1
|
Kaur Jawanda I, Soni T, Kumari S, Prabha V. Deciphering the potential of proteomic-based biomarkers in women's reproductive diseases: empowering precision medicine in gynecology. Biomarkers 2024; 29:7-17. [PMID: 38252065 DOI: 10.1080/1354750x.2024.2308827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
CONTEXT Gynecological disorders represent a complex set of malignancies that result from a diverse array of molecular changes affecting the lives of over a million women worldwide. Ovarian, Endometrial, and Cervical cancers, Endometriosis, PCOS are the most prevalent ones that pose a grave threat to women's health. Proteomics has emerged as an invaluable tool for developing novel biomarkers, screening methods, and targeted therapeutic agents for gynecological disorders. Some of these biomarkers have been approved by the FDA, but regrettably, they have a constrained diagnostic accuracy in early-stage diagnosis as all of these biomarkers lack sensitivity and specificity. Lately, high-throughput proteomics technologies have made significant strides, allowing for identification of potential biomarkers with improved sensitivity and specificity. However, limited successes have been shown with translation of these discoveries into clinical practice. OBJECTIVE This review aims to provide a comprehensive overview of the current and potential protein biomarkers for gynecological cancers, endometriosis and PCOS, discusses recent advances and challenges, and highlights future directions for the field. CONCLUSION We propose that proteomics holds great promise as a powerful tool to revolutionize the fight against female reproductive diseases and can ultimately improve personalized patient outcomes in women's biomedicine.
Collapse
Affiliation(s)
| | - Thomson Soni
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Seema Kumari
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vijay Prabha
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
2
|
Gardner L, Kostarelos K, Mallick P, Dive C, Hadjidemetriou M. Nano-omics: nanotechnology-based multidimensional harvesting of the blood-circulating cancerome. Nat Rev Clin Oncol 2022; 19:551-561. [PMID: 35739399 DOI: 10.1038/s41571-022-00645-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Over the past decade, the development of 'simple' blood tests that enable cancer screening, diagnosis or monitoring and facilitate the design of personalized therapies without the need for invasive tumour biopsy sampling has been a core ambition in cancer research. Data emerging from ongoing biomarker development efforts indicate that multiple markers, used individually or as part of a multimodal panel, are required to enhance the sensitivity and specificity of assays for early stage cancer detection. The discovery of cancer-associated molecular alterations that are reflected in blood at multiple dimensions (genome, epigenome, transcriptome, proteome and metabolome) and integration of the resultant multi-omics data have the potential to uncover novel biomarkers as well as to further elucidate the underlying molecular pathways. Herein, we review key advances in multi-omics liquid biopsy approaches and introduce the 'nano-omics' paradigm: the development and utilization of nanotechnology tools for the enrichment and subsequent omics analysis of the blood-circulating cancerome.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), UAB Campus, Barcelona, Spain
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, California, USA
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Ghose A, Gullapalli SVN, Chohan N, Bolina A, Moschetta M, Rassy E, Boussios S. Applications of Proteomics in Ovarian Cancer: Dawn of a New Era. Proteomes 2022; 10:proteomes10020016. [PMID: 35645374 PMCID: PMC9150001 DOI: 10.3390/proteomes10020016] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
The ability to identify ovarian cancer (OC) at its earliest stages remains a challenge. The patients present an advanced stage at diagnosis. This heterogeneous disease has distinguishable etiology and molecular biology. Next-generation sequencing changed clinical diagnostic testing, allowing assessment of multiple genes, simultaneously, in a faster and cheaper manner than sequential single gene analysis. Technologies of proteomics, such as mass spectrometry (MS) and protein array analysis, have advanced the dissection of the underlying molecular signaling events and the proteomic characterization of OC. Proteomics analysis of OC, as well as their adaptive responses to therapy, can uncover new therapeutic choices, which can reduce the emergence of drug resistance and potentially improve patient outcomes. There is an urgent need to better understand how the genomic and epigenomic heterogeneity intrinsic to OC is reflected at the protein level, and how this information could potentially lead to prolonged survival.
Collapse
Affiliation(s)
- Aruni Ghose
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London EC1A 7BE, UK; (A.G.); (N.C.)
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Division of Research, Academics and Cancer Control, Saroj Gupta Cancer Centre and Research Institute, Kolkata 700063, India
| | | | - Naila Chohan
- Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew’s Hospital, Barts Health NHS Trust, London EC1A 7BE, UK; (A.G.); (N.C.)
| | - Anita Bolina
- Department of Haematology, Clatterbridge Cancer Centre Liverpool, The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool L7 8YA, UK;
| | - Michele Moschetta
- Novartis Institutes for BioMedical Research, 4033 Basel, Switzerland;
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Correspondence: or or
| |
Collapse
|
4
|
Hernandez-Leon SG, Sarabia Sainz JAI, Ramos-Clamont Montfort G, Huerta-Ocampo JÁ, Ballesteros MN, Guzman-Partida AM, Robles-Burgueño MDR, Vazquez-Moreno L. Nanoproteomic Approach for Isolation and Identification of Potential Biomarkers in Human Urine from Adults with Normal Weight, Overweight and Obesity. Molecules 2021; 26:1803. [PMID: 33806905 PMCID: PMC8004714 DOI: 10.3390/molecules26061803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
In this work, previously synthesized and characterized core-shell silica nanoparticles (FCSNP) functionalized with immobilized molecular bait, Cibacron blue, and a porous polymeric bis-acrylamide shell were incubated with pooled urine samples from adult women or men with normal weight, overweight or obesity for the isolation of potential biomarkers. A total of 30 individuals (15 woman and 15 men) were included. FCSNP allowed the capture of a variety of low molecular weight (LMW) proteins as evidenced by mass spectrometry (MS) and the exclusion of high molecular weight (HMW) proteins (>34 kDa) as demonstrated by SDS-PAGE and 2D SDS-PAGE. A total of 36 proteins were successfully identified by MS and homology database searching against the Homo sapiens subset of the Swiss-Prot database. Identified proteins were grouped into different clusters according to their abundance patterns. Four proteins were found only in women and five only in men, whereas 27 proteins were in urine from both genders with different abundance patterns. Based on these results, this new approach represents an alternative tool for isolation and identification of urinary biomarkers.
