1
|
Takeuchi Y, Fukunaga M, Iwatani S, Miyanaga K, Adachi T, Yamamoto N. Release of an anti-anxiety peptide in casein hydrolysate with Aspergillus oryzae protease. Food Funct 2022; 13:10449-10460. [PMID: 36129023 DOI: 10.1039/d2fo01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food protein-derived peptides with agonistic effects on receptors have great potential for treating anxiety, hypertension, and stress. In the present study, opioid peptides with agonistic activities for δ-receptor-expressing HEK293 cells were screened from casein hydrolysates prepared with five types of food grade proteolytic enzymes, among which casein hydrolysate with Aspergillus oryzae protease ASD showed the highest opioid activity. Eluted fractions showing potent opioid activity were further purified for active peptides by reverse phase-HPLC. The peptide in the active fraction was identified as YPFPGPIPNS, a member of β-casomorphin (CM-10) (β-casein 60-69). Various CM-10 derivative peptides were synthesized and their characteristic features for specificities towards δ- and μ-receptors were determined. Peptides 5 to 12 amino acids long showed relatively higher opioid activities for δ- and μ-receptors. CM-10 was docked into the optimized δ-receptor model. The CDOCKER energies of the CM-10 derivatives were consistent with their opioid activities. In the elevated plus-maze study, CM-10 showed a significant anti-anxiety effect in BALB/c mice at a dose of 10 mg per kg body weight when administered orally, but not via intravenous injection. Furthermore, intravital imaging revealed that Ca2+ signaling was induced in the small intestinal villi of a Yellow Cameleon 3.60 (YC3.60)-expressing mouse upon injection with CM-10. However, this decreased in the presence of δ- or μ-receptor antagonists. These results suggest that the opioid peptide CM-10 prepared from casein with ASD has an anti-anxiety effect through interaction with gut δ- and/or μ-opioid receptors in the mouse gut.
Collapse
Affiliation(s)
- Yui Takeuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Moe Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Tsukuba Biotechnology Research Center, 5-2-3, Tokodai, Tsukuba-shi, Ibaraki 300-2698, Japan
| | - Kazuhiko Miyanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan. .,Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
2
|
Cox BM, Toll L. Contributions of the International Narcotics Research Conference to Opioid Research Over the Past 50 years. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10115. [PMID: 38390618 PMCID: PMC10880772 DOI: 10.3389/adar.2022.10115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 02/24/2024]
Abstract
The International Narcotics Research Conference (INRC), founded in 1969, has been a successful forum for research into the actions of opiates, with an annual conference since 1971. Every year, scientists from around the world have congregated to present the latest data on novel opiates, opiate receptors and endogenous ligands, mechanisms of analgesic activity and unwanted side effects, etc. All the important discoveries in the opiate field were discussed, often first, at the annual INRC meeting. With an apology to important events and participants not discussed, this review presents a short history of INRC with a discussion of groundbreaking discoveries in the opiate field and the researchers who presented from the first meeting up to the present.
Collapse
Affiliation(s)
- Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
3
|
Kuroda Y, Nonaka M, Kamikubo Y, Ogawa H, Murayama T, Kurebayashi N, Sakairi H, Miyano K, Komatsu A, Dodo T, Nakano-Ito K, Yamaguchi K, Sakurai T, Iseki M, Hayashida M, Uezono Y. Inhibition of endothelin A receptor by a novel, selective receptor antagonist enhances morphine-induced analgesia: Possible functional interaction of dimerized endothelin A and μ-opioid receptors. Biomed Pharmacother 2021; 141:111800. [PMID: 34175819 DOI: 10.1016/j.biopha.2021.111800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with μ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and μ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/μ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and μ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/μ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.
Collapse
Affiliation(s)
- Yui Kuroda
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Kamikubo
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Haruo Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hakushun Sakairi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akane Komatsu
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsushi Dodo
- Strategy Planning & Operations, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Kyoko Nakano-Ito
- Global Drug Safety, Medicine Development Center, Eisai Co., Ltd., Ibaraki, Japan
| | - Keisuke Yamaguchi
- Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, Tokyo, Japan; Department of Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; Supportive and Palliative Care Research Support Office, National Center Hospital East, Chiba, Japan; Project for Supportive Care Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
4
|
Sadee W, Oberdick J, Wang Z. Biased Opioid Antagonists as Modulators of Opioid Dependence: Opportunities to Improve Pain Therapy and Opioid Use Management. Molecules 2020; 25:E4163. [PMID: 32932935 PMCID: PMC7571197 DOI: 10.3390/molecules25184163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Opioid analgesics are effective pain therapeutics but they cause various adverse effects and addiction. For safer pain therapy, biased opioid agonists selectively target distinct μ opioid receptor (MOR) conformations, while the potential of biased opioid antagonists has been neglected. Agonists convert a dormant receptor form (MOR-μ) to a ligand-free active form (MOR-μ*), which mediates MOR signaling. Moreover, MOR-μ converts spontaneously to MOR-μ* (basal signaling). Persistent upregulation of MOR-μ* has been invoked as a hallmark of opioid dependence. Contrasting interactions with both MOR-μ and MOR-μ* can account for distinct pharmacological characteristics of inverse agonists (naltrexone), neutral antagonists (6β-naltrexol), and mixed opioid agonist-antagonists (buprenorphine). Upon binding to MOR-μ*, naltrexone but not 6β-naltrexol suppresses MOR-μ*signaling. Naltrexone blocks opioid analgesia non-competitively at MOR-μ*with high potency, whereas 6β-naltrexol must compete with agonists at MOR-μ, accounting for ~100-fold lower in vivo potency. Buprenorphine's bell-shaped dose-response curve may also result from opposing effects on MOR-μ and MOR-μ*. In contrast, we find that 6β-naltrexol potently prevents dependence, below doses affecting analgesia or causing withdrawal, possibly binding to MOR conformations relevant to opioid dependence. We propose that 6β-naltrexol is a biased opioid antagonist modulating opioid dependence at low doses, opening novel avenues for opioid pain therapy and use management.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Aether Therapeutics Inc., 4200 Marathon Blvd. Austin, TX 78756, USA
