1
|
Wang C, Yang J, Chang W. PLGA-based microspheres containing ropivacaine and betamethasone for sciatic nerve block in mice. Pharm Dev Technol 2022; 27:503-510. [PMID: 35653620 DOI: 10.1080/10837450.2020.1871011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to develop Poly (lactic-co-glycolic acid) (PLGA)-based microspheres containing ropivacaine and betamethasone (RPC/BTM PLGA MS) by emulsion-solvent evaporation method. RPC/BTM PLGA MS were characterized by physical properties, such as morphology and particle size, and in vitro drug release. In addition, in vivo pharmacokinetics and pharmacodynamics of RPC/BTM PLGA MS were also investigated. The prepared RPC/BTM PLGA MS was suitable for local injection with a well-dispersed spherical shape, high stability, and high encapsulation efficiency. The mean diameter was 14.8 ± 1.2 µm and the polydispersity index (PDI) was 0.32 ± 0.04. In an in vitro study of drug release, it can be concluded that the RPC/BTM PLGA MS exhibited sustained and long-term release properties for 16 days. Furthermore, the result of an in vivo study indicated that the RPC/BTM PLGA MS had sustained release effect and the pharmacodynamics result showed that preparing RPC/BTM PLGA MS as microsphere preparation could not only extend the drug effect time but also prolong the duration of local anesthetics compared with the common RPC PLGA MS.
Collapse
Affiliation(s)
- Chunquan Wang
- Department of intensive care unit, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Jinjun Yang
- Department of intensive care unit, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Weimin Chang
- Department of intensive care unit, the Ninth People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
2
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
3
|
Zalloum N, Albino de Souza G, Martins TD. Single-Emulsion P(HB-HV) Microsphere Preparation Tuned by Copolymer Molar Mass and Additive Interaction. ACS OMEGA 2019; 4:8122-8135. [PMID: 31459903 PMCID: PMC6648277 DOI: 10.1021/acsomega.9b00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Herein, we describe the production of poly(hydroxybutyrate-co-hydroxyvalerate) [P(HB-HV)]-based microspheres containing coumarin-6 (C6) or pyrene (Py) fluorophores as additives and models for hydrophobic and hydrophilic drug encapsulation. Their photophysical and morphological properties, as well as encapsulation efficiencies, are studied as this work aims to describe the influence of additive hydrophobicity/hydrophilicity on microparticle formation. These properties were studied by scanning electron microscopy, fluorescence confocal laser scanning microscopy (FCLSM), and steady-state fluorescence spectroscopy. The results show that the surfactant concentration, polymer molar mass, emulsification stirring rate, and the presence of the fluorophore and its nature are determinants of the P(HB-HV) microsphere properties. Also, encapsulation efficiency is shown to be governed by synergic effects of these parameters on the formation of microspheres. Moreover, size distribution is proved to be strongly influenced by the surfactant poly(vinyl alcohol) content. FCLSM showed that the fluorophores were efficiently encapsulated in P(HB-HV) microspheres at distinct distributions within the copolymer matrix. Surprisingly, nanospheres were observed in the microsphere surface, suggesting that microspheres are formed from nanosphere coalescence.
Collapse
Affiliation(s)
- Neife
Lilian Zalloum
- Chemistry
Institute, State University of Campinas, P.O. Box 6154, 13083-971 Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
4
|
Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00446-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Ye M, Duan H, Yao L, Fang Y, Zhang X, Dong L, Yang F, Yang X, Pan W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian J Pharm Sci 2019; 14:222-232. [PMID: 32104454 PMCID: PMC7032230 DOI: 10.1016/j.ajps.2018.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/03/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
The object of the study was to develop a quick and reproducible accelerated in vitro release method to predict and deduce the function of the real time (37 °C) release for long acting PLGA microspheres. The method could be described in several steps. First, the release of the microspheres were studied using the sample and separate method at 37 °C with normal orbital shaking and elevated temperatures with magnetic stirring to further accelerate the release. Second, the most similar profile at elevated temperatures with the real time release was chosen with the help of the n value in the fitted Korsmeyer-Peppas Function. Third, the Weibull function and conversion ratio were used to deduce the function of real time release according to the chosen profile at elevated temperatures. The key point in this study was to provide a quick and precise method to predict the real time release for long acting progesterone PLGA microspheres. So the elevated temperatures coupled with magnetic stirring were used to accelerate the release further, and when there have many similar release profiles with the real time release at elevated temperatures, releasing time at elevated temperatures and the R2 of the final deduced function will be used to help choosing the most similar release profile with the real time release. Four different types of progesterone PLGA microspheres were used to verify the method, and all the deduced function correlated well with the real time releases, for R 2 = 0.9912, 0.9781, 0.9918 and 0.9972, respectively.
Collapse
Affiliation(s)
- Mingzhu Ye
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongliang Duan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lixia Yao
- Zhejiang University of Technology, 18 Chaowang Road, Zhejiang 310014, China
| | - Yicheng Fang
- Zhejiang University of Technology, 18 Chaowang Road, Zhejiang 310014, China
| | - Xiaoyu Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Ling Dong
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Feifei Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
6
|
mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci Rep 2018; 8:9854. [PMID: 29959339 PMCID: PMC6026132 DOI: 10.1038/s41598-018-28092-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022] Open
Abstract
mPEG-PLA and PLA-PEG-PLA copolymeric nanoparticles with three different PLA to PEG ratios are synthesized and used for encapsulation of recombinant human Growth hormone (rhGH). The structure and composition of the synthesized copolymers were analyzed by 1H NMR and GPC techniques. Moreover, morphology, encapsulation efficiency (EE), cytotoxicity, release profile and stability of the encapsulated rhGH were measured. Structural analysis of the prepared copolymers showed that they were successfully synthesized with approximately expected molecular weight and relatively low size distribution. It was also revealed that by increasing amounts of PLA/PEG ratio, EE content and size of nanoparticles were increased. Release profile evaluation of rhGH from both formulations indicated that copolymeric nanoparticles of Di-B2 and Tri-B2 exhibited the best results among the synthesized nanospheres, by having initial burst release of 17.5% and 28% and then slow and constant release of rhGH up to 65% and 77% of the encapsulated drug, respectively. Furthermore, results of HPLC, SDS-PAGE and CD analyses showed stability of rhGH during encapsulation and release from nanoparticles. Finally, the results showed that these two formulations provided safe and efficient sustained release of rhGH for more than a month and they have the potential to do further studies under in vivo conditions.