Collapse
Affiliation(s)
- Sergio G. Hernandez-Leon
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| | - Jose Andre-i Sarabia Sainz
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora 83190, Mexico;
| | - Gabriela Ramos-Clamont Montfort
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| | - José Ángel Huerta-Ocampo
- CONACyT-Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico;
| | - Martha Nydia Ballesteros
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| | - Ana M. Guzman-Partida
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| | - María del Refugio Robles-Burgueño
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| | - Luz Vazquez-Moreno
- Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, col. La Victoria, Hermosillo, Sonora 83304, Mexico; (S.G.H.-L.); (G.R.-C.M.); (M.N.B.); (A.M.G.-P.); (M.d.R.R.-B.)
| |
Collapse
|
5
|
Fredolini C, Pathak KV, Paris L, Chapple KM, Tsantilas KA, Rosenow M, Tegeler TJ, Garcia-Mansfield K, Tamburro D, Zhou W, Russo P, Massarut S, Facchiano F, Belluco C, De Maria R, Garaci E, Liotta L, Petricoin EF, Pirrotte P. Shotgun proteomics coupled to nanoparticle-based biomarker enrichment reveals a novel panel of extracellular matrix proteins as candidate serum protein biomarkers for early-stage breast cancer detection. Breast Cancer Res 2020; 22:135. [PMID: 33267867 PMCID: PMC7709252 DOI: 10.1186/s13058-020-01373-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background The lack of specificity and high degree of false positive and false negative rates when using mammographic screening for detecting early-stage breast cancer is a critical issue. Blood-based molecular assays that could be used in adjunct with mammography for increased specificity and sensitivity could have profound clinical impact. Our objective was to discover and independently verify a panel of candidate blood-based biomarkers that could identify the earliest stages of breast cancer and complement current mammographic screening approaches. Methods We used affinity hydrogel nanoparticles coupled with LC-MS/MS analysis to enrich and analyze low-abundance proteins in serum samples from 20 patients with invasive ductal carcinoma (IDC) breast cancer and 20 female control individuals with positive mammograms and benign pathology at biopsy. We compared these results to those obtained from five cohorts of individuals diagnosed with cancer in organs other than breast (ovarian, lung, prostate, and colon cancer, as well as melanoma) to establish IDC-specific protein signatures. Twenty-four IDC candidate biomarkers were then verified by multiple reaction monitoring (LC-MRM) in an independent validation cohort of 60 serum samples specifically including earliest-stage breast cancer and benign controls (19 early-stage (T1a) IDC and 41 controls). Results In our discovery set, 56 proteins were increased in the serum samples from IDC patients, and 32 of these proteins were specific to IDC. Verification of a subset of these proteins in an independent cohort of early-stage T1a breast cancer yielded a panel of 4 proteins, ITGA2B (integrin subunit alpha IIb), FLNA (Filamin A), RAP1A (Ras-associated protein-1A), and TLN-1 (Talin-1), which classified breast cancer patients with 100% sensitivity and 85% specificity (AUC of 0.93). Conclusions Using a nanoparticle-based protein enrichment technology, we identified and verified a highly specific and sensitive protein signature indicative of early-stage breast cancer with no false positives when assessing benign and inflammatory controls. These markers have been previously reported in cell-ECM interaction and tumor microenvironment biology. Further studies with larger cohorts are needed to evaluate whether this biomarker panel improves the positive predictive value of mammography for breast cancer detection.
Collapse
Affiliation(s)
- Claudia Fredolini
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Khyatiben V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Luisa Paris
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Kristina M Chapple
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Kristine A Tsantilas
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Matthew Rosenow
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Tony J Tegeler
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA
| | - Davide Tamburro
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Paul Russo
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Samuele Massarut
- Department of Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, PN, Italy
| | - Francesco Facchiano
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Belluco
- Department of Surgical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, PN, Italy
| | - Ruggero De Maria
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - I.R.C.C.S, 00168, Rome, Italy
| | - Enrico Garaci
- University San Raffaele and Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Rome, Italy
| | - Lance Liotta
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics & Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 85004, USA.
| |
Collapse
|
6
|
Lin L, Zheng J, Zheng F, Cai Z, Yu Q. Advancing serum peptidomic profiling by data-independent acquisition for clear-cell renal cell carcinoma detection and biomarker discovery. J Proteomics 2020; 215:103671. [DOI: 10.1016/j.jprot.2020.103671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/28/2019] [Accepted: 01/26/2020] [Indexed: 12/20/2022]
|
7
|
Caputo D, Caracciolo G. Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Lett 2020; 470:191-196. [PMID: 31783084 DOI: 10.1016/j.canlet.2019.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often detected too late to allow adequate treatments with the result that patients are condemned to sufferings and early death. Most efforts have been therefore aimed at identifying sensitive PDAC biomarkers. Although biomarkers have numerous advantages, sample size, intra-individual variability, existence of several biases and confounding variables and cost of investigation make their clinical application challenging. In recent years, nanotechnology is providing new options for early cancer detection. Among recent discoveries, the concept is emerging that the protein corona, i.e. the layer of plasma proteins that surrounds nanomaterials in bodily fluids, is personalized. In particular, the protein corona of cancer patients is significantly different from that of healthy individuals. Herein, we review this concept with a particular focus on clinical relevance. We also discuss the recently developed nanoparticle-enabled blood (NEB) tests that demonstrated to be promising in discriminating PDAC patients from healthy volunteers by global change of the nanoparticle-protein corona. We conclude with a critical discussion of research perspectives aimed at further improving the prediction ability of the test.
Collapse
Affiliation(s)
- Damiano Caputo
- Department of Surgery, University Campus-Biomedico di Roma, Via Alvaro Del Portillo 200, 00128, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
8
|
Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci 2020; 17:2964-2973. [PMID: 33173417 PMCID: PMC7646098 DOI: 10.7150/ijms.49801] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is a leading cause of death and poor quality of life globally. Even though several strategies are devised to reduce deaths, reduce chronic pain and improve the quality of life, there remains a shortfall in the adequacies of these cancer therapies. Among the cardinal steps towards ensuring optimal cancer treatment are early detection of cancer cells and drug application with high specificity to reduce toxicities. Due to increased systemic toxicities and refractoriness with conventional cancer diagnostic and therapeutic tools, other strategies including nanotechnology are being employed to improve diagnosis and mitigate disease severity. Over the years, immunotherapeutic agents based on nanotechnology have been used for several cancer types to reduce the invasiveness of cancerous cells while sparing healthy cells at the target site. Nanomaterials including carbon nanotubes, polymeric micelles and liposomes have been used in cancer drug design where they have shown considerable pharmacokinetic and pharmacodynamic benefits in cancer diagnosis and treatment. In this review, we outline the commonly used nanomaterials which are employed in cancer diagnosis and therapy. We have highlighted the suitability of these nanomaterials for cancer management based on their physicochemical and biological properties. We further reviewed the challenges that are associated with the various nanomaterials which limit their uses and hamper their translatability into the clinical setting in certain cancer types.
Collapse
Affiliation(s)
- Cancan Jin
- Department of Oncology, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100,China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anthony Oppong-Gyebi
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jiangnan Hu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|
9
|
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019; 25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Nanoscience becomes one of the most cutting-edge research directions in recent years since it is gradually matured from basic to applied science. Nanoparticles (NPs) and nanomaterials (NMs) play important roles in various aspects of biomedicine science, and their influences on the environment have caused a whole range of uncertainties which require extensive attention. Due to the quantitative and dynamic information provided for human proteome, mass spectrometry (MS)-based quantitative proteomic technique has been a powerful tool for nanomedicine study. In this article, recent trends of progress and development in the nanomedicine of proteomics were discussed from quantification techniques and publicly available resources or tools. First, a variety of popular protein quantification techniques including labeling and label-free strategies applied to nanomedicine studies are overviewed and systematically discussed. Then, numerous protein profiling tools for data processing and postbiological statistical analysis and publicly available data repositories for providing enrichment MS raw data information sources are also discussed.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Xueying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
10
|
Rosado M, Silva R, G Bexiga M, G Jones J, Manadas B, Anjo SI. Advances in biomarker detection: Alternative approaches for blood-based biomarker detection. Adv Clin Chem 2019; 92:141-199. [PMID: 31472753 DOI: 10.1016/bs.acc.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the clinical setting, a blood sample is typically the starting point for biomarker search and discovery. Mass spectrometry (MS) is a highly sensitive and informative method for characterizing a very wide range of metabolites and proteins and is therefore a potentially powerful tool for biomarker discovery. However, the physicochemical characteristics of blood coupled with very large ranges of protein and metabolite concentrations present a significant technical obstacle for resolving and quantifying putative biomarkers by MS. Blood fractionation procedures are being developed to reduce the proteome/metabolome complexity and concentration ranges, allowing a greater diversity of analytes, including those at very low concentrations, to be quantified. In this chapter, several strategies for enriching and/or isolating specific blood components are summarized, including methods for the analysis of low and high molecular weight compounds, usually neglected in this type of assays, extracellular vesicles, and peripheral blood mononuclear cells (PBMCs). For each method, relevant practical information is presented for effective implementation.