- Pain and Addiction Research Center, University of California San Francisco, San Francisco, CA 94158, USA
| | - John Oberdick
- Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Zaijie Wang
- Departments of Pharmaceutical Sciences and Neurology, University of Illinois at Chicago. Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Dietis N, Niwa H, Tose R, McDonald J, Ruggieri V, Filaferro M, Vitale G, Micheli L, Ghelardini C, Salvadori S, Calo G, Guerrini R, Rowbotham DJ, Lambert DG. In vitro and in vivo characterization of the bifunctional μ and δ opioid receptor ligand UFP-505. Br J Pharmacol 2018; 175:2881-2896. [PMID: 29524334 PMCID: PMC6016625 DOI: 10.1111/bph.14199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Targeting more than one opioid receptor type simultaneously may have analgesic advantages in reducing side-effects. We have evaluated the mixed μ opioid receptor agonist/ δ opioid receptor antagonist UFP-505 in vitro and in vivo. EXPERIMENTAL APPROACH We measured receptor density and function in single μ, δ and μ /δ receptor double expression systems. GTPγ35 S binding, cAMP formation and arrestin recruitment were measured. Antinociceptive activity was measured in vivo using tail withdrawal and paw pressure tests following acute and chronic treatment. In some experiments, we collected tissues to measure receptor densities. KEY RESULTS UFP-505 bound to μ receptors with full agonist activity and to δ receptors as a low efficacy partial agonist At μ, but not δ receptors, UFP-505 binding recruited arrestin. Unlike morphine, UFP-505 treatment internalized μ receptors and there was some evidence for internalization of δ receptors. Similar data were obtained in a μ /δ receptor double expression system. In rats, acute UFP-505 or morphine, injected intrathecally, was antinociceptive. In tissues harvested from these experiments, μ and δ receptor density was decreased after UFP-505 but not morphine treatment, in agreement with in vitro data. Both morphine and UFP-505 induced significant tolerance. CONCLUSIONS AND IMPLICATIONS In this study, UFP-505 behaved as a full agonist at μ receptors with variable activity at δ receptors. This bifunctional compound was antinociceptive in rats after intrathecal administration. In this model, dual targeting provided no advantages in terms of tolerance liability. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - H Niwa
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - R Tose
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - J McDonald
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - V Ruggieri
- Department of Oncology Haematology and Respiratory DiseasesUniversity of Modena and Reggio EmiliaModenaItaly
| | - M Filaferro
- Department of Biomedical, Metabolic and Neuro‐SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - G Vitale
- Section of Pharmacology, Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - L Micheli
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - C Ghelardini
- Department of Preclinical and Clinical PharmacologyUniversity of FlorenceFlorenceItaly
| | - S Salvadori
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - G Calo
- Department of Experimental and Clinical Medicine, Section of PharmacologyUniversity of FerraraFerraraItaly
| | - R Guerrini
- Department of Pharmaceutical SciencesUniversity of FerraraFerraraItaly
| | - D J Rowbotham
- Department of Health SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| | - D G Lambert
- Department of Cardiovascular SciencesUniversity of Leicester, Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal InfirmaryLeicesterUK
| |
Collapse
|
6
|
Garg S, Apostolopoulos V, Nurgali K, Mishra VK. Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
7
|
Vardanyan RS, Cain JP, Haghighi SM, Kumirov VK, McIntosh MI, Sandweiss AJ, Porreca F, Hruby VJ. Synthesis and Investigation of Mixed μ-Opioid and δ-Opioid Agonists as Possible Bivalent Ligands for Treatment of Pain. J Heterocycl Chem 2017; 54:1228-1235. [PMID: 28819330 PMCID: PMC5557416 DOI: 10.1002/jhet.2696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have suggested functional association between μ-opioid and δ-opioid receptors and showed that μ-activity could be modulated by δ-ligands. The general conclusion is that agonists for the δ-receptor can enhance the analgesic potency and efficacy of μ-agonists. Our preliminary investigations demonstrate that new bivalent ligands constructed from the μ-agonist fentanyl and the δ-agonist enkephalin-like peptides are promising entities for creation of new analgesics with reduced side effects for treatment of neuropathic pain. A new superposition of the mentioned pharmacophores led to novel μ-bivalent/δ-bivalent compounds that demonstrate both μ-opioid and δ-opioid receptor agonist activity and high efficacy in anti-inflammatory and neuropathic pain models with the potential of reduced unwanted side effects.
Collapse
Affiliation(s)
- Ruben S. Vardanyan
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | | | - Vlad K. Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| | - Mary I. McIntosh
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Alexander J. Sandweiss
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, US
| |
Collapse
|
8
|
Mercadante S, Bruera E. Opioid switching in cancer pain: From the beginning to nowadays. Crit Rev Oncol Hematol 2016; 99:241-8. [DOI: 10.1016/j.critrevonc.2015.12.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 11/15/2022] Open
|
9
|
High-dose pentazocine antagonizes the antinociception induced by high-dose morphine. Life Sci 2015; 130:1-6. [DOI: 10.1016/j.lfs.2015.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 01/26/2023]
|
10
|
Mudgal A, Pasha S. Role of opioid receptor heterodimerization in pain modulation and tolerance development. World J Pharmacol 2015; 4:144-159. [DOI: 10.5497/wjp.v4.i1.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/09/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Protein to protein interactions leading to homo/heteromerization of receptor is well documented in literature. These interactions leading to dimeric/oligomers formation of receptors are known to modulate their function, particularly in case of G-protein coupled receptors. The opioid receptor heteromers having changed pharmacological properties than the constituent protomers provides preferences for novel drug targets that could lead to potential analgesic activity devoid of tolerance and physical dependence. Heterodimerization of opioid receptors appears to generate novel binding properties with improved specificity and lack of side effects. Further the molecules which can interact simultaneously to both the protomers of the heteromer, or to both the binding sites (orthosteric and allosteric) of a receptor protein could be potential therapeutic molecules. This review highlights the recent advancements in exploring the plausible role of heteromerization of opioid receptors in induction of tolerance free antinociception.
