical action as effector molecules of the immune system. In addition to the role of cytokines in brain physiology, we report evidence that dysregulation of their biosynthesis and cellular release, or alterations in receptor-mediated intracellular pathways in target cells, leads to neuronal cell dysfunction and modifications in neuronal network excitability. As a consequence, targeting of these cytokines, and related signalling molecules, is considered a novel option for the development of therapies in various CNS or PNS disorders associated with an inflammatory component. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Annamaria Vezzani
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy.
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
29
|
Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, Ahmadiani A, Dargahi L. Fingolimod affects gene expression profile associated with LPS-induced memory impairment. Exp Brain Res 2014; 232:3687-96. [DOI: 10.1007/s00221-014-4052-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
|
30
|
Strunk T, Inder T, Wang X, Burgner D, Mallard C, Levy O. Infection-induced inflammation and cerebral injury in preterm infants. THE LANCET. INFECTIOUS DISEASES 2014; 14:751-762. [PMID: 24877996 DOI: 10.1016/s1473-3099(14)70710-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preterm birth and infectious diseases are the most common causes of neonatal and early childhood deaths worldwide. The rates of preterm birth have increased over recent decades and account for 11% of all births worldwide. Preterm infants are at significant risk of severe infection in early life and throughout childhood. Bacteraemia, inflammation, or both during the neonatal period in preterm infants is associated with adverse outcomes, including death, chronic lung disease, and neurodevelopmental impairment. Recent studies suggest that bacteraemia could trigger cerebral injury even without penetration of viable bacteria into the CNS. Here we review available evidence that supports the concept of a strong association between bacteraemia, inflammation, and cerebral injury in preterm infants, with an emphasis on the underlying biological mechanisms, clinical correlates, and translational opportunities.
Collapse
Affiliation(s)
- Tobias Strunk
- Centre for Neonatal Research and Education, School of Paediatrics and Child Health, The University of Western Australia, Perth, WA, Australia; Neonatal Clinical Care Unit, King Edward Memorial Hospital, Perth, WA, Australia.
| | - Terrie Inder
- Department of Pediatrics, Neurology and Radiology, Washington University, St Louis, USA
| | - Xiaoyang Wang
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Shangjie, Henan, China
| | - David Burgner
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Carina Mallard
- Perinatal Center, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Smith PL, Hagberg H, Naylor AS, Mallard C. Neonatal Peripheral Immune Challenge Activates Microglia and Inhibits Neurogenesis in the Developing Murine Hippocampus. Dev Neurosci 2014; 36:119-31. [DOI: 10.1159/000359950] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
|
32
|
Järlestedt K, Naylor AS, Dean J, Hagberg H, Mallard C. Decreased survival of newborn neurons in the dorsal hippocampus after neonatal LPS exposure in mice. Neuroscience 2013; 253:21-8. [PMID: 23994184 PMCID: PMC3824076 DOI: 10.1016/j.neuroscience.2013.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/29/2022]
Abstract
Neonatal inflammation reduces the survival of dividing neurons and astrocytes. Neonatal inflammation does not affect the survival of post-mitotic cells. Decrease in cell survival was specific for the granule cells of the dorsal blade of the hippocampus.