Collapse
Affiliation(s)
- Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rafael Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mariana G Bexiga
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Potential Significance of Peptidome in Human Ovarian Cancer for Patients With Ascites. Int J Gynecol Cancer 2019; 28:355-362. [PMID: 29240604 DOI: 10.1097/igc.0000000000001166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the lethal gynecological malignancies. Most women affected by OC with malignant ascites will relapse. Peptidomics, as an emerging branch of proteomics, is more applied in screening of disease biomarkers, diagnosis, treatment, and monitoring. However, there is still little in-depth analysis about peptidomics study in OC with malignant ascites. METHODS A comparative peptidomic profiling of ascites fluid between 6 OC patients and 6 benign gynecological conditions using liquid chromatography-tandem mass spectrometry was analyzed. Afterward, the Ingenuity Pathway Analysis was performed to reveal the potential function of peptide-protein precursors. RESULTS A total of 4388 nonredundant peptides were identified, 104 of which were significantly differentially expressed in the ascites fluid of OC and benign gynecological conditions (>2-fold changes and P < 0.05): 52 peptides were upregulated while 52 peptides were downregulated. These peptides were imported into the Ingenuity Pathway Analysis and identified putative roles in OC. CONCLUSIONS We identified the peptidome patterns of patients with OC and benign gynecological conditions, and these differentially expressed that peptides might play an important role during occurrence and development of OC and will be in hope to explore bioactive peptides in the pathogenesis of OC.
Collapse
|
12
|
Hadjidemetriou M, Al-Ahmady Z, Buggio M, Swift J, Kostarelos K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 2019; 188:118-129. [PMID: 30343255 DOI: 10.1016/j.biomaterials.2018.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
Abstract
The prominent discrepancy between the significant investment towards plasma biomarker discovery and the very low number of biomarkers currently in clinical use stresses the need for discovery technologies. The discovery of protein biomarkers present in human blood by proteomics is tremendously challenging, owing to the large dynamic concentration range of blood proteins. Here, we describe the use of blood-circulating lipid-based nanoparticles (NPs) as a scavenging tool to comprehensively analyse the blood proteome. We aimed to exploit the spontaneous interaction of NPs with plasma proteins once injected in the bloodstream, known as 'protein corona', in order to facilitate the capture of tumor-specific molecules. We employed two different tumor models, a subcutaneous melanoma model (B16-F10) and human lung carcinoma xenograft model (A549) and comprehensively compared by mass spectrometry the in vivo protein coronas formed onto clinically used liposomes, intravenously administered in healthy and tumor-bearing mice. The results obtained demonstrated that blood-circulating liposomes surface-capture and amplify a wide range of different proteins including low molecular weight (MW) and low abundant tumor specific proteins (intracellular products of tissue leakage) that could not be detected by plasma analysis, performed in comparison. Most strikingly, the NP (liposomal) corona formed in the xenograft model was found to consist of murine host response proteins, as well as human proteins released from the inoculated and growing human cancer cells. This study offers direct evidence that the in vivo NP protein corona could be deemed as a valuable tool to enrich the blood proteomic analysis and to allow the discovery of potential biomarkers in experimental disease models.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Maurizio Buggio
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine & Health, Biological, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
13
|
Contribution of the plasma and lymph Degradome and Peptidome to the MHC Ligandome. Immunogenetics 2018; 71:203-216. [PMID: 30343358 DOI: 10.1007/s00251-018-1093-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Every biological fluid, blood, interstitial fluid and lymph, urine, saliva, lacrimal fluid, nipple aspirate, and spinal fluid, contains a peptidome-degradome derived from the cellular secretome along with byproducts of the metabolic/catabolic activities of each parenchymal organ. Clement et al. (J Proteomics 78:172-187, 2013), Clement et al. (J Biol Chem 291:5576-5595, 2016), Clement et al. (PLoS One 5:e9863, 2010), Clement et al. (Trends Immunol 32:6-11, 2011), Clement et al. (Front Immunol 4:424, 2013), Geho et al. (Curr Opin Chem Biol 10, 50-55, 2006), Interewicz et al. (Lymphology 37:65‑72, 2004), Leak et al. (Proteomics 4:753‑765, 2004), Popova et al. (PLoS One 9:e110873, 2014), Zhou et al. (Electrophoresis 25:1289‑1298, 2004), D'Alessandro et al. (Shock 42:509‑517, 2014), Dzieciatkowska et al. (Shock 42:485‑498, 2014), Dzieciatkowska et al. (Shock 35:331‑338, 2011), Jordan et al. (J Surg Res 143:130‑135, 2007), Peltz et al. (Surgery 146:347‑357, 2009), Zurawel et al. (Clin Proteomics 8:1, 2011), Ling et al. (Clin Proteomics 6:175‑193, 2010), Sturm et al. (Nat Commun 4:1616, 2013). Over the last decade, qualitative and quantitative analysis of the biological fluids peptidome and degradome have provided a dynamic measurement of tissue homeostasis as well as the tissue response to pathological damage. Proteomic profiling has mapped several of the proteases and resulting degradation by-products derived from cell cycle progression, organ/tissue remodeling and cellular growth, physiological apoptosis, hemostasis, and angiogenesis. Currently, a growing interest lies in the degradome observed during pathological conditions such as cancer, autoimmune diseases, and immune responses to pathogens as a way to exploit biological fluids as liquid biopsies for biomarker discovery Dzieciatkowska et al. (Shock 42:485-498, 2014), Dzieciatkowska et al. (Shock 35:331-338, 2011), Ling et al. (Clin Proteomics 6:175-193, 2010), Ugalde et al. (Methods Mol Biol 622:3-29, 2010), Quesada et al. (Nucleic Acids Res 37:D239‑243, 2009), Cal et al. (Front Biosci 12, 4661-4669, 2007), Shen et al. (PLoS One 5:e13133, 2010a), Antwi et al. (Mol Immunol 46:2931-2937, 2009a), Antwi et al. (J Proteome Res 8:4722‑4731, 2009b), Bedin et al. (J Cell Physiol 231, 915‑925, 2016), Bery et al. (Clin Proteomics 11:13, 2014), Bhalla et al. (Sci Rep 7:1511, 2017), Fan et al. (Diagn Pathol 7:45, 2012a), Fang et al. (Shock 34:291‑298, 2010), Fiedler et al. (Clin Cancer Res 15:3812‑3819, 2009), Fredolini et al. (AAPS J 12:504‑518, 2010), Greening et al. (Enzymes 42:27‑64, 2017), He et al. (PLoS One 8:e63724, 2013), Huang et al. (Int J Gynecol Cancer 28:355‑362, 2018), Hashiguchi et al. (Med Hypotheses 73:760‑763, 2009), Liotta and Petricoin (J Clin Invest 116:26‑30, 2006), Petricoin et al. (Nat Rev Cancer 6:961‑967, 2006), Shen et al. (J Proteome Res 9:2339‑2346, 2010a), Shen et al. (J Proteome Res 5:3154‑3160, 2006), Smith (Clin Proteomics 11:23, 2014), Wang et al. (Oncotarget 8:59376‑59386, 2017), Yang et al. (Clin Exp Med 12:79‑87, 2012a), Yang et al. (J Clin Lab Anal 26:148‑154, 2012b), Yang et al. (Anat Rec (Hoboken) 293:2027‑2033, 2010), Zapico-Muniz et al. (Pancreas 39:1293‑1298, 2010), Villanueva et al. (Mol Cell Proteomics 5:1840‑1852, 2006), Robbins et al. (J Clin Oncol 23:4835‑4837, 2005), Klupczynska et al. (Int J Mol Sci 17:410, 2016). In this review, we focus on the current knowledge of the degradome/peptidome observed in two main biological fluids (plasma and lymph) during physiological and pathological conditions and its importance for immune surveillance.