Collapse
|
11
|
Synthesis and biological evaluations of novel endomorphin analogues containing α-hydroxy-β-phenylalanine (AHPBA) displaying mixed μ/δ opioid receptor agonist and δ opioid receptor antagonist activities. Eur J Med Chem 2015; 92:270-81. [DOI: 10.1016/j.ejmech.2014.12.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/28/2014] [Indexed: 12/29/2022]
|
12
|
Opioid Receptor Gene Expression in Human Neuroblastoma SH-SY5Y Cells Following Tapentadol Exposure. J Mol Neurosci 2014; 53:669-76. [DOI: 10.1007/s12031-014-0235-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/13/2014] [Indexed: 12/31/2022]
|
13
|
Milne B, Jhamandas K, Sutak M, Grenier P, Cahill CM. Stereo-selective inhibition of spinal morphine tolerance and hyperalgesia by an ultra-low dose of the alpha-2-adrenoceptor antagonist efaroxan. Eur J Pharmacol 2013; 702:227-34. [DOI: 10.1016/j.ejphar.2013.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
14
|
Szentirmay AK, Király KP, Lenkey N, Lackó E, Al-Khrasani M, Friedmann T, Timár J, Gyarmati S, Tóth G, Fürst S, Riba P. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice. Brain Res Bull 2012; 90:66-71. [PMID: 22995282 DOI: 10.1016/j.brainresbull.2012.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 12/11/2022]
Abstract
Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like DPDPE may facilitate the dimer formation hence inhibit the antinociceptive effect of DAMGO by causing virtual μ receptor down-regulation. Ligands that do not affect the dimer formation do not influence antinociception either but ligands with the presumed capability of disconnecting the dimers may decrease the spinal tolerance to DAMGO.
Collapse
Affiliation(s)
- A K Szentirmay
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad Tér 4, P.O. Box 370, H-1445 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Le Naour M, Lunzer MM, Powers MD, Portoghese PS. Opioid activity of spinally selective analogues of N-naphthoyl-β-naltrexamine in HEK-293 cells and mice. J Med Chem 2012; 55:670-7. [PMID: 22136373 PMCID: PMC3438918 DOI: 10.1021/jm200902v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the selective mu-kappa agonist, N-naphthoyl-β-naltrexamine 1, as the prototype ligand, a series of closely related naphthalene analogues were synthesized to study the chemical space around the naphthalene moiety in an effort to evaluate how receptor selectivity is affected by chemical modification. Nine analogues (2-10) of compound 1 were synthesized and tested on HEK-293 cells expressing homomeric and heteromeric opioid receptors, and in the mouse tail-flick assay. It was found that a small change in structure produces profound changes in selectivity in this series. This is exemplified by the discovery that introduction of a 6-fluoro group transforms 1 from a selective mu-kappa heteromeric receptor agonist to a delta-preferring agonist 7. The in vivo studies reveal that many of the ligands are more potent spinally than supraspinally and devoid of tolerance.
Collapse
MESH Headings
- Analgesics/chemical synthesis
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Calcium/metabolism
- Drug Partial Agonism
- Drug Tolerance
- Female
- HEK293 Cells
- Humans
- Injections, Spinal
- Ligands
- Male
- Mice
- Mice, Inbred ICR
- Mice, Knockout
- Naltrexone/analogs & derivatives
- Naltrexone/chemical synthesis
- Naltrexone/chemistry
- Naltrexone/pharmacology
- Protein Multimerization
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Morgan Le Naour
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mike D. Powers
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Audet N, Archer-Lahlou E, Richard-Lalonde M, Piñeyro-Filpo G. [Functional selectivity of opioid receptors ligands]. Med Sci (Paris) 2010; 26:734-9. [PMID: 20819711 DOI: 10.1051/medsci/2010268-9734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.
Collapse
Affiliation(s)
- Nicolas Audet
- Départements de pharmacologie et de psychiatrie, Université de Montréal, Montréal, Canada
| | | | | | | |
Collapse
|
17
|
Kumar K, Kumar S, Kurupati RK, Seth MK, Mohan A, Hussain ME, Pasha S. Intracellular cAMP assay and Eu-GTP-γS binding studies of chimeric opioid peptide YFa. Eur J Pharmacol 2010; 650:28-33. [PMID: 20887721 DOI: 10.1016/j.ejphar.2010.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
Abstract
In our previous studies chimeric peptide of Met-enkephalin and FMRFa, YGGFMKKKFMRFamide (YFa), demonstrated concentration dependent κ- and μ-opioid receptor mediated antinociception without tolerance development. To gain further insight of the observed behavior of YFa, the present study was undertaken. The effect of chimeric peptide on forskolin-stimulated cAMP formation under acute and chronic treatment and stimulation of Eu-GTP-γS binding in CHO cells stably expressing κ- and μ-opioid receptors was assessed. YFa showed concentration dependent inhibition of forskolin-stimulated cAMP in both hKOR and hMOR-CHO cells; however, the inhibition at 1nM was significantly higher in hKOR cells and comparable to DynA (1-13) than that shown at 20nM in hMOR cells. Chronic treatment of YFa, similar to DynA (1-13), did not show significant change in forskolin-stimulated cAMP level in both hKOR and hMOR cells. However, chronic treatment of morphine and DAMGO showed an increase in forskolin-stimulated cAMP level in hMOR-CHO cells indicating superactivation of adenylyl cyclase. Eu-GTP-γS binding studies of YFa showed a concentration dependent adherent binding with κ- and μ-opioid receptors; however, the latter demonstrated significant binding at higher concentration. Thus the study indicates the chimeric opioid peptide YFa as a potent κ- receptor specific antinociceptive moiety, showing no tolerance and hence may serve as a lead in understanding the mechanism of tolerance development, antinociception and its modulation.