Collapse
|
7
|
Giordano C, Albani D, Gloria A, Tunesi M, Batelli S, Russo T, Forloni G, Ambrosio L, Cigada A. Multidisciplinary Perspectives for Alzheimer's and Parkinson's Diseases: Hydrogels for Protein Delivery and Cell-Based Drug Delivery as Therapeutic Strategies. Int J Artif Organs 2018; 32:836-50. [DOI: 10.1177/039139880903201202] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.
Collapse
Affiliation(s)
- Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Diego Albani
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Antonio Gloria
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| | - Sara Batelli
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Teresa Russo
- Department of Materials and Production Engineering, University of Naples “Federico II”, Naples - Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Institute for Pharmacological Research “Mario Negri”, Milan - Italy
| | - Luigi Ambrosio
- Institute of Composite and Biomedical Materials, National Research Council, Naples - Italy
| | - Alberto Cigada
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan - Italy
| |
Collapse
|
8
|
Ahrens LAJ, Vonwil D, Christensen J, Shastri VP. Gelatin device for the delivery of growth factors involved in endochondral ossification. PLoS One 2017; 12:e0175095. [PMID: 28380024 PMCID: PMC5381949 DOI: 10.1371/journal.pone.0175095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/20/2017] [Indexed: 12/31/2022] Open
Abstract
Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo.
Collapse
Affiliation(s)
- Lucas A. J. Ahrens
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daniel Vonwil
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
| | - Jon Christensen
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, Hermann Staudinger Haus, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
9
|
Moreno M, Tabitha T, Nirmal J, Radhakrishnan K, Yee C, Lim S, Venkatraman S, Agrawal R. Study of stability and biophysical characterization of ranibizumab and aflibercept. Eur J Pharm Biopharm 2016; 108:156-167. [DOI: 10.1016/j.ejpb.2016.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022]
|
10
|
Ni Q, Chen W, Tong L, Cao J, Ji C. Preparation of novel biodegradable ropivacaine microspheres and evaluation of their efficacy in sciatic nerve block in mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2499-506. [PMID: 27536071 PMCID: PMC4977083 DOI: 10.2147/dddt.s110742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, ropivacaine chitosan-loaded microspheres for subcutaneous administration were developed. The systems were characterized in terms of surface morphology, particle size, encapsulation efficiency, and in vitro release behavior. Results showed that the microspheres had drug loading rate of 7.3% and encapsulation efficiency of 91.2%, and their average diameter was 2.62±0.76 µm. The morphology study revealed that the microspheres are uniform monodispersed spheres and did not form aggregates in aqueous solution. It was clearly observed that the release profile of ropivacaine microspheres exhibited a biphasic pattern: the initial burst release within the first 2 hours and a following slower and sustained release over a long time. In vivo, a greater area under the plasma concentration–time curve from 0 to t (AUC0–t) was obtained from the microspheres (4.27-fold), than from the injection group, which indicated that there was a significantly improved systemic exposure to ropivacaine. Pharmacodynamics result showed that preparing ropivacaine as microsphere preparation could not only extend the drug effect time but also decrease the administration dosage.
Collapse
Affiliation(s)
- Qiang Ni
- Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wurong Chen
- Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lei Tong
- Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jue Cao
- Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Chao Ji
- Department of Anesthesiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Yoon DY, Kim JC. In vivo residence duration of human growth hormone loaded in nanogels comprising cinnamoyl alginate, cinnamoyl Pluronic F127 and cinnamoyl poly(ethylene glycol). Int J Pharm 2016; 509:229-236. [DOI: 10.1016/j.ijpharm.2016.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/29/2016] [Accepted: 05/27/2016] [Indexed: 11/16/2022]
|
12
|
Lee JH, Kim JC. Human growth hormone-loaded nanogels composed of cinnamoyl alginate, cinnamoyl Pluronic F127, and cinnamoyl poly(ethylene glycol). J Appl Polym Sci 2015. [DOI: 10.1002/app.42446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ju Hyup Lee
- College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University; 192-1, Hyoja 2 dong Chuncheon Kangwon-do 200-701 Republic of Korea
| | - Jin-Chul Kim
- College of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University; 192-1, Hyoja 2 dong Chuncheon Kangwon-do 200-701 Republic of Korea
| |
Collapse
|
13
|
Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol 2015; 21:367-78. [DOI: 10.3109/10837450.2014.999785] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
| | - Kanwal Rehman
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan, and
- Department of Toxicology, School of Medicine and Public Health, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Pharmacology, Toxicology, and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China,
| |
Collapse
|
14
|
Lim MPA, Lee WL, Widjaja E, Loo SCJ. One-step fabrication of core–shell structured alginate–PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomater Sci 2013; 1:486-493. [DOI: 10.1039/c3bm00175j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Zakeri-Milani P, Loveymi BD, Jelvehgari M, Valizadeh H. The characteristics and improved intestinal permeability of vancomycin PLGA-nanoparticles as colloidal drug delivery system. Colloids Surf B Biointerfaces 2012. [PMID: 23201735 DOI: 10.1016/j.colsurfb.2012.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM In the present investigation, vancomycin (VCM) biodegradable nanoparticles were developed for oral administration, with the aim of improving its intestinal permeability. METHODS The vancomycin-loaded nanoparticles were prepared using double-emulsion solvent evaporation method. The prepared nanoparticles were characterized for their micromeritic and crystallographic properties, particle size, zeta potential, drug loading and release. Intestinal permeability of VCM nanoparticles was determined in different concentrations using SPIP technique in rats. RESULTS Particle sizes were between 450 nm and 466 nm for different compositions of VCM-PLGA nanoparticles. Entrapment efficiency ranged between 38.38% and 78.6% with negative zeta (ζ) potential. The FT-IR, XRPD and DSC results ruled out any chemical interaction between the drug and PLGA. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 μg/ml were significantly higher than that of solutions at the same concentrations. CONCLUSION Our findings suggest that PLGA nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability.
Collapse
Affiliation(s)
- Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
16
|
Abstract
Proteins constitute an increasing proportion of the drugs in development. The barriers to their entry into the blood stream and rapid clearance means that they often have to be injected several times a day, affecting patient compliance. This paper reviews the major technologies enabling the development of injectable sustained-release products and formulation strategies to maintain protein integrity and modify release rates. Whilst many injectable sustained-release products are on the market, these are all delivering small molecular weight drugs and peptides. This is due to the manufacturing processes that denature and degrade the proteins upon encapsulation and release into the body. Formulation strategies are discussed and a number of new technologies reviewed that are able to overcome the issues with conventional manufacturing processes. The reliance of many processes on organic solvents has prevented their application to the development of injectable sustained release protein products. The development of entirely solvent free and aqueous methods of manufacture of these products has meant that numerous sustained-release protein products are close to reaching the market.