Experimental studies show that inflammation reduces the regenerative capacity in the adult brain. Less is known about how early postnatal inflammation affects neurogenesis, stem cell proliferation, cell survival and learning and memory in young adulthood. In this study we examined if an early-life inflammatory challenge alters cell proliferation and survival in distinct anatomical regions of the hippocampus and whether learning and memory were affected. Lipopolysaccharide (LPS, 1 mg/kg) was administered to mice on postnatal day (P) 9 and proliferation and survival of hippocampal cells born either prior to (24 h before LPS), or during the inflammatory insult (48 h after LPS) was evaluated. Long-term cell survival of neurons and astrocytes was determined on P 41 and P 60 in the dorsal and ventral horns of the hippocampus. On day 50 the mice were tested in the trace fear conditioning (TFC) paradigm. There was no effect on the survival of neurons and astrocytes that were born before LPS injection. In contrast, the number of neurons and astrocytes that were born after LPS injection were reduced on P 41. The LPS-induced reduction in cell numbers was specific for the dorsal hippocampus. Neither early (48 h after LPS) or late (33 days after LPS) proliferation of cells was affected by neonatal inflammation and neonatal LPS did not alter the behavior of young adult mice in the TFC test. These data highlight that neonatal inflammation specifically affects survival of dividing neurons and astrocytes, but not post-mitotic cells. The reduction in cell survival could be attributed to less cell survival in the dorsal hippocampus, but had no effect on learning and memory in the young adult.
Collapse
Affiliation(s)
- K Järlestedt
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
33
|
Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J Perinatol 2013; 33:558-64. [PMID: 23328927 DOI: 10.1038/jp.2012.167] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To study the impact of neonatal sepsis on the long-term neurodevelopmental outcome in very low birth weight (VLBW) infants. STUDY DESIGN Systematic review and meta-analysis of observational studies comparing neurodevelopmental outcomes in VLBW infants exposed to culture-proven sepsis in the neonatal period with similar infants without sepsis. RESULT Seventeen studies involving 15,331 infants were included in the meta-analysis. Sepsis in VLBW infants was associated with an increased risk of one or more long-term neurodevelopmental impairments (odds ratio (OR) 2.09; 95% confidence interval (CI) 1.65 to 2.65) including cerebral palsy (CP; OR 2.09; 95% CI 1.78 to 2.45). Heterogeneity (I(2)=36.9%; P=0.06) between the studies was significant and related to variations in patient characteristics, causative pathogens and follow-up methods. Sensitivity analyses based on study design, follow-up rate and year of birth were not significantly different from the overall analysis. CONCLUSION The meta-analysis suggests that sepsis in VLBW infants is associated with a worse neurodevelopmental outcome including higher incidence of CP.
Collapse
|
34
|
Ramanantsoa N, Fleiss B, Bouslama M, Matrot B, Schwendimann L, Cohen-Salmon C, Gressens P, Gallego J. Bench to cribside: the path for developing a neuroprotectant. Transl Stroke Res 2012; 4:258-77. [PMID: 24323277 DOI: 10.1007/s12975-012-0233-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 11/06/2012] [Accepted: 11/29/2012] [Indexed: 12/29/2022]
Abstract
The consequences of perinatal brain injury include immeasurable anguish for families and substantial ongoing costs for care and support of effected children. Factors associated with perinatal brain injury in the preterm infant include inflammation and infection, and with increasing gestational age, a higher proportion is related to hypoxic-ischemic events, such as stroke and placental abruption. Over the past decade, we have acquired new insights in the mechanisms underpinning injury and many new tools to monitor outcome in perinatal brain injury in our experimental models. By embracing these new technologies, we can expedite the screening of novel therapies. This is critical as despite enormous efforts of the research community, hypothermia is the only viable neurotherapeutic, and this procedure is limited to term birth and postcardiac arrest hypoxic-ischemic events. Importantly, experimental and preliminary data in humans also indicate a considerable therapeutic potential for melatonin against perinatal brain injury. However, even if this suggested potential is proven, the complexity of the human condition means we are likely to need additional neuroprotective and regenerative strategies. Thus, within this review, we will outline what we consider the key stages of preclinical testing and development for a neuroprotectant or regenerative neurotherapy for perinatal brain injury. We will also highlight examples of novel small animal physiological and behavioral testing that gives small animal preclinical models greater clinical relevance. We hope these new tools and an integrated bench to cribside strategic plan will facilitate the fulfillment of our overarching goal, improving the long-term brain health and quality of life for infants suffering perinatal brain injury.