Collapse
Affiliation(s)
- Krishan Kumar
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Davis MP. Opioid receptor targeting ligands for pain management: a review and update. Expert Opin Drug Discov 2010; 5:1007-22. [DOI: 10.1517/17460441.2010.511473] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Hipser C, Bushlin I, Gupta A, Gomes I, Devi LA. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers. THE MOUNT SINAI JOURNAL OF MEDICINE, NEW YORK 2010; 77:374-80. [PMID: 20687183 PMCID: PMC2917817 DOI: 10.1002/msj.20199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
G-protein-coupled receptors are important molecular targets in drug discovery. These receptors play a pivotal role in physiological signaling pathways and are targeted by nearly 50% of currently available drugs. Mounting evidence suggests that G-protein-coupled receptors form dimers, and various studies have shown that dimerization is necessary for receptor maturation, signaling, and trafficking. However, the physiological implications of dimerization in vivo have not been well explored because detection of GPCR dimers in endogenous systems has been a challenging task. One exciting new approach to this challenge is the generation of antibodies against specific G-protein-coupled receptor dimers. Such antibodies could be used as tools for characterization of heteromer-specific function; as reagents for their purification, tissue localization, and regulation in vivo; and as probes for mapping their functional domains. In addition, such antibodies could serve as alternative ligands for G-protein-coupled receptor heteromers. Thus, heteromer-specific antibodies represent novel tools for the exploration and manipulation of G-protein-coupled receptor-dimer pharmacology.
Collapse
Affiliation(s)
- Chris Hipser
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
20
|
Kersanté F, Moulédous L, Zajac JM, Mollereau C. Modulation by neuropeptide FF of the interaction of mu-opioid (MOP) receptor with G-proteins. Neurochem Int 2010; 56:768-73. [PMID: 20211672 DOI: 10.1016/j.neuint.2010.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/23/2010] [Indexed: 01/30/2023]
Abstract
The Neuropeptide FF (NPFF) system is known to modulate the effects of opioids in vivo and in vitro. In the present study, we have investigated the effect of NPFF agonists on the coupling of the Mu-opioid (MOP) receptor to G-proteins in a model of SH-SY5Y cells transfected with NPFF(2) receptor, in which the neuronal anti-opioid activity of NPFF was previously reproduced. Activation of G-proteins was monitored by [(35)S]GTPgammaS binding assay and analysis of G-protein subunits associated with MOP receptors was performed by Western blotting after immunoprecipitation of the receptor. The results demonstrate that concentrations of NPFF agonists that produce a cellular anti-opioid effect, did not affect the ability of the opioid agonist DAMGO to activate G-proteins. However, at saturating concentration of agonist or when expression of receptor was high, opioid and NPFF agonists did not stimulate [(35)S]GTPgammaS binding in an additive manner, indicating that both receptors share a common fraction of a G-protein pool. In addition, stimulation of NPFF receptors in living cells modified the G-protein environment of MOP receptor by favoring its interaction with alpha(s), alpha(i2) and beta subunits. This change in G-protein coupling to MOP receptor might participate in the mechanism by which NPFF agonists reduce the inhibitory activity of opioids.
Collapse
Affiliation(s)
- Flavie Kersanté
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale), Université de Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
21
|
Kapoor N, Menon ST, Chauhan R, Sachdev P, Sakmar TP. Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J Mol Biol 2009; 393:882-97. [PMID: 19703466 DOI: 10.1016/j.jmb.2009.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
Abstract
Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5'-diphosphate (GDP) release by the G protein alpha-subunit is not well understood. Amino acid substitutions in the conserved alpha5 helix of G(i), which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant Galpha(i1)-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of Galpha(i1)-T329A.GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg(+2) coordination sphere and dislodge bound Mg(+2). We propose a "sequential release" mechanism whereby a transient conformational change in the alpha5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.
Collapse
Affiliation(s)
- Neeraj Kapoor
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
22
|
From taste hedonics to motivational drive: central μ-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol 2009; 12:995-1008. [PMID: 19433009 DOI: 10.1017/s146114570900039x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Endogenous opioids and μ-opioid receptors (MORs) have long been implicated in the mechanism of appetite control and, in particular, hedonic processes associated with food evaluation, consumption and orosensory reward processes. In animal models of binge eating, selective MOR antagonists suppress food consumption. In humans, non-selective opioid receptor antagonists reduce hedonic taste preferences and food intake, particularly for palatable foods, and cause short-term weight loss. These effects have been linked to direct stimulation of MORs and modulation of dopamine release within the reward circuitry including the nucleus accumbens. These findings suggest that reduction of MOR-mediated hedonic and motivation processes driving consumption of highly palatable foods may be a promising therapeutic approach and provide a strong rationale for developing safer and more selective MOR antagonists or inverse agonists for disorders of 'appetitive motivation' including obesity and binge-eating disorder.
