1
|
Liu G, Zhang CP, Lu YY, Niu DF, Hu FL. Biotransformation and metabolite activity analysis of flavonoids from propolis in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1192-1206. [PMID: 38794953 DOI: 10.1080/10286020.2024.2355142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Propolis is a natural resinous compound produced by bees, mixed with their saliva and wax, and has a range of biological benefits, including antioxidant and anti-inflammatory effects. This article reviews the in vivo transformation of propolis flavonoids and their potential influence on drug efficacy. Despite propolis is widely used, there is little research on how the active ingredients of propolis change in the body and how they interact with drugs. Future research will focus on these interactions and the metabolic fate of propolis in vivo.
Collapse
Affiliation(s)
- Gang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cui-Ping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Yuan Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - De-Fang Niu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang SY, Wang YJ, Dong MQ, Li GR. Acacetin is a Promising Drug Candidate for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1661-1692. [PMID: 39347953 DOI: 10.1142/s0192415x24500654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phytochemical flavonoids have been proven to be effective in treating various disorders, including cardiovascular diseases. Acacetin is a natural flavone with diverse pharmacological effects, uniquely including atrial-selective anti-atrial fibrillation (AF) via the inhibition of the atrial specific potassium channel currents [Formula: see text] (ultra-rapidly delayed rectifier potassium current), [Formula: see text] (acetylcholine-activated potassium current), [Formula: see text] (calcium-activated small conductance potassium current), and [Formula: see text] (transient outward potassium current). [Formula: see text] inhibition by acacetin, notably, suppresses experimental J-wave syndromes. In addition, acacetin provides extensive cardiovascular protection against ischemia/reperfusion injury, cardiomyopathies/heart failure, autoimmune myocarditis, pulmonary artery hypertension, vascular remodeling, and atherosclerosis by restoring the downregulated intracellular signaling pathway of Sirt1/AMPK/PGC-1α followed by increasing Nrf2/HO-1/SOD thereby inhibiting oxidation, inflammation, and apoptosis. This review provides an integrated insight into the capabilities of acacetin as a drug candidate for treating cardiovascular diseases, especially atrial fibrillation and cardiomyopathies/heart failure.
Collapse
Affiliation(s)
- Shu-Ya Wang
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Ya-Jing Wang
- Department of Pharmacy, School of Pharmacy, Changzhou University Changzhou, Jiangsu 213164, P. R. China
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| | - Ming-Qing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, P. R. China
| | - Gui-Rong Li
- Nanjing Amazigh Pharma Limited, Nanjing, Jiangsu 210032, P. R. China
| |
Collapse
|
3
|
Rinik UR, Kim JE, Lee E, Kwon O, Jung BH. Development of simultaneous quantitative analytical method for three active components of Korean mint (Agastache rugosa (Fisch. & C.A.Mey.) Kuntze) extract in human plasma using ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1232:123957. [PMID: 38134516 DOI: 10.1016/j.jchromb.2023.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Agastache rugosa contains phenolic compounds and flavonoids, and has been extensively used as a traditional herbal medicine. The major components in Agastache rugosa extract (ARE) are rosmarinic acid, tilianin, and acacetin, for which several analytical techniques have been reported. However, these substances have yet to be simultaneously quantified in human plasma. In this study, we aimed to simultaneously determine the three active components of ARE in human plasma by developing a reliable quantitative analytical method using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Chromatographic separation of the plasma samples was achieved using an ACQUITY UPLC® BEH C18 column with a gradient mobile phase of water and acetonitrile containing 0.1 % formic acid. Mass spectrometric detection was performed using a triple quadrupole tandem mass spectrometer in negative electrospray ionization (ESI-) and multiple reaction monitoring (MRM) modes. The developed quantitative method was validated for the three active components. All three analytes exhibited a linear response over the ranges of 0.5-50 ng/mL for rosmarinic acid, 0.1-20 ng/mL for acacetin, and 0.5-20 ng/mL for tilianin with a weighting factor of 1/x (where x is the concentration). At three quality control (QC) concentration levels (low, medium, and high), including the lower limit of quantitation (LLOQ), acceptable accuracy (±15 %) was achieved in the intra- and interday validations. The concentration of rosmarinic acid was highest in plasma. Tilianin and acacetin appeared and were eliminated earlier in the plasma than rosmarinic acid. This study provides a successfully validated method that can be used in further clinical applications of Agastache rugosa extracts.