Collapse
Affiliation(s)
- Nelina Ramanantsoa
- Inserm U676, Hopital Robert Debre, 48 Blvd Serurier, 75019, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Brehmer F, Bendix I, Prager S, van de Looij Y, Reinboth BS, Zimmermanns J, Schlager GW, Brait D, Sifringer M, Endesfelder S, Sizonenko S, Mallard C, Bührer C, Felderhoff-Mueser U, Gerstner B. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS One 2012; 7:e49023. [PMID: 23155446 PMCID: PMC3498343 DOI: 10.1371/journal.pone.0049023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022] Open
Abstract
Intrauterine infection and inflammation are major reasons for preterm birth. The switch from placenta-mediated to lung-mediated oxygen supply during birth is associated with a sudden rise of tissue oxygen tension that amounts to relative hyperoxia in preterm infants. Both infection/inflammation and hyperoxia have been shown to be involved in brain injury of preterm infants. Hypothesizing that they might be additive or synergistic, we investigated the influence of a systemic lipopolysaccharide (LPS) application on hyperoxia-induced white matter damage (WMD) in newborn rats. Three-day-old Wistar rat pups received 0.25 mg/kg LPS i.p. and were subjected to 80% oxygen on P6 for 24 h. The extent of WMD was assessed by immunohistochemistry, western blots, and diffusion tensor (DT) magnetic resonance imaging (MRI). In addition, the effects of LPS and hyperoxia were studied in an in vitro co-culture system of primary rat oligodendrocytes and microglia cells. Both noxious stimuli, hyperoxia, and LPS caused hypomyelination as revealed by western blot, immunohistochemistry, and altered WM microstructure on DT-MRI. Even so, cellular changes resulting in hypomyelination seem to be different. While hyperoxia induces cell death, LPS induces oligodendrocyte maturity arrest without cell death as revealed by TUNEL-staining and immunohistological maturation analysis. In the two-hit scenario cell death is reduced compared with hyperoxia treated animals, nevertheless white matter alterations persist. Concordantly with these in vivo findings we demonstrate that LPS pre-incubation reduced premyelinating-oligodendrocyte susceptibility towards hyperoxia in vitro. This protective effect might be caused by upregulation of interleukin-10 and superoxide dismutase expression after LPS stimulation. Reduced expression of transcription factors controlling oligodendrocyte development and maturation further indicates oligodendrocyte maturity arrest. The knowledge about mechanisms that triggered hypomyelination contributes to a better understanding of WMD in premature born infants.
Collapse
Affiliation(s)
- Felix Brehmer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mallard C. Innate immune regulation by toll-like receptors in the brain. ISRN NEUROLOGY 2012; 2012:701950. [PMID: 23097717 PMCID: PMC3477747 DOI: 10.5402/2012/701950] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/04/2012] [Indexed: 01/29/2023]
Abstract
The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized.