Collapse
|
23
|
Dietis N, Guerrini R, Calo G, Salvadori S, Rowbotham D, Lambert D. Simultaneous targeting of multiple opioid receptors: a strategy to improve side-effect profile. Br J Anaesth 2009; 103:38-49. [DOI: 10.1093/bja/aep129] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery? Life Sci 2009; 86:590-7. [PMID: 19465029 DOI: 10.1016/j.lfs.2009.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/07/2009] [Accepted: 05/14/2009] [Indexed: 01/06/2023]
Abstract
For years, conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor-receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor-receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions.
Collapse
|
25
|
|
26
|
Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology 2009; 34:887-98. [PMID: 18704097 PMCID: PMC2639630 DOI: 10.1038/npp.2008.128] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies in experimental animals have shown that individuals exhibiting enhanced sensitivity to the locomotor-activating and rewarding properties of drugs of abuse are at increased risk for the development of compulsive drug-seeking behavior. The purpose of the present study was to assess the effect of constitutive deletion of delta-opioid receptors (DOPr) on the rewarding properties of morphine as well as on the development of sensitization and tolerance to the locomotor-activating effects of morphine. Locomotor activity testing revealed that mice lacking DOPr exhibit an augmentation of context-dependent sensitization following repeated, alternate injections of morphine (20 mg/kg; s.c.; 5 days). In contrast, the development of tolerance to the locomotor-activating effects of morphine following chronic morphine administration (morphine pellet: 25 mg: 3 days) is reduced relative to WT mice. The conditioned rewarding effects of morphine were reduced significantly in DOPrKO mice as compared to WT controls. Similar findings were obtained in response to pharmacological inactivation of DOPr in WT mice, indicating that observed effects are not due to developmental adaptations that occur as a consequence of constitutive deletion of DOPr. Together, these findings indicate that the endogenous DOPr system is recruited in response to both repeated and chronic morphine administration and that this recruitment serves an essential function in the development of tolerance, behavioral sensitization, and the conditioning of opiate reward. Importantly, they demonstrate that DOPr has a distinct role in the development of each of these drug-induced adaptations. The anti-rewarding and tolerance-reducing properties of DOPr antagonists may offer new opportunities for the treatment and prevention of opioid dependence as well as for the development of effective analgesics with reduced abuse liability.
Collapse
|
27
|
Zheng Y, Akgün E, Harikumar KG, Hopson J, Powers MD, Lunzer MM, Miller LJ, Portoghese PS. Induced association of mu opioid (MOP) and type 2 cholecystokinin (CCK2) receptors by novel bivalent ligands. J Med Chem 2009; 52:247-58. [PMID: 19113864 DOI: 10.1021/jm800174p] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both mu-opioid (MOP) and type 2 cholecystokinin (CCK2) receptors are present in areas of the central nervous system that are involved in modulation of pain processing. We conducted bioluminescence resonance energy transfer (BRET) studies on COS cells coexpressing MOP and CCK2 receptors to determine whether receptor heterodimerization is involved in such modulation. These studies revealed the absence of constitutive or monovalent ligand-induced heterodimerization. Heterodimerization of MOP and CCK2 receptors therefore is unlikely to be responsible for the opposing effects between morphine and CCK in the CNS. However, association was induced, as indicated by a positive BRET signal, on exposure of the cells to bivalent ligands containing mu-opioid agonist and CCK2 receptor antagonist pharmacophores linked through spacers containing 16-22 atoms but not with a shorter (9-atom) spacer. These studies demonstrate for the first time that an appropriately designed bivalent ligand is capable of inducing association of G-protein-coupled receptors. The finding that opioid tolerance studies with these ligands in mice showed no correlation with the BRET data is consistent with the absence of association of MOP and CCK2 receptors in vivo.
Collapse
Affiliation(s)
- Yaguo Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Labuz D, Schmidt Y, Schreiter A, Rittner HL, Mousa SA, Machelska H. Immune cell-derived opioids protect against neuropathic pain in mice. J Clin Invest 2009; 119:278-86. [PMID: 19139563 DOI: 10.1172/jci36246] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 11/19/2008] [Indexed: 12/26/2022] Open
Abstract
The analgesic effects of leukocyte-derived opioids have been exclusively demonstrated for somatic inflammatory pain, for example, the pain associated with surgery and arthritis. Neuropathic pain results from injury to nerves, is often resistant to current treatments, and can seriously impair a patient's quality of life. Although it has been recognized that neuronal damage can involve inflammation, it is generally assumed that immune cells act predominately as generators of neuropathic pain. However, in this study we have demonstrated that leukocytes containing opioids are essential regulators of pain in a mouse model of neuropathy. About 30%-40% of immune cells that accumulated at injured nerves expressed opioid peptides such as beta-endorphin, Met-enkephalin, and dynorphin A. Selective stimulation of these cells by local application of corticotropin-releasing factor led to opioid peptide-mediated activation of opioid receptors in damaged nerves. This ultimately abolished tactile allodynia, a highly debilitating heightened response to normally innocuous mechanical stimuli, which is symptomatic of neuropathy. Our findings suggest that selective targeting of opioid-containing immune cells promotes endogenous pain control and offers novel opportunities for management of painful neuropathies.