Collapse
|
14
|
Conti A, Luchini A, Benassi MS, Magagnoli G, Pierini M, Piccinni-Leopardi M, Quattrini I, Pollino S, Picci P, Liotta LA, Pazzaglia L. Circulating Candidate Biomarkers in Giant Cell Tumors of Bone. Proteomics Clin Appl 2018; 12:e1800041. [DOI: 10.1002/prca.201800041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/17/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amalia Conti
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Maria Serena Benassi
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Giovanna Magagnoli
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Michela Pierini
- Chemotherapy Unit; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | | | - Irene Quattrini
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Serena Pollino
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Piero Picci
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Laura Pazzaglia
- Experimental Oncology Laboratory; IRCCS Rizzoli Orthopaedic Institute; Bologna Italy
| |
Collapse
|
15
|
Spreafico F, Bongarzone I, Pizzamiglio S, Magni R, Taverna E, De Bortoli M, Ciniselli CM, Barzanò E, Biassoni V, Luchini A, Liotta LA, Zhou W, Signore M, Verderio P, Massimino M. Proteomic analysis of cerebrospinal fluid from children with central nervous system tumors identifies candidate proteins relating to tumor metastatic spread. Oncotarget 2018; 8:46177-46190. [PMID: 28526811 PMCID: PMC5542258 DOI: 10.18632/oncotarget.17579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/11/2017] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the most common solid tumors in childhood. Since the sensitivity of combined cerebrospinal fluid (CSF) cytology and radiological neuroimaging in detecting meningeal metastases remains relatively low, we sought to characterize the CSF proteome of patients with CSF tumors to identify biomarkers predictive of metastatic spread. CSF samples from 27 children with brain tumors and 13 controls (extra-CNS non-Hodgkin lymphoma) were processed using core-shell hydrogel nanoparticles, and analyzed with reverse-phase liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS). Candidate proteins were identified with Fisher's exact test and/or a univariate logistic regression model. Reverse phase protein array (RPPA), Western blot (WB), and ELISA were used in the training set and in an independent set of CFS samples (60 cases, 14 controls) to validate our discovery findings. Among the 558 non-redundant proteins identified by LC-MS/MS, 147 were missing from the CSF database at http://www.biosino.org. Fourteen of the 26 final top-candidate proteins were chosen for validation with WB, RPPA and ELISA methods. Six proteins (type 1 collagen, insulin-like growth factor binding protein 4, procollagen C-endopeptidase enhancer 1, glial cell-line derived neurotrophic factor receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, neural proliferation and differentiation control protein-1) revealed the ability to discriminate metastatic cases from controls. Combining a unique dataset of CSFs from pediatric CNS tumors with a novel enabling nanotechnology led us to identify CSF proteins potentially related to metastatic status.
Collapse
Affiliation(s)
- Filippo Spreafico
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Italia Bongarzone
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Pizzamiglio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Elena Taverna
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maida De Bortoli
- Proteomics Laboratory, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara M Ciniselli
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Barzanò
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Michele Signore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Verderio
- Unit of Medical Statistics, Biometry and Bioinformatics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Department of Hematology and Pediatric Hematology-Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
16
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
17
|
Culver HR, Sharma I, Wechsler ME, Anslyn EV, Peppas NA. Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array. Analyst 2017; 142:3183-3193. [PMID: 28745734 PMCID: PMC5570555 DOI: 10.1039/c7an00787f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to the high cost and environmental instability of antibodies, there is precedent for developing synthetic molecular recognition agents for use in diagnostic sensors. While these materials typically have lower specificity than antibodies, their cross-reactivity makes them excellent candidates for use in differential sensing routines. In the current work, we design a set of charge-containing poly(N-isopropylacrylamide) (PNIPAM) nanogels for use as differential protein receptors in a turbidimetric sensor array. Specifically, NIPAM was copolymerized with methacrylic acid and modified via carbodiimide coupling to introduce sulfate, guanidinium, secondary amine, or primary amine groups. Modification of the ionizable groups in the network changed the physicochemical and protein binding properties of the nanogels. For high affinity protein-polymer interactions, turbidity of the nanogel solution increased, while for low affinity interactions minimal change in turbidity was observed. Thus, relative turbidity was used as input for multivariate analysis. Turbidimetric assays were performed in two buffers of different pH (i.e., 7.4 and 5.5), but comparable ionic strength, in order to improve differentiation. Using both buffers, it was possible to achieve 100% classification accuracy of eleven model protein biomarkers with as few as two of the nanogel receptors. Additionally, it was possible to detect changes in lysozyme concentration in a simulated tear fluid using the turbidimetric sensor array.