Collapse
Affiliation(s)
- Carina Mallard
- Institute for Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530 Gothenburg, Sweden
| |
Collapse
|
37
|
Wang LW, Tu YF, Huang CC, Ho CJ. JNK signaling is the shared pathway linking neuroinflammation, blood-brain barrier disruption, and oligodendroglial apoptosis in the white matter injury of the immature brain. J Neuroinflammation 2012; 9:175. [PMID: 22805152 PMCID: PMC3414763 DOI: 10.1186/1742-2094-9-175] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White matter injury is the major form of brain damage in very preterm infants. Selective white matter injury in the immature brain can be induced by lipopolysaccharide (LPS)-sensitized hypoxic-ischemia (HI) in the postpartum (P) day 2 rat pups whose brain maturation status is equivalent to that in preterm infants less than 30 weeks of gestation. Neuroinflammation, blood-brain barrier (BBB) damage and oligodendrocyte progenitor apoptosis may affect the susceptibility of LPS-sensitized HI in white matter injury. c-Jun N-terminal kinases (JNK) are important stress-responsive kinases in various forms of insults. We hypothesized that LPS-sensitized HI causes white matter injury through JNK activation-mediated neuroinflammation, BBB leakage and oligodendroglial apoptosis in the white matter of P2 rat pups. METHODS P2 pups received LPS (0.05 mg/kg) or normal saline injection followed by 90-min HI. Immunohistochemistry and immunoblotting were used to determine microglia activation, TNF-α, BBB damage, cleaved caspase-3, JNK and phospho-JNK (p-JNK), myelin basic protein (MBP), and glial fibrillary acidic protein (GFAP) expression. Immunofluorescence was performed to determine the cellular distribution of p-JNK. Pharmacological and genetic approaches were used to inhibit JNK activity. RESULTS P2 pups had selective white matter injury associated with upregulation of activated microglia, TNF-α, IgG extravasation and oligodendroglial progenitor apoptosis after LPS-sensitized HI. Immunohistochemical analyses showed early and sustained JNK activation in the white matter at 6 and 24 h post-insult. Immunofluorescence demonstrated upregulation of p-JNK in activated microglia, vascular endothelial cells and oligodendrocyte progenitors, and also showed perivascular aggregation of p-JNK-positive cells around the vessels 24 h post-insult. JNK inhibition by AS601245 or by antisense oligodeoxynucleotides (ODN) significantly reduced microglial activation, TNF-α immunoreactivity, IgG extravasation, and cleaved caspase-3 in the endothelial cells and oligodendrocyte progenitors, and also attenuated perivascular aggregation of p-JNK-positive cells 24 h post-insult. The AS601245 or JNK antisense ODN group had significantly increased MBP and decreased GFAP expression in the white matter on P11 than the vehicle or scrambled ODN group. CONCLUSIONS LPS-sensitized HI causes white matter injury through JNK activation-mediated upregulation of neuroinflammation, BBB leakage and oligodendrocyte progenitor apoptosis in the immature brain.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, 35 Hsiao-Tung Road, North District, 704, Tainan, Taiwan
- Department of Pediatrics, Chi Mei Medical Center, 901 Chung-Hua Road, Yung-Kang Disctrict, 710, Tainan, Taiwan
| | - Yi-Fang Tu
- Departments of Emergency Medicine, National Cheng Kung University College of Medicine and Hospital, 138 Sheng-Li Road, 704, Tainan, Taiwan
| | - Chao-Ching Huang
- Institute of Clinical Medicine, National Cheng Kung University College of Medicine, 35 Hsiao-Tung Road, North District, 704, Tainan, Taiwan
- Departments of Pediatrics, National Cheng Kung, University College of Medicine and Hospital, 138 Sheng-Li Road, 704, Tainan, Taiwan
| | - Chien-Jung Ho
- Departments of Pediatrics, National Cheng Kung, University College of Medicine and Hospital, 138 Sheng-Li Road, 704, Tainan, Taiwan
| |
Collapse
|
38
|
Grin’kina NM, Karnabi EE, Damania D, Wadgaonkar S, Muslimov IA, Wadgaonkar R. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 2012; 7:e36475. [PMID: 22615770 PMCID: PMC3355156 DOI: 10.1371/journal.pone.0036475] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 04/09/2012] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: • Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. • Sphingosine kinase 1 deletion worsens the effect of the LPS. • Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.