Collapse
|
17
|
Wei Y, Wang Y, Kang A, Wang W, Ho SV, Gao J, Ma G, Su Z. A Novel Sustained-Release Formulation of Recombinant Human Growth Hormone and Its Pharmacokinetic, Pharmacodynamic and Safety Profiles. Mol Pharm 2012; 9:2039-48. [DOI: 10.1021/mp300126t] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Wei
- National Key Laboratory of Biochemical
Engineering, Institute of Process Engineering, Chinese Academy of
Sciences, Beijing, 100190, People’s Republic of China
- Graduate School of the Chinese
Academy of Sciences, Beijing, 100190, People’s Republic of
China
| | - Yuxia Wang
- National Key Laboratory of Biochemical
Engineering, Institute of Process Engineering, Chinese Academy of
Sciences, Beijing, 100190, People’s Republic of China
| | - Aijun Kang
- Department of Laboratory
Animal
Science, Peking University Health Science Center, Beijing, 100191,
People’s Republic of China
| | - Wei Wang
- BioTherapeutics R&D, Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Sa V. Ho
- BioTherapeutics R&D, Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Junfeng Gao
- Department of Laboratory
Animal
Science, Peking University Health Science Center, Beijing, 100191,
People’s Republic of China
| | - Guanghui Ma
- National Key Laboratory of Biochemical
Engineering, Institute of Process Engineering, Chinese Academy of
Sciences, Beijing, 100190, People’s Republic of China
| | - Zhiguo Su
- National Key Laboratory of Biochemical
Engineering, Institute of Process Engineering, Chinese Academy of
Sciences, Beijing, 100190, People’s Republic of China
| |
Collapse
|
18
|
Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Design of vancomycin RS-100 nanoparticles in order to increase the intestinal permeability. Adv Pharm Bull 2012; 2:43-56. [PMID: 24312770 DOI: 10.5681/apb.2012.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/30/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The purpose of this work was to preparation of vancomycin (VCM) biodegradable nanoparticles to improve the intestinal permeability, using water-in-oil-in-water (W/O/W) multiple emulsion method. METHODS The vancomycin-loaded nanoparticles were created using double-emulsion solvent evaporation method. Using Eudragit RS100 as a coating material. The prepared nanoparticles were identifyed for their micromeritic and crystallographic properties, drug loading, particle size, drug release, Zeta potential, effective permeability (Peff) and oral fractional absorption. Intestinal permeability of VCM nanoparticles was figured out, in different concentrations using SPIP technique in rats. RESULTS Particle sizes were between 362 and 499 nm for different compositions of VCM-RS-100 nanoparticles. Entrapment efficiency expansed between 63%-94.76%. The highest entrapment efficiency 94.76% was obtained when the ratio of drug to polymer was 1:3. The in vitro release studies were accomplished in pH 7.4. The results showed that physicochemical properties were impressed by drug to polymer ratio. The FT-IR, XRPD and DSC results ruled out any chemical interaction betweenthe drug and RS-100. Effective intestinal permeability values of VCM nanoparticles in concentrations of 200, 300 and 400 μg/ml were higher than that of solutions at the same concentrations. Oral fractional absorption was achieved between 0.419-0.767. CONCLUSION Our findings suggest that RS-100 nanoparticles could provide a delivery system for VCM, with enhanced intestinal permeability.
Collapse
Affiliation(s)
- Badir Delf Loveymi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
19
|
The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int J Pharm 2011; 415:34-52. [DOI: 10.1016/j.ijpharm.2011.05.049] [Citation(s) in RCA: 722] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/08/2011] [Accepted: 05/09/2011] [Indexed: 01/07/2023]
|
20
|
Abstract
Many strategies have been proposed to explore the possibility of exploiting gastroretention for drug delivery. Such systems would be useful for local delivery, for drugs that are poorly soluble at higher pH or primarily absorbed from the proximal small intestine. Generally, the requirements of such strategies are that the vehicle maintains controlled drug release and exhibits prolonged residence time in the stomach. Despite widespread reporting of technologies, many have an inherent drawback of variability in transit times. Microparticulate systems, capable of distributing widely through the gastrointestinal tract, can potentially minimise this variation. While being retained in the stomach, the drug content is released slowly at a desired rate, resulting in reduced fluctuations in drug levels. This review summarises the promising role of microencapsulation in this field, exploring both floating and mucoadhesive microparticles and their application in the treatment of Helicobacter pylori, highlighting the clinical potential of eradication of this widespread infection.
Collapse
Affiliation(s)
- Adeola Adebisi
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | | |
Collapse
|
21
|
Gaba P, Singh S, Gaba M, Gupta G. Galactomannan gum coated mucoadhesive microspheres of glipizide for treatment of type 2 diabetes mellitus: In vitro and in vivo evaluation. Saudi Pharm J 2011; 19:143-52. [PMID: 23960752 PMCID: PMC3745188 DOI: 10.1016/j.jsps.2011.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 01/17/2011] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus is a heterogeneous disease of polygenic origin and involves both defective insulin secretion and peripheral insulin resistance. Studies have shown that post-meal hyperglycemic spikes are associated with increased cardiovascular mortality in type 2 diabetes. Over the past decade, a major interest in control of postprandial glucose excursion has emerged and a plethora of new medications that specifically target postprandial hyperglycemia were discovered. Despite the availability of new agents for treatment of type 2 diabetes mellitus, oral sulfonylureas remain a cornerstone of therapy, because they are relatively inexpensive and are well tolerated. However, hypoglycemia is a major safety concern with sulfonylureas and it is one major risk factor requiring hospitalization. Glipizide is a potent, rapid-acting with short duration of action and well tolerated second-generation sulfonylurea effective in reducing postprandial glucose levels. However, risk of postprandial hypoglycemia and post-meal glucose excursions, if dose missed before meal; are always associated with the use of glipizide for treatment of type 2 diabetes mellitus. Since, the site of absorption of glipizide is from stomach thus dosage forms that are retained in stomach by mucoadhesion; would increase absorption, improve drug efficiency and decrease dose requirements. Microsphere carrier systems made by using polymer galactomannan having strong mucoadhesive properties and easily biodegradable could be an attractive strategy to formulate. The purpose of this research work is to formulate galactomannan coated mucoadhesive microspheres of glipizide and systematically evaluate its in vitro characteristics and in vivo performance for sustained glucose lowering effect and improvement in diabetic condition as compared to immediate release of glipizide.