Collapse
Affiliation(s)
- Urmi Rahman Rinik
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji Eon Kim
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Republic of Korea
| | - Eunok Lee
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Republic of Korea
| | - Byung Hwa Jung
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Guelfi G, Pasquariello R, Anipchenko P, Capaccia C, Pennarossa G, Brevini TAL, Gandolfi F, Zerani M, Maranesi M. The Role of Genistein in Mammalian Reproduction. Molecules 2023; 28:7436. [PMID: 37959856 PMCID: PMC10647478 DOI: 10.3390/molecules28217436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Genistein is a natural compound belonging to flavonoids, having antioxidant, anti-inflammatory, and anti-neoplastic properties. Genistein is considered a phytoestrogen. As such, genistein can bind estrogen receptors (ERα and ERβ), although with a lower affinity than that of estradiol. Despite considerable work, the effects of genistein are not well established yet. This review aims to clarify the role of genistein on female and male reproductive functions in mammals. In females, at a high dose, genistein diminishes the ovarian activity regulating several pathway molecules, such as topoisomerase isoform I and II, protein tyrosine kinases (v-src, Mek-4, ABL, PKC, Syk, EGFR, FGFR), ABC, CFTR, Glut1, Glut4, 5α-reductase, PPAR-γ, mitogen-activated protein kinase A, protein histidine kinase, and recently circulating RNA-miRNA. The effect of genistein on pregnancy is still controversial. In males, genistein exerts an estrogenic effect by inducing testosterone biosynthesis. The interaction of genistein with both natural and synthetic endocrine disruptors has a negative effect on testis function. The positive effect of genistein on sperm quality is still in debate. In conclusion, genistein has a potentially beneficial effect on the mechanisms regulating the reproduction of females and males. However, this is dependent on the dose, the species, the route, and the time of administration.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Tiziana A. L. Brevini
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milano, Italy; (R.P.); (F.G.)
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (G.G.); (C.C.); (M.Z.); (M.M.)
| |
Collapse
|
5
|
Sulekha A, Osborne MJ, Gasiorek J, Borden KLB. 1H, 13C, 15N Backbone and sidechain chemical shift assignments of the C-terminal domain of human UDP-glucuronosyltransferase 2B17 (UGT2B17-C). BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:67-73. [PMID: 36757531 DOI: 10.1007/s12104-023-10122-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 06/02/2023]
Abstract
UDP-glucuronosyltransferases are the principal enzymes involved in the glucuronidation of metabolites and xenobiotics for physiological clearance in humans. Though glucuronidation is an indispensable process in the phase II metabolic pathway, UGT-mediated glucuronidation of most prescribed drugs (> 55%) and clinical evidence of UGT-associated drug resistance are major concerns for therapeutic development. While UGTs are highly conserved enzymes, they manifest unique substrate and inhibitor specificity which is poorly understood given the dearth of experimentally determined full-length structures. Such information is important not only to conceptualize their specificity but is central to the design of inhibitors specific to a given UGT in order to avoid toxicity associated with pan-UGT inhibitors. Here, we provide the 1H, 13C and 15N backbone (~ 90%) and sidechain (~ 62%) assignments for the C-terminal domain of UGT2B17, which can be used to determine the molecular binding sites of inhibitor and substrate, and to understand the atomic basis for inhibitor selectivity between UGT2B17 and other members of the UGT2B subfamily. Given the physiological relevance of UGT2B17 in the elimination of hormone-based cancer drugs, these assignments will contribute towards dissecting the structural basis for substrate specificity, selective inhibitor recognition and other aspects of enzyme activity with the goal of selectively overcoming glucuronidation-based drug resistance.
Collapse
Affiliation(s)
- Anamika Sulekha
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Michael J Osborne
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Jadwiga Gasiorek
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada
| | - Katherine L B Borden
- Department of Pathology and Cell Biology and Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, Pavilion Marcelle‑Coutu, Chemin Polytechnique, Montreal, QC, Canada.