Collapse
Affiliation(s)
- Natalia M. Grin’kina
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Eddy E. Karnabi
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Dushyant Damania
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Sunil Wadgaonkar
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| | - Ilham A. Muslimov
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
| | - Raj Wadgaonkar
- SUNY Downstate Medical Center, Brooklyn, New York, United States of America
- Department of Research and Development VA Medical Center, Brooklyn, New York, United States of America
| |
Collapse
|
39
|
Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol 2012; 70:525-9. [PMID: 22028217 DOI: 10.1002/ana.22533] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Mallard C, Wang X. Infection-induced vulnerability of perinatal brain injury. Neurol Res Int 2011; 2012:102153. [PMID: 22135745 PMCID: PMC3216257 DOI: 10.1155/2012/102153] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/05/2011] [Indexed: 11/21/2022] Open
Abstract
A growing body of evidence demonstrates that susceptibility and progression of both acute and chronic central nervous system disease in the newborn is closely associated with an innate immune response that can manifest from either direct infection and/or infection-triggered damage. A common feature of many of these diseases is the systemic exposure of the neonate to bacterial infections that elicit brain inflammation. In recent years, the importance of innate immune receptors in newborn brain injury, the so-called Toll-like receptors, has been demonstrated. In this paper we will discuss how neonatal sepsis, with particular emphasis on Escherichia coli, coagulase-negative staphylococci, and group B streptococcal infections in preterm infants, and Toll-like receptor-mediated inflammation can increase the vulnerability of the newborn brain to injury.
Collapse
Affiliation(s)
- Carina Mallard
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, P.O. Box 432, 40530 Göteborg, Sweden
| | | |
Collapse
|
41
|
Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 2011; 25:1281-9. [PMID: 21473909 DOI: 10.1016/j.bbi.2011.03.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence supports the involvement of immune and inflammatory processes in the etiopathogenesis of seizures. In particular, activation of innate immune mechanisms and the subsequent inflammatory responses, that are induced in the brain by infection, febrile seizures, neurotrauma, stroke are well documented conditions associated with acute symptomatic seizures and with a high risk of developing epilepsy. A decade ago, pharmacological experiments showed that elevated brain levels of the anti-inflammatory molecule IL-1 receptor antagonist reduced seizures in epilepsy models. This observation, together with the evidence of in situ induction of inflammatory mediators and their receptors in experimental and human epileptogenic brain tissue, established the proof-of-concept evidence that the activation of innate immunity and inflammation in the brain are intrinsic features of the pathologic hyperexcitable tissue. Recent breakthroughs in understanding the molecular organization of the innate immune system first in macrophages, then in the different cell types of the CNS, together with pharmacological and genetic studies in epilepsy models, showed that the activation of IL-1 receptor/Toll-like receptor (IL-1R/TLR) signaling significantly contributes to seizures. IL-1R/TLR mediated pro-excitatory actions are elicited in the brain either by mimicking bacterial or viral infections and inflammatory responses, or via the action of endogenous ligands. These ligands include proinflammatory cytokines, such as IL-1beta, or danger signals, such as HMGB1, released from activated or injured cells. The IL-1R/TLR signaling mediates rapid post-translational changes in voltage- and ligand-gated ion channels that increase excitability, and transcriptional changes in genes involved in neurotransmission and synaptic plasticity that contribute to lower seizure thresholds chronically. The anticonvulsant effects of inhibitors of the IL-1R/TLR signaling in various seizures models suggest that this system could be targeted to inhibit seizures in presently pharmaco-resistant epilepsies.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Via G. La Masa 19, 20156 Milano, Italy.
| | | | | | | | | |
Collapse
|
42
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. Reprint of "The developing oligodendrocyte: key cellular target in brain injury in the premature infant". Int J Dev Neurosci 2011; 29:565-82. [PMID: 21802506 DOI: 10.1016/j.ijdevneu.2011.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
43
|
Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathol 2011; 121:675-93. [PMID: 21562886 DOI: 10.1007/s00401-011-0833-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are adult onset neurodegenerative disorders characterised by prominent intracellular α-synuclein aggregates (α-synucleinopathies). The glial contribution to neurodegeneration in α-synucleinopathies was largely underestimated until recently. However, brains of PD and DLB patients exhibit not only neuronal inclusions such as Lewy bodies or Lewy neurites but also glial α-synuclein aggregates. Accumulating experimental evidence in PD models suggests that astrogliosis and microgliosis act as important mediators of neurodegeneration playing a pivotal role in both disease initiation and progression. In MSA, oligodendrocytes are intriguingly affected by aberrant cytoplasmic accumulation of α-synuclein (glial cytoplasmic inclusions, Papp-Lantos bodies). Converging evidence from human postmortem studies and transgenic MSA models suggests that oligodendroglial dysfunction both triggers and exacerbates neuronal degeneration. This review summarises the wide range of responsibilities of astroglia, microglia and oligodendroglia in the healthy brain and the changes in glial function associated with ageing. We then provide a critical analysis of the role of glia in α-synucleinopathies including putative mechanisms promoting a chronically diseased glial microenvironment which can lead to detrimental neuronal changes, including cell loss. Finally, major therapeutic strategies targeting glial pathology in α-synucleinopathies as well as current pitfalls for disease-modification in clinical trials are discussed.