Collapse
Affiliation(s)
- Punam Gaba
- Department of Pharmaceutical Sciences, ASBASJSM College of Pharmacy, Bela (Ropar) 140111, Punjab, India
| | - Sarbjot Singh
- Biology Research, Drug Discovery Research, Panacea Biotec Pvt. Ltd., Mohali 160055, Punjab, India
| | - Monika Gaba
- Department of Pharmaceutical Sciences, ASBASJSM College of Pharmacy, Bela (Ropar) 140111, Punjab, India
| | - G.D. Gupta
- Department of Pharmaceutical Sciences, ASBASJSM College of Pharmacy, Bela (Ropar) 140111, Punjab, India
| |
Collapse
|
22
|
Dey S, Pramanik S, Malgope A. Formulation and optimization of sustained release Stavudine microspheres using response surface methodology. ISRN PHARMACEUTICS 2011; 2011:627623. [PMID: 22389855 PMCID: PMC3263718 DOI: 10.5402/2011/627623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/01/2011] [Indexed: 11/28/2022]
Abstract
The aim of the current study was to formulate and optimize the formulation on the basis of in vitro performance of microsphere. A 32 full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio (X1) and stirring speed (X2), on dependent variables, encapsulation efficiency, particle size, and time to 80% drug release. The best batch exhibited a high entrapment efficiency of 70% and mean particle size 290 μm. The drug release was also sustained for more than 12 hours. The study helped in finding the optimum formulation with excellent sustained drug release.
Collapse
Affiliation(s)
- Sanjay Dey
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | | | | |
Collapse
|
23
|
Induction of Nicotinamide–Adenine Dinucleotide Phosphate Oxidase and Apoptosis by Biodegradable Polymers in Macrophages: Implications for Stents. J Cardiovasc Pharmacol 2011; 57:712-20. [DOI: 10.1097/fjc.0b013e31821a4f1e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Patel JK, Chavda JR. Formulation and evaluation of stomach-specific amoxicillin-loaded carbopol-934P mucoadhesive microspheres for anti-Helicobacter pylori therapy. J Microencapsul 2011; 26:365-76. [PMID: 18720199 DOI: 10.1080/02652040802373012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this research was to formulate and systemically evaluate in vitro and in vivo performances of mucoadhesive amoxicillin microspheres for the potential use in the treatment of gastric and duodenal ulcers, which were associated with Helicobacter pylori. Amoxicillin mucoadhesive microspheres containing carbopol-934P as mucoadhesive polymer and ethyl cellulose as carrier polymer were prepared by an emulsion-solvent evaporation technique. Results of preliminary trials indicate that quantity of emulsifying agent, time for stirring, drug-to-polymers ratio and speed of rotation affected the characteristics of microspheres. Microspheres were discrete, spherical, free flowing and showed a good percentage of drug entrapment efficiency. An in vitro mucoadhesive test showed that amoxicillin mucoadhesive microspheres adhered more strongly to the gastric mucous layer and could retain in the gastrointestinal tract for an extended period of time. A 3(2) full factorial design was employed to study the effect of independent variables, drug-to-polymer-to-polymer ratio (amoxicillin-ethyl cellulose-carbopol-934P) (X(1)) and stirring speed (X(2)) on dependent variables, i.e. percentage mucoadhesion, drug entrapment efficiency, particle size and t(80). The best batch exhibited a high drug entrapment efficiency of 56%; mucoadhesion percentage after 1 h was 80% and the particle size was 109 µm. A sustained drug release was obtained for more than 12 h. The drug-to-polymer-to-polymer ratio had a more significant effect on the dependent variables. The morphological characteristics of the mucoadhesive microspheres were studied under a scanning electron microscope. In vitro release test showed that amoxicillin released slightly faster in pH 1.2 hydrochloric acid than in pH 7.8 phosphate buffer. In vivo H. pylori clearance tests were also carried out by administering amoxicillin powder and mucoadhesive microspheres to H. pylori infectious Wistar rats under fed conditions at single dose or multiple dose(s) in oral administration. The results showed that amoxicillin mucoadhesive microspheres had a better clearance effect than amoxicillin powder. In conclusion, the prolonged gastrointestinal residence time and enhanced amoxicillin stability resulting from the mucoadhesive microspheres of amoxicillin might make a contribution to H. pylori complete eradication.
Collapse
Affiliation(s)
- Jayvadan K Patel
- S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India.
| | | |
Collapse
|
25
|
Mansour HM, Sohn M, Al-Ghananeem A, Deluca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci 2010; 11:3298-322. [PMID: 20957095 PMCID: PMC2956096 DOI: 10.3390/ijms11093298] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 12/16/2022] Open
Abstract
Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development.
Collapse
Affiliation(s)
- Heidi M Mansour
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; E-Mails: (M.S.); (A.A.-G.); (P.P.D)
| | | | | | | |
Collapse
|
26
|
Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv 2010; 17:288-300. [DOI: 10.3109/10717541003706265] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Patel J, Patel D, Raval J. Formulation and Evaluation of Propranolol Hydrochloride-Loaded Carbopol-934P/Ethyl Cellulose Mucoadhesive Microspheres. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2010; 9:221-32. [PMID: 24363731 PMCID: PMC3863436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this research was to formulate and systemically evaluate in-vitro and in-vivo performances of mucoadhesive propranolol hydrochloride microspheres for its potential use in the treatment of hypertension, myocardial infraction and cardiac arrhythmias. Propranolol hydrochloride mucoadhesive microspheres, containing carbopol-934P as mucoadhesive polymer and ethyl cellulose as carrier polymer, were prepared by an emulsion-solvent evaporation technique. Results of preliminary trials indicated that the quantity of emulsifying agent, time for stirring, drug-to-polymers ratio, and speed of rotation affected various characteristics of microspheres. Microspheres were discrete, spherical, free-flowing and showed a good percentage of drug entrapment efficiency. An in-vitro mucoadhesive test showed that propranolol hydrochloride mucoadhesive microspheres adhered more strongly to the gastric mucous layer and could be retained in the gastrointestinal tract for an extended period of time. A 3(2) full factorial design was employed to study the effect of independent variables, drug-to-polymer-to-polymer ratio (propranolol hydrochloride-ethyl cellulose-carbopol-934P) (X 1), and stirring speed (X 2) on dependent variables, i.e. percentage of mucoadhesion, drug entrapment efficiency, particle size and t80. The best batch exhibited a high drug entrapment efficiency of 54 %; 82% mucoadhesion after 1 h and particle size of 110 μm. A sustained pattern of drug release was obtained for more than 12 h. The drug-to-polymer-to-polymer ratio had a more significant effect on the dependent variables. The morphological characteristics of the mucoadhesive microspheres were studied under a scanning electron microscope. In-vivo evaluation studies on propranolol hydrochloride mucoadhesive microspheres and propranolol hydrochloride powder were performed on normal healthy rabbits. The results showed a sustained anti-hypertensive effect over a longer period of time in case of mucoadhesive microspheres, compared to the powder. In conclusion, the prolonged gastrointestinal residence time and slow release of propranolol hydrochloride resulting from the mucoadhesive microspheres, could contribute to the provision of a sustained anti-hypertensive effect.