Collapse
Affiliation(s)
- Heidi R Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, USA.
| | | | | | | | | |
Collapse
|
18
|
Dai X, Song X, Rui C, Meng L, Xue X, Ding H, Shen R, Li J, Li J, Lu Y, Long W. Peptidome Analysis of Human Serum From Normal and Preeclamptic Pregnancies. J Cell Biochem 2017; 118:4341-4348. [PMID: 28430386 DOI: 10.1002/jcb.26087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a kind of disease that severely harms the health of pregnant women and infants. To better understand the molecular mechanisms involved in preeclampsia, we used liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) to construct a comparative peptidomic profiling of human serum between normal and preeclamptic pregnancies. A total of 201 peptides were confidently identified, with 21 up-regulated and three down-regulated. Further analysis indicated that these differentially expressed peptides correlate with enzyme regulator activity, biological regulation, and coagulation cascades occurring during pathological changes of preeclampsia. The identification of key peptides in serum may serve not only as a basis for better understanding and further exploring the etiology and pathogenesis of PE, but also as potential biomarkers and in providing targets for future therapy in PE, especially in early onset severe PE (sPE). J. Cell. Biochem. 118: 4341-4348, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaonan Dai
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xuejing Song
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China.,Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Li Meng
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xuan Xue
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Hongjuan Ding
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Rong Shen
- Nanjing Maternity and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Jun Li
- State Key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Jingyun Li
- State Key Laboratory of Reproductive Medicine, Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yuanqing Lu
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Wei Long
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| |
Collapse
|
19
|
Magni R, Luchini A. Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers. Methods Mol Biol 2017; 1606:103-113. [PMID: 28501996 DOI: 10.1007/978-1-4939-6990-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the recent years, a lot of emphasis has been placed on the discovery and detection of clinically relevant biomarkers. Biomarkers are crucial for the early detection of several diseases, and they play an important role in the improvement of current treatments, thus reducing patient mortality rate. Because biofluids account to 60% of the body mass, they represent a goldmine of significant biomarkers. Unfortunately, because of their low concentration in body fluids, their lability, and the presence of high abundance proteins (i.e., albumin and immunoglobulins), low abundance biomarkers are difficult to detect with mass spectrometry or immunoassays. Nanoparticles made of poly(N-isopropylacrylamide) (NIPAm) and functionalized with affinity reactive baits allow researchers to overcome these physiological barriers and in one single step capture, concentrate, and preserve labile biomarkers in complex body fluids (i.e. urine, blood, sweat, CSF). Although hydrogel nanoparticles have been largely studied and used as a drug delivery tool, our application focuses on their capturing abilities instead of the releasing of specific drug molecules. Once the functionalized nanoparticles are incubated with a biological fluid, small biomarkers are captured by the affinity baits while unwanted high abundance analytes are excluded. The potentially relevant biomarkers are then concentrated into small volumes. The concentration factor (up to 10,000-fold) successfully enhances the detection sensitivity of mass spectrometry and immunoassays allowing the detection of previously invisible proteins.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA.
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA
| |
Collapse
|
20
|
Conti A, Fredolini C, Tamburro D, Magagnoli G, Zhou W, Liotta LA, Picci P, Luchini A, Benassi MS. Identification of novel candidate circulating biomarkers for malignant soft tissue sarcomas: Correlation with metastatic progression. Proteomics 2016; 16:689-97. [PMID: 26699407 DOI: 10.1002/pmic.201500164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/19/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of rare tumors for which identification and validation of biological markers may improve clinical management. The fraction of low-molecular-weight (LMW) circulating proteins and fragments of proteins is a rich source of new potential biomarkers. To identify circulating biomarkers useful for STS early diagnosis and prognosis, we analyzed 53 high-grade STS sera using hydrogel core-shell nanoparticles that selectively entrap LMW proteins by size exclusion and affinity chromatography, protect them from degradation and amplify their concentration for mass spectrometry detection. Twenty-two analytes mostly involved in inflammatory and immunological response, showed a progressive increase from benign to malignant STS with a relative difference in abundance, more than 50% when compared to healthy control. 16 of these were higher in metastatic compared to non-metastatic tumors. Cox's regression analysis revealed a statistical significant association between the abundance of lactotransferrin (LTF) and complement factor H-related 5 (CFHR5) and risk of metastasis. In particular, CFHR5 was associated with the risk of metastasis. The role of circulating proteins involved in metastatic progression will be crucial for a better understanding of STS biology and patient management.
Collapse
Affiliation(s)
- Amalia Conti
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Giovanna Magagnoli
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Piero Picci
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
21
|
Meo AD, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7:52460-52474. [PMID: 27119500 PMCID: PMC5239567 DOI: 10.18632/oncotarget.8931] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Urological malignancies are a major cause of morbidity and mortality worldwide. Advances in early detection, diagnosis, prognosis and prediction of treatment response can significantly improve patient care. Proteomic and peptidomic profiling studies are at the center of kidney, prostate and bladder cancer biomarker discovery and have shown great promise for improved clinical assessment. Mass spectrometry (MS) is the most widely employed method for proteomic and peptidomic analyses. A number of MS platforms have been developed to facilitate accurate identification of clinically relevant markers in various complex biological samples including tissue, urine and blood. Furthermore, protein profiling studies have been instrumental in the successful introduction of several diagnostic multimarker tests into the clinic. In this review, we will provide a brief overview of high-throughput technologies for protein and peptide based biomarker discovery. We will also examine the current state of kidney, prostate and bladder cancer biomarker research as well as review the journey toward successful clinical implementation.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria D. Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada
| | - George M. Yousef
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Elzek MA, Rodland KD. Proteomics of ovarian cancer: functional insights and clinical applications. Cancer Metastasis Rev 2016; 34:83-96. [PMID: 25736266 DOI: 10.1007/s10555-014-9547-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics' contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. We propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.
Collapse
Affiliation(s)
- Mohamed A Elzek
- Egybiotech for Research and Biotechnology, Alexandria, Egypt,
| | | |
Collapse
|
23
|
Zaccaria A, Roux-Dalvai F, Bouamrani A, Mombrun A, Mossuz P, Monsarrat B, Berger F. Accessing to the minor proteome of red blood cells through the influence of the nanoparticle surface properties on the corona composition. Int J Nanomedicine 2015; 10:1869-83. [PMID: 25834426 PMCID: PMC4358650 DOI: 10.2147/ijn.s70503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle (NP)-protein interactions in complex samples have not yet been clearly understood. Nevertheless, several studies demonstrated that NP's physicochemical features significantly impact on the protein corona composition. Taking advantage of the NP potential to harvest different subsets of proteins, we assessed for the first time the capacity of three kinds of superparamagnetic NPs to highlight the erythrocyte minor proteome. Using both qualitative and quantitative proteomics approaches, nano-liquid chromatography-tandem mass spectrometry allowed the identification of 893 different proteins, confirming the reproducible capacity of NPs to increase the number of identified proteins, through a reduction of the sample concentration range and the capture of specific proteins on the three different surfaces. These NP-specific protein signatures revealed significant differences in their isoelectric point and molecular weight. Moreover, this NP strategy offered a deeper access to the erythrocyte proteome highlighting several signaling pathways implicated in important erythrocyte functions. The automated potentiality, the reproducibility, and the low-consuming sample demonstrate the strong compatibility of our strategy for large-scale clinical studies and may become a standardized sample preparation in future erythrocyte-associated proteomics studies.