Collapse
Affiliation(s)
- Dominika Labuz
- Klinik für Anaesthesiologie und operative Intensivmedizin, Freie Universität Berlin, Medizinische Fakultät Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Modulation of opioids via protection of anandamide degradation by fatty acid amide hydrolase. Eur J Pharmacol 2008; 600:50-8. [DOI: 10.1016/j.ejphar.2008.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 07/29/2008] [Accepted: 08/08/2008] [Indexed: 11/18/2022]
|
30
|
Luker KE, Gupta M, Luker GD. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 2008; 23:823-34. [PMID: 19001056 DOI: 10.1096/fj.08-116749] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Seven-transmembrane (G-protein coupled) receptors are key regulators of normal physiology and a large number of diseases, and this family of receptors is the target for almost half of all drugs. Cell culture models suggest that homodimerization and heterodimerization of 7-transmembrane receptors regulate processes including specificity of ligand binding and activation of downstream signaling pathways, making receptor dimerization a critical determinant of receptor biology and a promising new therapeutic target. To monitor receptor dimerization in cell-based assays and living animals, we developed a protein fragment complementation assay based on firefly luciferase to investigate dimerization of chemokine receptors CXCR4 and CXCR7, two 7-transmembrane receptors with central functions in normal development, cancer, and other diseases. Treatment with chemokine ligands and pharmacologic agents produced time- and dose-dependent changes in reporter signal. Chemokines regulated reporter bioluminescence for CXCR4 or CXCR7 homodimers without affecting signals from receptor heterodimers. In a tumor xenograft model of breast cancer, we used bioluminescence imaging to measure changes in receptor homodimerization in response to pharmacologic agents. This technology should be valuable for analyzing function and therapeutic modulation of receptor dimerization in intact cells and living mice.
Collapse
Affiliation(s)
- Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School, 109 Zina Pitcher Pl., A526 BSRB, Ann Arbor, MI 48109-2200, USA.
| | | | | |
Collapse
|
31
|
Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS JOURNAL 2008; 10:537-51. [PMID: 18989788 DOI: 10.1208/s12248-008-9056-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 07/14/2008] [Indexed: 01/15/2023]
Abstract
The opioids are commonly used to treat acute and severe pain. Long-term opioid administration eventually reaches a dose ceiling that is attributable to the rapid onset of analgesic tolerance coupled with the slow development of tolerance to the untoward side effects of respiratory depression, nausea and decreased gastrointestinal motility. The need for effective-long term analgesia remains. In order to develop new therapeutics and novel strategies for use of current analgesics, the processes that mediate tolerance must be understood. This review highlights potential pharmacokinetic (changes in metabolite production, metabolizing enzyme expression, and transporter function) and pharmacodynamic (receptor type, location and functionality; alterations in signaling pathways and cross-tolerance) aspects of opioid tolerance development, and presents several pharmacodynamic modeling strategies that have been used to characterize time-dependent attenuation of opioid analgesia.
Collapse
Affiliation(s)
- Emily O Dumas
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, The University of North Carolina at Chapel Hill, CB #7360, Kerr Hall 2311, Chapel Hill, NC 27599-7360, USA.
| | | |
Collapse
|
32
|
Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc Natl Acad Sci U S A 2008; 105:16045-50. [PMID: 18836069 DOI: 10.1073/pnas.0804106105] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mu opioid receptors are G protein-coupled receptors that mediate the pain-relieving effects of clinically used analgesics, such as morphine. Accumulating evidence shows that mu-delta opioid heterodimers have a pharmacologic profile distinct from those of the mu or delta homodimers. Because the heterodimers exhibit distinct signaling properties, the protein and mechanism regulating their levels have significant effects on morphine-mediated physiology. We report the characterization of RTP4, a Golgi chaperone, as a regulator of the levels of heterodimers at the cell surface. We show that the association with RTP4 protects mu-delta receptors from ubiquitination and degradation. This leads to increases in surface heterodimer levels, thereby affecting signaling. Thus, the oligomeric organization of opioid receptors is controlled by RTP4, and this governs their membrane targeting and functional activity. This work is the first report of the identification of a chaperone involved in the regulation of the biogenesis of a family A GPCR heterodimer. The identification of such factors as RTP4 controlling dimerization will provide insight into the regulation of heterodimers in vivo. This has implications in the modulation of pharmacology of their endogenous ligands, and in the development of drugs with specific therapeutic effects.
Collapse
|
33
|
CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor heterodimer. Biochem J 2008; 412:245-56. [PMID: 18307412 PMCID: PMC2474558 DOI: 10.1042/bj20071689] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opioid agonists have a broad range of effects on cells of the immune system, including modulation of the inflammatory response, and opioid and chemokine receptors are co-expressed by many white cells. Hetero-oligomerization of the human DOP opioid and chemokine CXCR2 receptors could be detected following their co-expression by each of co-immunoprecipitation, three different resonance energy transfer techniques and the construction of pairs of individually inactive but potentially complementary receptor G-protein α subunit fusion proteins. Although DOP receptor agonists and a CXCR2 antagonist had no inherent affinity for the alternative receptor when either receptor was expressed individually, use of cells that expressed a DOP opioid receptor construct constitutively, and in which expression of a CXCR2 receptor construct could be regulated, demonstrated that the CXCR2 antagonist enhanced the function of DOP receptor agonists only in the presence of CXCR2. This effect was observed for both enkephalin- and alkaloid-based opioid agonists, and the effective concentrations of the CXCR2 antagonist reflected CXCR2 receptor occupancy. Entirely equivalent results were obtained in cells in which the native DOP opioid receptor was expressed constitutively and in which expression of the isolated CXCR2 receptor could be induced. These results indicate that a CXCR2 receptor antagonist can enhance the function of agonists at a receptor for which it has no inherent direct affinity by acting as an allosteric regulator of a receptor that is a heterodimer partner for the CXCR2 receptor. These results have novel and important implications for the development and use of small-molecule therapeutics.