Collapse
|
44
|
Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29:423-40. [PMID: 21382469 DOI: 10.1016/j.ijdevneu.2011.02.012] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/10/2011] [Accepted: 02/27/2011] [Indexed: 01/16/2023] Open
Abstract
Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon.
Collapse
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
45
|
Kendall GS, Hristova M, Hirstova M, Horn S, Dafou D, Acosta-Saltos A, Almolda B, Zbarsky V, Rumajogee P, Heuer H, Castellano B, Pfeffer K, Nedospasov SA, Peebles DM, Raivich G. TNF gene cluster deletion abolishes lipopolysaccharide-mediated sensitization of the neonatal brain to hypoxic ischemic insult. J Transl Med 2011; 91:328-41. [PMID: 21135813 DOI: 10.1038/labinvest.2010.192] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the current study, we explored the role of TNF cluster cytokines on the lipopolysaccharide (LPS)-mediated, synergistic increase in brain injury after hypoxic ischemic insult in postnatal day 7 mice. Pretreatment with moderate doses of LPS (0.3 μg/g) resulted in particularly pronounced synergistic injury within 12 h. Systemic application of LPS alone resulted in a strong upregulation of inflammation-associated cytokines TNFα, LTβ, interleukin (IL) 1β, IL6, chemokines, such as CXCL1, and adhesion molecules E-Selectin, P-Selectin and intercellular adhesion molecule-1 (ICAM1), as well as a trend toward increased LTα levels in day 7 mouse forebrain. In addition, it was also associated with strong activation of brain blood vessel endothelia and local microglial cells. Here, deletion of the entire TNF gene cluster, removing TNFα, LTβ and LTα completely abolished endotoxin-mediated increase in the volume of cerebral infarct. Interestingly, the same deletion also prevented endothelial and microglial activation following application of LPS alone, suggesting the involvement of these cell types in bringing about the LPS-mediated sensitization to neonatal brain injury.
Collapse
Affiliation(s)
- Giles S Kendall
- Perinatal Brain Repair Group, Centre for Perinatal Brain Protection and Repair, Institute of Women's Health, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang L, Sameshima H, Ikenoue T. Changes in heart rate patterns by lipopolysaccharide and intermittent hypoxia-ischemia in 7-day-old rats. J Obstet Gynaecol Res 2010; 36:1102-7. [DOI: 10.1111/j.1447-0756.2010.01273.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010; 24:776-83. [PMID: 19903519 DOI: 10.1016/j.bbi.2009.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 02/06/2023] Open
Abstract
Although the role of microglial activation in neural injury remains controversial, there is increasing evidence for a detrimental effect in the immature brain, which may occur in response to release of neurotoxic substances including pro-inflammatory cytokines. However, the signaling mechanisms involved in microglial-induced neuronal cell death are unclear. Microglia isolated from the brains of wild-type (WT) or MyD88 knockout (KO) mice were exposed to PBS or the TLR4-ligand LPS (100 ng/mL) for 2, 6, 14, or 24 h, and the microglia-conditioned medium (MCM) collected. Detection of multiple inflammatory molecules in MCM was performed using a mouse 22-plex cytokine microbead array kit. Primary neuronal cultures were supplemented with the 14 or 24 h MCM, and the degree of neuronal apoptosis examined after exposure for 24 h. Results showed a rapid and sustained elevation in multiple inflammatory mediators in the MCM of WT microglia exposed to LPS, which was largely inhibited in MyD88 KO microglia. There was a significant increase in apoptotic death measured at 24 h in cultured neurons exposed to CM from either 14 or 24 h LPS-stimulated WT microglia (p<.05 vs. WT control). By contrast, there was no increase in apoptotic death in cultured neurons exposed to CM from 14 or 24 h LPS-stimulated MyD88 KO microglia (p=.15 vs. MyD88 KO control). These data suggest that MyD88-dependent activation of microglia by LPS causes release of factors directly toxic to neurons.