Collapse
Affiliation(s)
- Jayvadan Patel
- Nootan Pharmacy College, Visnagar-384315, Gujarat, India.,Corresponding author: E-mail:
| | - Darshna Patel
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva-382711, Gujarat, India.
| | - Jignyasha Raval
- S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva-382711, Gujarat, India.
| |
Collapse
|
28
|
Khare P, Jain SK. Influence of rheology of dispersion media in the preparation of polymeric microspheres through emulsification method. AAPS PharmSciTech 2009; 10:1295-300. [PMID: 19882250 DOI: 10.1208/s12249-009-9315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022] Open
Abstract
Chitosan microspheres as drug delivery system have attained importance and attracted the attention of researchers in last few years. This study was aimed toward the elucidation of the effect of viscosity of external oil phase on the properties of microspheres prepared by emulsification method. Chitosan microspheres were prepared utilizing oil phase of different viscosity viz. castor oil, heavy liquid paraffin, light liquid paraffin and mixture of light paraffin, and petroleum ether (1:1 v/v ratio). Microspheres prepared in highly viscous castor oil exhibited an average size of 11.52+/-0.57 microm with a percentage drug entrapment of 43.12+/-2.14. On the other hand, very small microspheres of 3.15+/-0.04 microm and 68.87+/-1.03% drug entrapment were obtained when mixture of liquid paraffin and petroleum ether was utilized as oil phase. Effect of viscosity on percent mucoadhesion, percent drug entrapment, zeta potential, percent process yield, etc. of microspheres has been observed. In vitro drug release in phosphate buffer pH 7.4 was determined for different batch of microspheres. The results revealed a difference in the drug release pattern of the different microspheres prepared as a function of viscosity of different oil phase. Use of low viscose oil resulted in the formulation of spherical and small size microspheres. This work was a part of our ongoing thrust and project to develop microparticulate drug delivery system.
Collapse
|
29
|
Spadaccio C, Chello M, Trombetta M, Rainer A, Toyoda Y, Genovese JA. Drug releasing systems in cardiovascular tissue engineering. J Cell Mol Med 2009; 13:422-39. [PMID: 19379142 PMCID: PMC3822506 DOI: 10.1111/j.1582-4934.2008.00532.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac and Molecular Biology Laboratory, Heart, Lung & Esophageal Surgery Institute University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Schoubben A, Blasi P, Giovagnoli S, Perioli L, Rossi C, Ricci M. Novel composite microparticles for protein stabilization and delivery. Eur J Pharm Sci 2009; 36:226-34. [DOI: 10.1016/j.ejps.2008.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/16/2008] [Accepted: 09/21/2008] [Indexed: 11/24/2022]
|
31
|
Yadav AV, Mote HH. Development of biodegradable starch microspheres for intranasal delivery. Indian J Pharm Sci 2008; 70:170-4. [PMID: 20046707 PMCID: PMC2792480 DOI: 10.4103/0250-474x.41450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 01/16/2008] [Accepted: 03/06/2008] [Indexed: 11/04/2022] Open
Abstract
Domperidone microspheres for intranasal administration were prepared by emulsification crosslinking technique. Starch a biodegradable polymer was used in preparation of microspheres using epichlorhydrine as cross-linking agent. The formulation variables were drug concentration and polymer concentration and batch of drug free microsphere was prepared for comparisons. All the formulations were evaluated for particle size, morphological characteristics, percentage drug encapsulation, equilibrium swelling degree, percentage mucoadhesion, bioadhesive strength, and in vitro diffusion study using nasal cell. Spherical microspheres were obtained in all batches with mean diameter in the range of above 22.8 to 102.63 mum. They showed good mucoadhesive property and swelling behaviour. The in vitro release was found in the range of 73.11% to 86.21%. Concentration of both polymer and drug affect in vitro release of drug.
Collapse
Affiliation(s)
- A. V. Yadav
- Department of Biopharmaceutics, Government College of Pharmacy, Karad-415 124, India
| | - H. H. Mote
- Department of Biopharmaceutics, Government College of Pharmacy, Karad-415 124, India
| |
Collapse
|
32
|
Subramanian GM, Fiscella M, Lamousé-Smith A, Zeuzem S, McHutchison JG. Albinterferon alpha-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nat Biotechnol 2008; 25:1411-9. [PMID: 18066038 DOI: 10.1038/nbt1364] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment regimens based on the use of interferon-alpha (IFN-alpha) remain the cornerstone of therapy for chronic hepatitis C virus infection, which affects nearly 170 million people worldwide. Treatment options include unmodified IFN-alpha given three times weekly or pegylated IFNs given once weekly. The albumin-fusion platform takes advantage of the long half-life of human albumin to provide a new treatment approach that allows the dosing frequency of IFN-alpha to be reduced in individuals with chronic hepatitis C. Albinterferon alpha-2b (alb-IFN), a recombinant polypeptide composed of IFN-alpha2b genetically fused to human albumin, has an extended half-life and early evidence indicates that it is efficacious and well tolerated. Pharmacodynamic modeling supports treatment with alb-IFN at 2- or 4-week intervals. Phase 3 registration trials are in progress. The albumin-fusion platform is currently being applied to other important bioactive peptides with short half-lives. These fusion proteins, which are at present in different phases of clinical development, might lead to improved therapies across a broad range of diseases.