Collapse
|
34
|
Franco R, Casadó V, Cortés A, Pérez-Capote K, Mallol J, Canela E, Ferré S, Lluis C. Novel pharmacological targets based on receptor heteromers. ACTA ACUST UNITED AC 2008; 58:475-82. [PMID: 18620000 DOI: 10.1016/j.brainresrev.2008.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 12/24/2022]
Abstract
Studies performed in the last 10 years have provided solid evidence indicating that G-protein-coupled receptors are expressed on the plasma membrane as homo and heterodimers. The first consequence of this fact is that homo and heterodimers are the true targets of natural (hormones, neurotransmitters) and synthetic drugs. Furthermore a given receptor in a heteromer may display a different functional and/or pharmacological profile than the same receptor characterized as monomer or as homodimer. Recent evidence indicates that receptor heteromers are sensors that lead to a fine-tuning in neurotransmission or hormone regulation; mainly this is achieved by a modification of the signaling pathways activated via a given receptor when it is forming a given heteromer. Quite often antagonists display variable affinities when a given receptor is expressed with different heteromeric partners. This fact should be taken into account in the development of new drugs. Finally it should be pointed out that radioligand binding data has to be analyzed by a model that considers receptors as dimers and not as monomers. This model provides a novel approach to characterize drugs interacting with the orthosteric center (agonists/antagonists) or with allosteric centers (allosteric regulators).
Collapse
Affiliation(s)
- Rafael Franco
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Despite the large number of G-protein-coupled receptor (GPCR) types expressed in the CNS, little is known about their dynamics in neuronal cells. Dynamic properties of the somatostatin type 2A receptor were therefore examined in resting conditions and after agonist activation in living hippocampal neurons. Using fluorescence recovery after photobleaching experiments, we found that, in absence of ligand, the sst(2A) receptor is mobile and laterally and rapidly diffuse in neuronal membranes. We then observed by live-cell imaging that, after agonist activation, membrane-associated receptors induce the recruitment of beta-arrestin 1-enhanced green fluorescent protein (EGFP) and beta-arrestin 2-EGFP to the plasma membrane. In addition, beta-arrestin 1-EGFP translocate to the nucleus, suggesting that this protein could serve as a nuclear messenger for the sst(2A) receptor in neurons. Receptors are then recruited to preexisting clathrin coated pits, form clusters that internalize, fuse, and move to a perinuclear compartment that we identified as the trans-Golgi network (TGN), and recycle. Receptor cargoes are transported through a microtubule-dependent process directly from early endosomes/recycling endosomes to the TGN, bypassing the late endosomal compartment. Together, these results provide a comprehensive description of GPCR trafficking in living neurons and provide compelling evidence that GPCR cargoes can recycle through the TGN after endocytosis, a phenomenon that has not been anticipated from studies of non-neuronal cells.
Collapse
|
36
|
Dalrymple MB, Pfleger KDG, Eidne KA. G protein-coupled receptor dimers: functional consequences, disease states and drug targets. Pharmacol Ther 2008; 118:359-71. [PMID: 18486226 DOI: 10.1016/j.pharmthera.2008.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
With an ever-expanding need for reliable therapeutic agents that are highly effective and exhibit minimal deleterious side effects, a greater understanding of the mechanisms underlying G protein-coupled receptor (GPCR) regulation is fundamental. GPCRs comprise more than 30% of all therapeutic drug targets and it is likely that this will only increase as more orphan GPCRs are identified. The past decade has seen a dramatic shift in the prevailing concept of how GPCRs function, in particular the growing acceptance that GPCRs are capable of interacting with one another at a molecular level to form complexes, with significantly different pharmacological properties to their monomeric selves. While the ability of like-receptors to associate and form homodimers raises some interesting mechanistic issues, the possibility that unlike-receptors could heterodimerise in certain tissue types, producing a functionally unique signalling complex that binds specific ligands, provides an invaluable opportunity to refine and redefine pharmacological interventions with greater specificity and efficacy.
Collapse
Affiliation(s)
- Matthew B Dalrymple
- Laboratory for Molecular Endocrinology - GPCRs, Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, Perth, WA 6009, Australia
| | | | | |
Collapse
|
37
|
Milligan G. A day in the life of a G protein-coupled receptor: the contribution to function of G protein-coupled receptor dimerization. Br J Pharmacol 2008; 153 Suppl 1:S216-29. [PMID: 17965750 PMCID: PMC2268067 DOI: 10.1038/sj.bjp.0707490] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/21/2007] [Accepted: 09/06/2007] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors are one of the most actively studied families of proteins. However, despite the ubiquity of protein dimerization and oligomerization as a structural and functional motif in biology, until the last decade they were generally considered as monomeric, non-interacting polypeptides. For the metabotropic glutamate-like group of G protein-coupled receptors, it is now firmly established that they exist and function as dimers or, potentially, even within higher-order structures. Despite some evidence continuing to support the view that rhodopsin-like G protein-coupled receptors are predominantly monomers, many recent studies are consistent with the dimerization/oligomerization of such receptors. Key roles suggested for dimerization of G protein-coupled receptors include control of protein maturation and cell surface delivery and providing the correct framework for interactions with both hetero-trimeric G proteins and arrestins to allow signal generation and its termination. As G protein-coupled receptors are the most targeted group of proteins for the development of therapeutic small molecule medicines, recent indications that hetero-dimerization between co-expressed G protein-coupled receptors may be a common process offers the potential for the development of more selective and tissue restricted medicines. However, many of the key experiments have, so far, been limited to model cell systems. Priorities for the future include the generation of tools and reagents able to identify unequivocally potential G protein-coupled receptor hetero-dimers in native tissues and detailed analyses of the influence of hetero-dimerization on receptor function and pharmacology.