Collapse
Affiliation(s)
| | - Florence Roux-Dalvai
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | | | | - Pascal Mossuz
- TIMC-THEREX UMR 5525 CNRS, UJF, CHU Grenoble, Grenoble, France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France ; Université de Toulouse, UPS, IPBS, Toulouse, France
| | | |
Collapse
|
24
|
Haller E, Lindner W, Lämmerhofer M. Gold nanoparticle-antibody conjugates for specific extraction and subsequent analysis by liquid chromatography-tandem mass spectrometry of malondialdehyde-modified low density lipoprotein as biomarker for cardiovascular risk. Anal Chim Acta 2014; 857:53-63. [PMID: 25604820 DOI: 10.1016/j.aca.2014.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/06/2014] [Accepted: 12/13/2014] [Indexed: 01/05/2023]
Abstract
Oxidized low-density lipoproteins (OxLDLs) like malondialdehyde-modified low-density lipoprotein (MDA-LDL) play a major role in atherosclerosis and have been proposed as useful biomarkers for oxidative stress. In this study, gold-nanoparticles (GNPs) were functionalized via distinct chemistries with anti-MDA-LDL antibodies (Abs) for selective recognition and capture of MDA-LDL from biological matrices. The study focused on optimization of binding affinities and saturation capacities of the antiMDA-LDL-Ab-GNP bioconjugate by exploring distinct random and oriented immobilization approaches, such as (i) direct adsorptive attachment of Abs on the GNP surface, (ii) covalent bonding by amide coupling of Abs to carboxy-terminated-pegylated GNPs, (iii) oriented immobilization via oxidized carbohydrate moiety of the Ab on hydrazide-derivatized GNPs and (iv) cysteine-tagged protein A (cProtA)-bonded GNPs. Depending on immobilization chemistry, up to 3 antibodies per GNP could be immobilized as determined by ELISA. The highest binding capacity was achieved with the GNP-cProtA-Ab bioconjugate which yielded a saturation capacity of 2.24±0.04μgmL(-1) GNP suspension for MDA-LDL with an affinity Kd of 5.25±0.11×10(-10)M. The GNP-cProtA-antiMDA-LDL bioconjugate revealed high specificity for MDA-LDL over copper(II)-oxidized LDL as well as native human LDL. This clearly demonstrates the usefulness of the new GNP-Ab bioconjugates for specific extraction of MDA-LDL from plasma samples as biomarkers of oxidative stress. Their combination as specific immunoextraction nanomaterials with analysis by LC-MS/MS allows sensitive and selective detection of MDA-LDL in complex samples.
Collapse
Affiliation(s)
- Elisabeth Haller
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Wolfgang Lindner
- Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
| |
Collapse
|
25
|
Magni R, Espina BH, Liotta LA, Luchini A, Espina V. Hydrogel nanoparticle harvesting of plasma or urine for detecting low abundance proteins. J Vis Exp 2014:e51789. [PMID: 25145492 DOI: 10.3791/51789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University;
| |
Collapse
|
26
|
Liquid chromatography-mass spectrometry based serum peptidomic approach for renal clear cell carcinoma diagnosis. J Pharm Biomed Anal 2014; 100:175-183. [PMID: 25168216 DOI: 10.1016/j.jpba.2014.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/30/2014] [Accepted: 07/24/2014] [Indexed: 11/23/2022]
Abstract
Serum peptidomic approach was applied to investigate the peptidomic signature and discover the clinical biomarkers and biomarker patterns for RCC patients. The holistic orthogonal partial least-squares-discriminant analysis (OPLS-DA) based on qualified profile data successfully classified RCC patients from healthy controls, showing 100% sensitivity and specificity. Following critical criteria, several peptides presenting significant differences in serum level were picked out. The unsupervised hierarchical cluster analysis on those peptides was performed, showing 100% sensitivity and 93.3% specificity for RCC diagnosis regarding the present samples. Besides, receiver-operating characteristic (ROC) analysis was applied on single peptide biomarkers, with four peptides showing excellent predictive power. Among them, IYQLNSKLV and AGISMRSGDSPQD are reported for the first time for cancer detection.
Collapse
|
27
|
Smith CR, Batruch I, Bauça JM, Kosanam H, Ridley J, Bernardini MQ, Leung F, Diamandis EP, Kulasingam V. Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clin Proteomics 2014; 11:23. [PMID: 24982608 PMCID: PMC4065538 DOI: 10.1186/1559-0275-11-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background Ovarian cancer (OvCa) is the most lethal gynecological malignancy. The emergence of high-throughput technologies, such as mass spectrometry, has allowed for a paradigm shift in the way we search for novel biomarkers. Urine-based peptidomic profiling is a novel approach that may result in the discovery of noninvasive biomarkers for diagnosing patients with OvCa. In this study, the peptidome of urine from 6 ovarian cancer patients and 6 healthy controls was deciphered. Results Urine samples underwent ultrafiltration and the filtrate was subjected to solid phase extraction, followed by fractionation using strong cation exchange chromatography. These fractions were analyzed using an Orbitrap mass spectrometer. Over 4600 unique endogenous urine peptides arising from 713 proteins were catalogued, representing the largest urine peptidome reported to date. Each specimen was processed in triplicate and reproducibility at the protein (69-76%) and peptide (58-63%) levels were noted. More importantly, over 3100 unique peptides were detected solely in OvCa specimens. One such promising biomarker was leucine-rich alpha-2-glycoprotein (LRG1), where multiple peptides were found in all urines from OvCa patients, but only one peptide was found in one healthy control urine sample. Conclusions Mining the urine peptidome may yield highly promising novel OvCa biomarkers.
Collapse
Affiliation(s)
- Christopher R Smith
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ihor Batruch
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Josep Miquel Bauça
- Servei d'Anàlisis Clíniques, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Hari Kosanam
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Ridley
- Department of Psychosocial Oncology and Palliative Care, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada ; Division of Palliative Care, Department of Community and Palliative Medicine, University of Toronto, Toronto, ON, Canada
| | - Marcus Q Bernardini
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Felix Leung
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| | - Eleftherios P Diamandis
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| | - Vathany Kulasingam
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
28
|
The use of Nanotrap particles technology in capturing HIV-1 virions and viral proteins from infected cells. PLoS One 2014; 9:e96778. [PMID: 24820173 PMCID: PMC4018389 DOI: 10.1371/journal.pone.0096778] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/11/2014] [Indexed: 12/19/2022] Open
Abstract
HIV-1 infection results in a chronic but incurable illness since long-term HAART can keep the virus to an undetectable level. However, discontinuation of therapy rapidly increases viral burden. Moreover, patients under HAART frequently develop various metabolic disorders and HIV-associated neuronal disease. Today, the main challenge of HIV-1 research is the elimination of the residual virus in infected individuals. The current HIV-1 diagnostics are largely comprised of serological and nucleic acid based technologies. Our goal is to integrate the nanotrap technology into a standard research tool that will allow sensitive detection of HIV-1 infection. This study demonstrates that majority of HIV-1 virions in culture supernatants and Tat/Nef proteins spiked in culture medium can be captured by nanotrap particles. To determine the binding affinities of different baits, we incubated target molecules with nanotrap particles at room temperature. After short sequestration, materials were either eluted or remained attached to nanotrap particles prior to analysis. The unique affinity baits of nanotrap particles preferentially bound HIV-1 materials while excluded albumin. A high level capture of Tat or Tat peptide by NT082 and NT084 particles was measured by western blot (WB). Intracellular Nef protein was captured by NT080, while membrane-associated Nef was captured by NT086 and also detected by WB. Selective capture of HIV-1 particles by NT073 and NT086 was measured by reverse transcriptase assay, while capture of infectious HIV-1 by these nanoparticles was demonstrated by functional transactivation in TZM-bl cells. We also demonstrated specific capture of HIV-1 particles and exosomes-containing TAR-RNA in patients' serum by NT086 and NT082 particles, respectively, using specific qRT-PCR. Collectively, our data indicate that certain types of nanotrap particles selectively capture specific HIV-1 molecules, and we propose to use this technology as a platform to enhance HIV-1 detection by concentrating viral proteins and infectious virions from infected samples.