Collapse
Affiliation(s)
- G Mani Subramanian
- Human Genome Sciences, Inc., 14200 Shady Grove Road, Rockville, Maryland 21042, USA.
| | | | | | | | | |
Collapse
|
33
|
Giteau A, Venier-Julienne M, Aubert-Pouëssel A, Benoit J. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350:14-26. [DOI: 10.1016/j.ijpharm.2007.11.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/06/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
|
34
|
Giovagnoli S, Blasi P, Ricci M, Schoubben A, Perioli L, Rossi C. Physicochemical characterization and release mechanism of a novel prednisone biodegradable microsphere formulation. J Pharm Sci 2008; 97:303-17. [PMID: 17721943 DOI: 10.1002/jps.21073] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this work was the characterization of a new formulation of prednisone long-term controlled release biodegradable microspheres. Poly(DL-lactide-co-glycolide) (PLGA) polymers were used for MS preparation. A S/O/W solvent evaporation method was employed for prednisone entrapment. The system was characterized by using UV spectrophotometry, particle sizing, scanning electron microscopy, differential scanning calorimetry, X rays diffractometry, and microRaman spectroscopy. The release mechanism was studied by fitting Weibull, Peppas, Higuchi, and zero order kinetic models. The microspheres (MS) showed a good encapsulation efficiency and morphology, a suitable size and long-term release profile. Burst release was seen to depend on crystalline prednisone distributing close to the MS surface, and no particular prednisone-polymer interaction occurred. Weibull and Peppas were the best fitting models. Prednisone was released from PLGA MS following a Fickian diffusion and case II transport for higher molecular weight (MW) polymers, and a more complex mechanism involving solubilization, diffusion, and erosion, for low MW PLGA. Fully characterized PLGA MS may represent a good tool for a long-term delivery of prednisone in low-dose regimen treatments.
Collapse
Affiliation(s)
- Stefano Giovagnoli
- Department of Chemistry and Technology of Drugs, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Ghahremankhani AA, Dorkoosh F, Dinarvand R. PLGA-PEG-PLGA tri-block copolymers as an in-situ gel forming system for calcitonin delivery. Polym Bull (Berl) 2007. [DOI: 10.1007/s00289-007-0807-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Yamamura S, Takahira R, Momose Y. Crystallization Kinetics of Amorphous Griseofulvin by Pattern Fitting Procedure Using X-Ray Diffraction Data. Pharm Res 2007; 24:880-7. [PMID: 17372690 DOI: 10.1007/s11095-006-9204-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 12/04/2006] [Indexed: 11/27/2022]
Abstract
PURPOSE A pattern fitting procedure using X-ray powder diffraction patterns was applied to study the crystallization kinetics of amorphous griseofulvin. From the optimized parameters obtained by pattern fitting, a change in the quantity and quality of griseofulvin crystals with crystallization was also investigated. MATERIALS AND METHODS Amorphous griseofulvin was prepared by cooling the melts followed by pulverization. X-ray diffraction patterns of amorphous griseofulvin were repeatedly measured every 20 h. The observed pattern was separated into crystalline diffraction intensity and amorphous scattering intensity by the nonlinear least-squares procedure. RESULTS The fitting between the observed and simulated diffraction patterns was satisfactorily independent of the degree of crystallinity. Since a good linear relationship was found in a plot of amorphous scattering intensity against crystalline diffraction intensity, the degree of crystallinity can be determined according to Hermans' method. The diffraction peak width increased with higher diffraction angles with crystallization. The crystallization was biphasic: fast and slow crystallization with the growth of low disordered crystals and disordered crystals, respectively. CONCLUSION The pattern fitting procedure is a powerful tool to analyze the X-ray diffraction patterns of semicrystalline materials. This procedure can simultaneously analyze the degree of crystallinity and crystal disorder in semicrystalline samples during crystallization.
Collapse
Affiliation(s)
- Shigeo Yamamura
- School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan.
| | | | | |
Collapse
|
37
|
Patachia S, Valente AJ, Baciu C. Effect of non-associated electrolyte solutions on the behaviour of poly(vinyl alcohol)-based hydrogels. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2006.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Celestin Youan BB. Influence of protein content on the physicochemistry of poly(ε-caprolactone) microparticles. J Appl Polym Sci 2006. [DOI: 10.1002/app.23475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Jostel A, Shalet SM. Prospects for the Development of Long-Acting Formulations of Human Somatropin. ACTA ACUST UNITED AC 2006; 5:139-45. [PMID: 16677056 DOI: 10.2165/00024677-200605030-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In healthy humans, growth hormone (GH) is secreted in distinct pulses with an underlying nyctohemeral pattern. Current forms of somatropin replacement are unable to closely mimic such a release pattern, but are still able to exert the beneficial action of GH. A limited number of short-term studies in rodents and humans suggest that longitudinal growth may be superior when somatropin is given with a pulsatile mode of administration, whereas hepatic insulin-like growth factor-I generation and beneficial changes in body composition appear to be equal or even enhanced with continuous somatropin administration.Recent developments in drug delivery technology have allowed the use of slow-release preparations of somatropin in humans. The most successful technology so far has been the encapsulation of somatropin molecules in poly(D,L-lactic-co-glycolic acid) biodegradable microspheres. Pharmacokinetic and pharmacodynamic data have been published on two such preparations; Nutropin Depot((R)) and hGH-Biosphere((R)). The latter has a superior release profile, but outcomes data from multicenter trials in both children and adults have been presented for the former: catch-up growth was observed in children, although to a lesser degree than historic comparative data obtained with the use of daily somatropin injections and the effects on metabolic derangements in GH-deficient patients appeared similar to those observed with daily injections. Improved sustained-release somatropin preparations will need further study of their long-term efficacy, but, if successful, will be highly attractive in terms of patient compliance and convenience.
Collapse
Affiliation(s)
- Andreas Jostel
- Department of Endocrinology, Christie Hospital, Manchester, UK
| | | |
Collapse
|
40
|
Bilati U, Allémann E, Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech 2005; 6:E594-604. [PMID: 16408861 PMCID: PMC2750607 DOI: 10.1208/pt060474] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The goal of this study was to investigate the entrapment of 3 different model proteins (tetanus toxoid, lysozyme, and insulin) into poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) nanoparticles and to address process-related stability issues. For that purpose, a modified nanoprecipitation method as well as 2 emulsion-based encapsulation techniques (ie, a solid-in oil-in water (s/o/w) and a double emulsion (w(1)/o/w(2)) method) were used. The main modification of nanoprecipitation involved the use of a wide range of miscible organic solvents such as dimethylsulfoxide and ethanol instead of the common acetone and water. The results obtained showed that tetanus toxoid and lysozyme were efficiently incorporated by the double emulsion procedure when ethyl acetate was used as solvent (>80% entrapment efficiency), whereas it was necessary to use methylene chloride to achieve high insulin entrapment efficiencies. The use of the s/o/w method or the formation of a more hydrophobic protein-surfactant ion pair did not improve protein loading. The nanoprecipitation method led to a homogenous population of small nanoparticles (with size ranging from approximately 130 to 560 nm) and in some cases also improved experimental drug loadings, especially for lysozyme (entrapment efficiency > 90%). With respect to drug content determination, a simple and quick matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method provided results very close to those obtained by reverse phase-high-performance liquid chromatography. With respect to protein stability, the duration and intensity of sonication were not a concern for tetanus toxoid, which retained more than 95% of its antigenicity after treatment for 1 minute. Only a high methylene chloride:water ratio was shown to slightly decrease toxoid antigenicity. Finally, no more than 3.3% of A21 desamido insulin and only traces of covalent insulin dimer were detected in nanoparticles. In conclusion, both the double emulsion and nanoprecipitation methods allowed efficient protein encapsulation. MALDI-TOF MS allowed accurate drug content determination. The manufacturing processes evaluated did not damage the primary structure of insulin.