Collapse
Affiliation(s)
- G Milligan
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| |
Collapse
|
38
|
Franco R, Casadó V, Cortés A, Mallol J, Ciruela F, Ferré S, Lluis C, Canela EI. G-protein-coupled receptor heteromers: function and ligand pharmacology. Br J Pharmacol 2007; 153 Suppl 1:S90-8. [PMID: 18037920 DOI: 10.1038/sj.bjp.0707571] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Almost all existing models for G-protein-coupled receptors (GPCRs) are based on the occurrence of monomers. Recent studies show that many GPCRs are dimers. Therefore for some receptors dimers and not monomers are the main species interacting with hormones/neurotransmitters/drugs. There are reasons for equivocal interpretations of the data fitting to receptor dimers assuming they are monomers. Fitting data using a dimer-based model gives not only the equilibrium dissociation constants for high and low affinity binding to receptor dimers but also a 'cooperativity index' that reflects the molecular communication between monomers within the dimer. The dimer cooperativity index (D(C)) is a valuable tool that enables to interpret and quantify, for instance, the effect of allosteric regulators. For different receptors heteromerization confers a specific functional property for the receptor heteromer that can be considered as a 'dimer fingerprint'. The occurrence of heteromers with different pharmacological and signalling properties opens a complete new field to search for novel drug targets useful to combat a variety of diseases and potentially with fewer side effects. Antagonists, which are quite common marketed drugs targeting GPCRs, display variable affinities when a given receptor is expressed with different heteromeric partners. This fact should be taken into account in the development of new drugs.
Collapse
Affiliation(s)
- R Franco
- Departament de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics 2007; 8:177. [PMID: 17537266 PMCID: PMC1904246 DOI: 10.1186/1471-2105-8-177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND G Protein-Coupled Receptors (GPCRs) are a large and diverse family of membrane proteins whose members participate in the regulation of most cellular and physiological processes and therefore represent key pharmacological targets. Although several bioinformatics resources support research on GPCRs, most of these have been designed based on the traditional assumption that monomeric GPCRs constitute the functional receptor unit. The increase in the frequency and number of reports about GPCR dimerization/oligomerization and the implication of oligomerization in receptor function makes necessary the ability to store and access information about GPCR dimers/oligomers electronically. RESULTS We present here the requirements and ontology (the information scheme to describe oligomers and associated concepts and their relationships) for an information system that can manage the elements of information needed to describe comprehensively the phenomena of both homo- and hetero-oligomerization of GPCRs. The comprehensive information management scheme that we plan to use for the development of an intuitive and user-friendly GPCR-Oligomerization Knowledge Base (GPCR-OKB) is the result of a community dialog involving experimental and computational colleagues working on GPCRs. CONCLUSION Our long term goal is to disseminate to the scientific community organized, curated, and detailed information about GPCR dimerization/oligomerization and its related structural context. This information will be reported as close to the data as possible so the user can make his own judgment on the conclusions drawn for a particular study. The requirements and ontology described here will facilitate the development of future information systems for GPCR oligomers that contain both computational and experimental information about GPCR oligomerization. This information is freely accessible at http://www.gpcr-okb.org.
Collapse
|
40
|
Roumy M, Lorenzo C, Mazères S, Bouchet S, Zajac JM, Mollereau C. Physical association between neuropeptide FF and micro-opioid receptors as a possible molecular basis for anti-opioid activity. J Biol Chem 2007; 282:8332-42. [PMID: 17224450 DOI: 10.1074/jbc.m606946200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide FF (NPFF) modulates the opioid system by exerting functional anti-opioid activity on neurons, the mechanism of which is unknown. By using a model of SH-SY5Y cells, we recently postulated that anti-opioid activity likely takes place upstream from the signaling cascade, suggesting that NPFF receptors could block opioid receptors by physical interaction. In the present study, fluorescence techniques were used to monitor the physical association and the dynamic of NPFF2 and micro-opioid (MOP) receptors tagged with variants of the green fluorescent protein. Importantly, cyan fluorescent protein-tagged NPFF2 receptors retained their capacity to antagonize opioid receptors. Fluorescence resonance energy transfer (FRET) and coimmunoprecipitation studies indicate that NPFF and MOP receptors are close enough to generate a basal FRET signal. The opioid agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol disrupts by 20-30% this FRET signal, mainly because it concomitantly induces 40% internalization of receptors. In contrast, the NPFF analog 1DMe significantly increases by 10-15% the basal FRET signal, suggesting an association between both receptors. In addition, 1DMe reduces, by half, MOP receptor internalization, indicating that, besides a functional blockade of opioid receptors, the NPFF analog also inhibits their internalization. Finally, as a first report showing the modulation of the mobility of a G-protein-coupled receptor by another one, fluorescence recovery after photobleaching analysis reveals that 1DMe modifies the lateral diffusion of MOP receptors in the cell membrane, changing them from a confined to a freely diffusing state. By promoting NPFF-MOP receptor heteromerization, 1DMe could disrupt the domain organization of MOP receptors in the membrane, resulting in a reduction of opioid response.
Collapse
Affiliation(s)
- Michel Roumy
- Institut de Pharmacologie et Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse cedex 04, France
| | | | | | | | | | | |
Collapse
|
41
|
Akgün E, Portoghese PS, Sajjad M, Nabi HA. Synthesis and124I-labeling ofm-iodophenylpyrrolomorphinan as a potential PET imaging agent for delta opioid (DOP) receptors. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Piñeyro G, Archer-Lahlou E. Ligand-specific receptor states: Implications for opiate receptor signalling and regulation. Cell Signal 2007; 19:8-19. [PMID: 16842969 DOI: 10.1016/j.cellsig.2006.05.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Opiate drugs produce their effects by acting upon G protein coupled receptors (GPCRs) and although they are among the most effective analgesics available, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence, respiratory depression, nausea and constipation. As a class, opiates share a common profile of unwanted effects but there are also significant differences in ligand liability for producing these actions. A growing number of studies show that GPCRs may exist in multiple active states that differ in their signalling and regulatory properties and which may distinctively bind different agonists. In this review we summarize evidence supporting the existence of multiple active conformations for MORs and DORs, analyze information favouring the existence of ligand-specific receptor states and assess how ligand-selective efficacy may contribute to the production of longer lasting, better tolerated opiate analgesics.
Collapse
Affiliation(s)
- Graciela Piñeyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada.
| | | |
Collapse
|