Collapse
|
48
|
Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H, Mallard C. Lipopolysaccharide Sensitizes Neonatal Hypoxic-Ischemic Brain Injury in a MyD88-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2009; 183:7471-7. [DOI: 10.4049/jimmunol.0900762] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Tyagi E, Agrawal R, Nath C, Shukla R. Cholinergic protection via alpha7 nicotinic acetylcholine receptors and PI3K-Akt pathway in LPS-induced neuroinflammation. Neurochem Int 2009; 56:135-42. [PMID: 19781587 DOI: 10.1016/j.neuint.2009.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 12/14/2022]
Abstract
The present study was planned to investigate the effect of anti-cholinesterase drugs donepezil and neostigmine on neuroinflammation induced by intracerebroventricular administration of lipopolysaccharide (LPS, 50 microg) in rat. Proinflammatory cytokines (TNF-alpha and IL-1beta), expressions of iNOS and COX-2, acetylcholinesterase activity, malondialdehyde and reduced glutathione were studied in different brain regions at 24h of LPS injection. Donepezil was found to decrease the LPS-induced AChE activity and oxidative stress in all the brain regions. It also inhibited the LPS-induced proinflammatory cytokines and iNOS expression but did not affect the increased COX-2 expression whereas neostigmine treatment had no effect on LPS-induced proinflammatory cytokines. Methyllycaconitine (MLA), a alpha7 nicotinic acetylcholine receptor antagonist, significantly antagonized the donepezil mediated inhibition of LPS-induced proinflammatory cytokines, indicating that alpha7 nicotinic acetylcholine receptor subunit was playing a role in regulation of neuroinflammation. The phosphorylation of Akt, an effector of PI3K, increased with donepezil treatment. These results suggest that increased cholinergic activity in brain by donepezil prevents LPS-induced neuroinflammation via alpha7-nAChRs, followed by the PI3K-Akt pathway and this system may form the basis for the development of novel agents for reversing neuroinflammation or provide new indications for existing drugs.
Collapse
Affiliation(s)
- Ethika Tyagi
- Division of Pharmacology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
50
|
Abstract
In most cases of neonatal hypoxic-ischemic encephalopathy, the exact timing of the hypoxic-ischemic event is unknown, and we have few reliable biomarkers to precisely identify the phase of injury or recovery in an individual patient. However, it is becoming increasingly clear that for neuroprotection in neonates to succeed, an understanding of the phase of injury is important to ascertain. In addition, in utero antecedents of chronic hypoxia, hypoxic preconditioning, intrauterine infection, and fetal gender may change the expected time course of injury. Neuroprotective interventions, such as hypothermia and N-acetylcysteine, currently have efficacy in human and animal studies only if instituted early in the inflammatory cascade. Although these cascades are currently being investigated, molecular mechanisms of recovery have received little attention and may ultimately reveal a window for therapeutic intervention that is much longer than current paradigms.
Collapse
Affiliation(s)
- Dorothea D. Jenkins
- Department of Pediatrics Medical University of South Carolina, Charleston, South Carolina
| | - Eugene Chang
- Department of Obstetrics and Gynecology Medical University of South Carolina, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|