Collapse
Affiliation(s)
- Ugo Bilati
- School of Pharmacy, Ecole de Pharmacie Genève-Lausanne, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Eric Allémann
- School of Pharmacy, Ecole de Pharmacie Genève-Lausanne, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Eric Doelker
- School of Pharmacy, Ecole de Pharmacie Genève-Lausanne, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
41
|
Desai KGH. Preparation and characteristics of high-amylose corn starch/pectin blend microparticles: a technical note. AAPS PharmSciTech 2005; 6:E202-8. [PMID: 16353979 PMCID: PMC2750533 DOI: 10.1208/pt060230] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kashappa Goud H Desai
- School of Life Sciences and Biotechnology, Korea University, 1, 5-Ka, Anam-Dong, Sungbuk-ku, Seoul-136-701, South Korea.
| |
Collapse
|
42
|
Patel JK, Patel RP, Amin AF, Patel MM. Formulation and evaluation of mucoadhesive glipizide microspheres. AAPS PharmSciTech 2005; 6:E49-55. [PMID: 16353963 PMCID: PMC2750411 DOI: 10.1208/pt060110] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to formulate and systematically evaluate in vitro and in vivo performances of mucoadhesive microspheres of glipizide. Glipizide microspheres containing chitosan were prepared by simple emulsification phase separation technique using glutaraldehyde as a cross-linking agent. Results of preliminary trials indicate that volume of cross-linking agent, time for cross-linking, polymer-to-drug ratio, and speed of rotation affected characteristics of microspheres. Microspheres were discrete, spherical, and free flowing. The microspheres exhibited good mucoadhesive property in the in vitro wash-off test and also showed a high percentage drug entrapment efficiency. A 3(2) full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio (X(1) ), and stirring speed (X(2) ) on dependent variables percentage mucoadhesion, t(80), drug entrapment efficiency, and swelling index. The best batch exhibited a high drug entrapment efficiency of 75% and a swelling index of 1.42; percentage mucoadhesion after 1 hour was 78%. The drug release was also sustained for more than 12 hours. The polymer-to-drug ratio had a more significant effect on the dependent variables. In vivo testing of the mucoadhesive microspheres to albino Wistar rats demonstrated significant hypoglycemic effect of glipizide.
Collapse
Affiliation(s)
- Jayvadan K Patel
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat Vidyanagar, Mehsana-Gozaria Highway, Kherva-382711, India.
| | | | | | | |
Collapse
|
43
|
|
44
|
Giovagnoli S, Blasi P, Ricci M, Rossi C. Biodegradable microspheres as carriers for native superoxide dismutase and catalase delivery. AAPS PharmSciTech 2004; 5:e51. [PMID: 15760048 PMCID: PMC2750476 DOI: 10.1208/pt050451] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to encapsulate superoxide dismutase (SOD) and catalase (CAT) in biodegradable microspheres (MS) to obtain suitable sustained protein delivery. A modified water/oil/water double emulsion method was used for poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) PLA MS preparation co-encapsulating mannitol, trehalose, and PEG400 for protein stabilization. Size, morphology, porosity, mass loss, mass balance, in vitro release and in vitro activity were assessed by using BCA protein assay, scanning electron microscopy, BET surface area, and particle-sizing techniques. In vitro activity retention within MS was evaluated by nicotinammide adenine dinucleotide oxidation and H2O2 consumption assays. SOD encapsulation efficiency resulted in 30% to 34% for PLA MS and up to 51% for PLGA MS, whereas CAT encapsulation was 34% and 45% for PLGA and PLA MS, respectively. All MS were spherical with a smooth surface and low porosity. Particle mean diameters ranged from 10 to 17 mum. CAT release was prolonged, but the results were incomplete for both PLA and PLGA MS, whereas SOD was completely released from PLGA MS in a sustained manner after 2 months. CAT results were less stable and showed a stronger interaction than SOD with the polymers. Mass loss and mass balance correlated well with the release profiles. SOD and CAT in vitro activity was preserved in all the preparations, and SOD was better stabilized in PLGA MS. PLGA MS can be useful for SOD delivery in its native form and is promising as a new depot system.
Collapse
Affiliation(s)
- Stefano Giovagnoli
- Department of Chemistry and Technology of Drugs, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Paolo Blasi
- Department of Chemistry and Technology of Drugs, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Department of Chemistry and Technology of Drugs, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Carlo Rossi
- Department of Chemistry and Technology of Drugs, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
45
|
Yeo Y, Park K. Characterization of reservoir-type microcapsules made by the solvent exchange method. AAPS PharmSciTech 2004; 5:e52. [PMID: 15760049 PMCID: PMC2750477 DOI: 10.1208/pt050452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to characterize and optimize the properties of microcapsules produced by the solvent exchange method, a new microencapsulation technique. Reservoir-type microcapsules containing lysozyme as a model protein were produced using a coaxial ultrasonic atomizer under various formulation and instrument settings, and characterized with respect to in vitro release kinetics and stability of the encapsulated protein. The solvent exchange method could encapsulate protein drugs with high efficiency under an optimized condition and was mild enough to preserve the integrity of the encapsulated lysozyme during the process. In vitro release studies showed that the microcapsules could release proteins in a controllable manner. The solvent exchange method is a mild and simple microencapsulation method that could encapsulate lysozyme, maintaining its functional integrity.