Collapse
|
29
|
Bery A, Leung F, Smith CR, Diamandis EP, Kulasingam V. Deciphering the ovarian cancer ascites fluid peptidome. Clin Proteomics 2014; 11:13. [PMID: 24694173 PMCID: PMC4230032 DOI: 10.1186/1559-0275-11-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/24/2014] [Indexed: 12/25/2022] Open
Abstract
Background Conventional proteomic approaches have thus far been unable to identify novel serum biomarkers for ovarian cancer that are more sensitive and specific than the current clinically used marker, CA-125. Because endogenous peptides are smaller and may enter the circulation more easily than proteins, a focus on the low-molecular-weight region may reveal novel biomarkers with enhanced sensitivity and specificity. In this study, we deciphered the peptidome of ascites fluid from 3 ovarian cancer patients and 3 benign individuals (ascites fluid from patients with liver cirrhosis). Results Following ultrafiltration of the ascites fluids to remove larger proteins, each filtrate was subjected to solid phase extraction and fractionated using strong cation exchange chromatography. The resultant fractions were analyzed using an Orbitrap mass spectrometer. We identified over 2000 unique endogenous peptides derived from 259 proteins. We then catalogued over 777 peptides that were found only in ovarian cancer ascites. Our list of peptides found in ovarian cancer specimens includes fragments derived from the proteins vitronectin, transketolase and haptoglobin. Conclusions Peptidomics may uncover previously undiscovered disease-specific endogenous peptides that warrant further investigation as biomarkers for ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
30
|
Shafagati N, Patanarut A, Luchini A, Lundberg L, Bailey C, Petricoin E, Liotta L, Narayanan A, Lepene B, Kehn-Hall K. The use of Nanotrap particles for biodefense and emerging infectious disease diagnostics. Pathog Dis 2014; 71:164-76. [PMID: 24449537 PMCID: PMC7108521 DOI: 10.1111/2049-632x.12136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 11/28/2022] Open
Abstract
Detection of early infectious disease may be challenging due to the low copy number of organisms present. To overcome this limitation and rapidly measure low concentrations of the pathogen, we developed a novel technology: Nanotrap particles, which are designed to capture, concentrate, and protect biomarkers from complex biofluids. Nanotrap particles are thermoresponsive hydrogels that are capable of antigen capture through the coupling of affinity baits to the particles. Here, we describe recent findings demonstrating that Nanotrap particles are able to capture live infectious virus, viral RNA, and viral proteins. Capture is possible even in complex mixtures such as serum and allows the concentration and protection of these analytes, providing increased performance of downstream assays. The Nanotrap particles are a versatile sample preparation technology that has far reaching implications for biomarker discovery and diagnostic assays.
Collapse
Affiliation(s)
- Nazly Shafagati
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Leung F, Diamandis EP, Kulasingam V. Ovarian Cancer Biomarkers. Adv Clin Chem 2014. [DOI: 10.1016/b978-0-12-801401-1.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Kim Y, Kislinger T. Novel approaches for the identification of biomarkers of aggressive prostate cancer. Genome Med 2013; 5:56. [PMID: 23809668 PMCID: PMC3706951 DOI: 10.1186/gm460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability to distinguish indolent from aggressive prostate tumors remains one of the greatest challenges in the management of this disease. Ongoing efforts to establish a panel of molecular signatures, comprising gene expression profiles, proteins, epigenetic patterns, or a combination of these alterations, are being propelled by rapid advancements in 'omics' technologies. The identification of such biomarkers in biological fluids is an especially attractive goal for clinical applications. Here, we summarize recent progress in the identification of candidate prognostic biomarkers of prostate cancer using biological fluid samples.
Collapse
Affiliation(s)
- Yunee Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7 ; Princess Margaret Cancer Center, University Health Network, Toronto, Canada M5G 1L7
| |
Collapse
|
33
|
Lee JE, Zamdborg L, Southey BR, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 2013; 12:585-93. [PMID: 23256577 DOI: 10.1021/pr300605p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammals the suprachiasmatic nucleus (SCN), the master circadian clock, is sensitive to light input via the optic chiasm and synchronizes many daily biological rhythms. Here we explore variations in the expression levels of neuropeptides present in the SCN of rats using a label-free quantification approach that is based on integrating peak intensities between daytime, Zeitgeber time (ZT) 6, and nighttime, ZT 18. From nine analyses comparing the levels between these two time points, 10 endogenous peptides derived from eight prohormones exhibited significant differences in their expression levels (adjusted p-value <0.05). Of these, seven peptides derived from six prohormones, including GRP, PACAP, and CART, exhibited ≥ 30% increases at ZT 18, and the VGRPEWWMDYQ peptide derived from proenkephalin A showed a >50% increase at nighttime. Several endogenous peptides showing statistically significant changes in this study have not been previously reported to alter their levels as a function of time of day, nor have they been implicated in prior functional SCN studies. This information on peptide expression changes serves as a resource for discovering unknown peptide regulators that affect circadian rhythms in the SCN.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Chemistry, Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Leung F, Musrap N, Diamandis EP, Kulasingam V. Advances in mass spectrometry-based technologies to direct personalized medicine in ovarian cancer. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Pin E, Fredolini C, Petricoin EF. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 2012; 46:524-38. [PMID: 23266295 DOI: 10.1016/j.clinbiochem.2012.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Prostate Cancer (PCa) represents the second most frequent type of tumor in men worldwide. Incidence increases with patient age and represents the most important risk factor. PCa is mostly characterized by indolence, however in a small percentage of cases (3%) the disease progresses to a metastatic state. To date, the most important issue concerning PCa research is the difficulty in distinguishing indolent from aggressive disease. This problem frequently results in low-grade PCa patient overtreatment and, in parallel; an effective treatment for distant and aggressive disease is not yet available. RESULT Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PCa patients. Markers more specific and sensitive than PSA are needed for PCa diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PCa tailored therapy. Several possible PCa biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PCa detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice. CONCLUSIONS This review aims to discuss the recent advances in PCa proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.
Collapse
Affiliation(s)
- Elisa Pin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
36
|
Leung F, Diamandis EP, Kulasingam V. From bench to bedside: discovery of ovarian cancer biomarkers using high-throughput technologies in the past decade. Biomark Med 2012; 6:613-25. [PMID: 23075239 DOI: 10.2217/bmm.12.70] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy and survival of this disease has remained relatively unchanged over the past 30 years. A contributing factor to this has been the lack of reliable biomarkers for the clinical management of ovarian cancer. Rapid advances in high-throughput technologies over the past decade has allowed for new and exciting opportunities for biomarker discovery in the field of ovarian cancer, especially with respect to serum biomarkers that can be used for various clinical applications. This review highlights the major genomic and proteomic studies dedicated to ovarian cancer biomarker discovery over the past decade. An emphasis will be placed on the HE4, Risk of Malignancy Algorithm (ROMA) and OVA1™ serum-based tests/algorithms that have recently been approved by the US FDA as ovarian cancer biomarkers.
Collapse
Affiliation(s)
- Felix Leung
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
37
|
Kim Y, Ignatchenko V, Yao CQ, Kalatskaya I, Nyalwidhe JO, Lance RS, Gramolini AO, Troyer DA, Stein LD, Boutros PC, Medin JA, Semmes OJ, Drake RR, Kislinger T. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol Cell Proteomics 2012; 11:1870-84. [PMID: 22986220 DOI: 10.1074/mcp.m112.017889] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Current protocols for the screening of prostate cancer cannot accurately discriminate clinically indolent tumors from more aggressive ones. One reliable indicator of outcome has been the determination of organ-confined versus nonorgan-confined disease but even this determination is often only made following prostatectomy. This underscores the need to explore alternate avenues to enhance outcome prediction of prostate cancer patients. Fluids that are proximal to the prostate, such as expressed prostatic secretions (EPS), are attractive sources of potential prostate cancer biomarkers as these fluids likely bathe the tumor. Direct-EPS samples from 16 individuals with extracapsular (n = 8) or organ-confined (n = 8) prostate cancer were used as a discovery cohort, and were analyzed in duplicate by a nine-step MudPIT on a LTQ-Orbitrap XL mass spectrometer. A total of 624 unique proteins were identified by at least two unique peptides with a 0.2% false discovery rate. A semiquantitative spectral counting algorithm identified 133 significantly differentially expressed proteins in the discovery cohort. Integrative data mining prioritized 14 candidates, including two known prostate cancer biomarkers: prostate-specific antigen and prostatic acid phosphatase, which were significantly elevated in the direct-EPS from the organ-confined cancer group. These and five other candidates (SFN, MME, PARK7, TIMP1, and TGM4) were verified by Western blotting in an independent set of direct-EPS from patients with biochemically recurrent disease (n = 5) versus patients with no evidence of recurrence upon follow-up (n = 10). Lastly, we performed proof-of-concept SRM-MS-based relative quantification of the five candidates using unpurified heavy isotope-labeled synthetic peptides spiked into pools of EPS-urines from men with extracapsular and organ-confined prostate tumors. This study represents the first efforts to define the direct-EPS proteome from two major subclasses of prostate cancer using shotgun proteomics and verification in EPS-urine by SRM-MS.
Collapse
Affiliation(s)
- Yunee Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tamburro D, Fredolini C, Espina V, Douglas TA, Ranganathan A, Ilag L, Zhou W, Russo P, Espina BH, Muto G, Petricoin EF, Liotta LA, Luchini A. Multifunctional core-shell nanoparticles: discovery of previously invisible biomarkers. J Am Chem Soc 2011; 133:19178-88. [PMID: 21999289 PMCID: PMC3223427 DOI: 10.1021/ja207515j] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Indexed: 01/05/2023]
Abstract
Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core-shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (K(D) < 10(-11) M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
Collapse
Affiliation(s)
- Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Temple A. Douglas
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Adarsh Ranganathan
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Leopold Ilag
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Benjamin H. Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Giovanni Muto
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
- Department of Analytical Chemistry, Stockholm University, Stockholm 106 91, Sweden
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
- Department of Urology, S. Giovanni Bosco Hospital, Turin 10154, Italy
- Department of Medicine and Experimental Oncology, University of Turin, 10125 Turin, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia 20110, United States
| |
Collapse
|
39
|
Tang HY, Beer LA, Chang-Wong T, Hammond R, Gimotty P, Coukos G, Speicher DW. A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer. J Proteome Res 2011; 11:678-91. [PMID: 22032327 DOI: 10.1021/pr200603h] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteomics discovery of novel cancer serum biomarkers is hindered by the great complexity of serum, patient-to-patient variability, and triggering by the tumor of an acute-phase inflammatory reaction. This host response alters many serum protein levels in cancer patients, but these changes have low specificity as they can be triggered by diverse causes. We addressed these hurdles by utilizing a xenograft mouse model coupled with an in-depth 4-D protein profiling method to identify human proteins in the mouse serum. This strategy ensures that identified putative biomarkers are shed by the tumor, and detection of low-abundance proteins shed by the tumor is enhanced because the mouse blood volume is more than a thousand times smaller than that of a human. Using TOV-112D ovarian tumors, more than 200 human proteins were identified in the mouse serum, including novel candidate biomarkers and proteins previously reported to be elevated in either ovarian tumors or the blood of ovarian cancer patients. Subsequent quantitation of selected putative biomarkers in human sera using label-free multiple reaction monitoring (MRM) mass spectrometry (MS) showed that chloride intracellular channel 1, the mature form of cathepsin D, and peroxiredoxin 6 were elevated significantly in sera from ovarian carcinoma patients.
Collapse
Affiliation(s)
- Hsin-Yao Tang
- Center for Systems and Computational Biology and Molecular and Cellular Oncogenesis Program, The Wistar Institute , Philadelphia, Pennsylvania, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 2011; 74:2660-81. [PMID: 21596164 DOI: 10.1016/j.jprot.2011.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Availability of genome sequence of human and different pathogens has advanced proteomics research for various clinical applications. One of the prime goals of proteomics is identification and characterization of biomarkers for cancer and other fatal human diseases to aid an early diagnosis and monitor disease progression. However, rapid detection of low abundance biomarkers from the complex biological samples under clinically relevant conditions is extremely difficult, and it requires the development of ultrasensitive, robust and high-throughput technological platform. In order to overcome several technical limitations associated with sensitivity, dynamic range, detection time and multiplexing, proteomics has started integrating several emerging disciplines such as nanotechnology, which has led to the development of a novel analytical platform known as 'nanoproteomics'. Among the diverse classes of nanomaterials, the quantum dots, gold nanoparticles, carbon nanotubes and silicon nanowires are the most promising candidates for diagnostic applications. Nanoproteomics offers several advantages such as ultralow detection, short assay time, high-throughput capability and low sample consumption. In this article, we have discussed the application of nanoproteomics for biomarker discovery in various diseases with special emphasis on various types of cancer. Furthermore, we have discussed the prospects, merits and limitations of nanoproteomics.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
41
|
Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011; 11:2139-61. [PMID: 21548090 DOI: 10.1002/pmic.201000460] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
42
|
Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol Oncol 2011; 120:393-403. [DOI: 10.1016/j.ygyno.2010.11.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 12/22/2022]
|
43
|
Fricker LD, Sweedler JV. Fishing for the hidden peptidome in health and disease (drug abuse). AAPS JOURNAL 2010; 12:679-82. [PMID: 20848247 DOI: 10.1208/s12248-010-9228-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 01/09/2023]
Abstract
The proteome and peptidome are defined as the set of proteins and peptides present in a tissue or other biological sample. In most proteomic studies, only abundant proteins are detected and, although these are important molecules, they are often well-studied structural proteins. A number of approaches have been used to examine less abundant molecules that play roles in signaling or otherwise have regulatory functions, including peptides as well as proteins such as enzymes and receptors. The overarching goals of this special issue involve defining the peptidome, identifying the current state of the field, and discussing methods to characterize the peptides, their receptors, and future needs for such measurements.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|