Collapse
Affiliation(s)
- Yoon Yeo
- Department of Pharmaceutics and Biomedical Engineering, Purdue University, School of Pharmacy, 575 Stadium Mall Drive, Room G22, 47907-2051 West Lafayette, IN
| | - Kinam Park
- Department of Pharmaceutics and Biomedical Engineering, Purdue University, School of Pharmacy, 575 Stadium Mall Drive, Room G22, 47907-2051 West Lafayette, IN
| |
Collapse
|
46
|
Dhawan S, Singla AK, Sinha VR. Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS PharmSciTech 2004; 5:e67. [PMID: 15760064 PMCID: PMC2750492 DOI: 10.1208/pt050467] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The mucoadhesive properties of chitosan microspheres prepared by different methods were evaluated by studying the interaction between mucin and microspheres in aqueous solution. The interaction was determined by the measurement of mucin adsorbed on the microspheres. A strong interaction between chitosan microspheres and mucin was detected. The intensity of the interaction was dependent upon the method of preparation of chitosan microspheres and the amount of mucin added. The extent of mucus adsorption was proportional to the absolute values of the positive zeta potential of chitosan microspheres. The zeta potential in turn was found to be dependent upon the method of preparation of microspheres. The adsorption of type III mucin (1% sialic acid content) was interpreted using Freundlich or Langmuir adsorption isotherms. The values of r2 were greater for Langmuir isotherm as compared with Freundlich isotherm. The adsorption of a suspension of chitosan microspheres in the rat small intestine indicated that chitosan microspheres prepared by tripolyphosphate cross-linking and emulsification ionotropic gelation can be used as an excellent mucoadhesive delivery system. The microspheres prepared by glutaraldehyde and thermal cross-linking showed good stability in HCl as compared with microspheres prepared by tripolyphosphate and emulsification ionotropic gelation.
Collapse
Affiliation(s)
- Sanju Dhawan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India 160014.
| | | | | |
Collapse
|
47
|
Abstract
The aim of the present study was to prepare and evaluate a novel buccal adhesive system (NBAS) containing propranolol hydrochloride (PH). A special punch was fabricated and used while preparing an NBAS. Solubility of PH in phosphate buffer solution (pH 6.6), partition coefficient between phosphate buffer (pH 6.6) and 1-octanol, and permeability coefficient through the porcine buccal mucosa were performed and found to be 74.66 mg/mL, 5.17, and 5.6, respectively. Stability of NBAS was determined in natural human saliva, and it was found that both PH and device are stable in human saliva. NBAS was evaluated by weight uniformity, thickness, hardness, friability, swelling, mucoadhesive strength, in vitro drug release, and in vivo human acceptability studies. Swelling index was higher (4.4) for formulations containing hydroxyl propyl methyl cellulose (HPMC) K4M alone, and it decreases with its decreasing concentration in the NBAS. Mucoadhesive strength (MS) was measured by using a modified apparatus. All NBASs showed higher MS with porcine buccal mucosa when compared with that of rabbit buccal mucosa. NBASs containing carbopol (CP) 934P and HPMC K4M at the ratio of 1:1 showed higher MS (44.76 g) with porcine buccal mucosa when compared with 1:2 (39.76 g), 0:1 (23.29 g), and 1:0 (22.22 g) ratios, respectively. The mechanism of PH release was found to be by non-Fickian diffusion (value of "n" between 0.5 and 1.0) and followed first order kinetics. In vivo human acceptability study showed that the newly prepared NBAS was comfortable in the human buccal cavity. It can be concluded that NBAS is a superior, novel system that overcomes the drawback associated with the conventional buccal adhesive tablet.
Collapse
Affiliation(s)
- K Gh Desai
- Graduate School of Biotechnology, Korea University, 1, 5-ka, Anam-Dong, Sungbuk-ku, Seoul-136-701, South Korea.
| | | |
Collapse
|
48
|
Effect of vacuum drying on protein-mannitol interactions: The physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech 2004. [DOI: 10.1007/bf02830578] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Sharma VK, Kalonia DS. Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state. AAPS PharmSciTech 2004; 5:E10. [PMID: 15198531 PMCID: PMC2784861 DOI: 10.1208/pt050110] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of the present studies was to systematically investigate protein-mannitol interactions using vacuum drying, to obtain a better understanding of the effect of protein/mannitol wt/wt ratios on the physical state of mannitol and protein secondary structure in the dried state. Solutions containing beta-lactoglobulin (betaLg):mannitol (1:1-1:15 wt/wt) were vacuum dried at 5 degrees C under 3000 mTorr of pressure. The physical state of mannitol was studied using x-ray powder diffractometry (XRPD), polarized light microscopy (PLM), Fourier-transform infrared (FTIR) spectroscopy, and modulated differential scanning calorimetry (MDSC). XRPD studies indicated that mannitol remained amorphous up to 1:5 wt/wt betaLg:mannitol ratio, whereas PLM showed the presence of crystals of mannitol in all dried samples except for the 1:1 wt/wt betaLg:mannitol dried sample. FTIR studies indicated that a small proportion of crystalline mannitol was present along with the amorphous mannitol in dried samples at lower (less than 1:5 wt/wt) betaLg:mannitol ratios. The T(g) of the dried 1:1 wt/wt betaLg:mannitol sample was observed at 33.4 degrees C in MDSC studies, which indicated that at least a part of mannitol co-existed with protein in a single amorphous phase. Evaluation of the crystallization exotherms indicated that irrespective of the betaLg:protein wt/wt ratio in the initial sample, the protein to amorphous mannitol ratio was below 1:1 wt/wt in all dried samples. Second-derivative FTIR studies on dried betaLg and recombinant human interferon alpha-2a samples showed that mannitol affected protein secondary structure to a varying degree depending on the overall mannitol content in the dried sample and the type of protein.
Collapse
Affiliation(s)
- Vikas K. Sharma
- />Department of Pharmaceutical Sciences, U-2092 School of Pharmacy, University of Connecticut, 06269 Storrs, CT
| | - Devendra S. Kalonia
- />Department of Pharmaceutical Sciences, U-2092 School of Pharmacy, University of Connecticut, 06269 Storrs, CT
| |
Collapse
|
50
|
Singh S, Singh J. Effect of polyols on the conformational stability and biological activity of a model protein lysozyme. AAPS PharmSciTech 2003; 4:E42. [PMID: 14621974 PMCID: PMC2750635 DOI: 10.1208/pt040342] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 07/30/2003] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the stabilizing action of polyols against various protein degradation mechanisms (eg, aggregation, deamidation, oxidation), using a model protein lysozyme. Differential scanning calorimeter (DSC) was used to measure the thermodynamic parameters, mid point transition temperature and calorimetric enthalpy, in order to evaluate conformational stability. Enzyme activity assay was used to corroborate the DSC results. Mannitol, sucrose, lactose, glycerol, and propylene glycol were used as polyols to stabilize lysozyme against aggregation, deamidation, and oxidation. Mannitol was found to stabilize lysozyme against aggregation, sucrose against deamidation both at neutral pH and at acidic pH, and lactose against oxidation. Stabilizers that provided greater conformational stability of lysozyme against various degradation mechanisms also protected specific enzyme activity to a greater extent. It was concluded that DSC and bioassay could be valuable tools for screening stabilizers in protein formulations.
Collapse
Affiliation(s)
- Somnath Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, 58105 Fargo, ND
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, NE
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, 58105 Fargo, ND
| |
Collapse
|