| |
Collapse
|
6
|
Du Y, Xi M, Li Y, Zheng R, Ding X, Li X, Zhang X, Wang L, Xing J, Hong B. Tilianin improves lipid profile and alleviates atherosclerosis in ApoE -/- mice through up-regulation of SREBP2-mediated LDLR expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154577. [PMID: 36610166 DOI: 10.1016/j.phymed.2022.154577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The huge global burden of atherosclerotic cardiovascular diseases (CVDs) represents an urgent unmet need for the development of novel therapeutics. Dracocephalum moldavica L. has been used as a traditional Uygur medicine to treat various CVDs for centuries. Tilianin is a major flavonoid component of D. moldavica L. and has potential for preventing atherosclerosis. However, the molecular mechanisms that tilianin attenuate atherosclerosis are far from fully understood. PURPOSES The purpose of this study is to investigate the efficiency and underlying mechanisms of tilianin in controlling lipid profile and preventing atherogenesis. METHODS The lipid-lowering effect of tilianin was evaluated in C57BL/6 and ApoE-/- mice by systematically determining serum biochemical parameters. The effects of tilianin on the atherosclerotic lesion were observed in aortic roots and whole aortas of ApoE-/- mice with oil red O staining. Caecal content from ApoE-/- mice were collected for 16S rRNA gene sequence analysis to assess the structure of the gut microbiota. The inhibition of hepatosteatosis was verified by histological examination, and a liver transcriptome analysis was performed to elucidate the tilianin-induced hepatic transcriptional alterations. Effects of tilianin on the expression and function of LDLR were examined in HepG2 cells and ApoE-/- mice. Further mechanisms underlying the efficacy of tilianin were investigated in HepG2 cells. RESULTS Tilianin treatment improved lipid profiles in C57BL/6 and dyslipidemic ApoE-/- mice, especially reducing the serum LDL-cholesterol (LDL-C) level. Significant reductions of atherosclerotic lesion area and hepatosteatosis were observed in tilianin-treated ApoE-/- mice. The altered gut microbial composition in tilianin groups was associated with lipid metabolism and atherosclerosis. The liver transcriptome revealed that tilianin regulated the transcription of lipid metabolism-related genes. Then both in vitro and in vivo analyses revealed the potent effect of tilianin to enhance hepatic LDLR expression and its mediated LDL-C uptake. Further studies confirmed a critical role of SREBP2 in hepatic LDLR up-regulation by tilianin via increasing precursor and thus mature nuclear SREBP2 level. CONCLUSION This study demonstrated the lipid-lowering effect of tilianin through SREBP2-mediated transcriptional activation of LDLR. Our findings reveal a novel anti-atherosclerotic mechanism of tilianin and underlie its potential clinical use in modulating CVDs with good availability and affordability.
Collapse
Affiliation(s)
- Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mei Xi
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, Urumchi 830004, China
| | - Yihua Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruifang Zheng
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, Urumchi 830004, China
| | - Xiaotian Ding
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiumin Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianguo Xing
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, Urumchi 830004, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Yang X, Chen S, Du K, Shang Y, Fang S, Li J, Zhang H, Chang Y. Simultaneous determination of multiple components in rat plasma by UHPLC-sMRM for pharmacokinetic studies after oral administration of Qingjin Yiqi Granules. Front Pharmacol 2023; 14:1155973. [PMID: 37124227 PMCID: PMC10133546 DOI: 10.3389/fphar.2023.1155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
As a Traditional Chinese Medicine prescription, Qingjin Yiqi Granules (QJYQ) provides an effective treatment for patients recovering from COVID-19. However, the pharmacokinetics characteristics of the main components of QJYQ in vivo are still unknown. An efficacious ultra-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed and validated for the simultaneous determination of 33 components in rat plasma after oral administration of QJYQ. The plasma samples were precipitated with 400 µL methanol/acetonitrile (1/1, v/v) and analyzed in scheduled multiple reaction monitoring mode. The linear relationship of the 33 components was good (r > 0.9928). The lower limit of quantification for 33 components ranged from 0.4-60.5 ng/mL. The average recoveries and matrix effects of the analytes ranged from 72.9% to 115.0% with RSD of 1.4%-15.0%. All inter-day and intra-day RSDs were within 15.0%. After oral administration (3.15 g/kg), the validated approach was effectively applied to the pharmacokinetics of main components of QJYQ. Finally, fifteen main constituents of QJYQ with large plasma exposure were obtained, including baicalin, wogonoside, wogonin, apigenin-7-O-glucuronide, verbenalin, isoferulic acid, hesperidin, liquiritin, harpagide, protocatechuic acid, p-Coumaric acid, ferulic acid, sinapic acid, liquiritin apioside and glycyrrhizic acid. The present research lays a foundation for clarifying the therapeutic material basis of QJYQ and provides a reference for further scientific research and clinical application of QJYQ.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Yanxu Chang,
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- *Correspondence: Han Zhang, ; Yanxu Chang,
| |
Collapse
|
8
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
9
|
D'Arcy MS. A review of biologically active flavonoids as inducers of autophagy and apoptosis in neoplastic cells and as cytoprotective agents in non-neoplastic cells. Cell Biol Int 2022; 46:1179-1195. [PMID: 35544782 DOI: 10.1002/cbin.11813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/13/2022]
Abstract
Phytochemicals are a diverse group of compounds found in various fruits, vegetables, nuts, and legumes. Many phytochemicals have been observed to possess health benefits. Some have been found to be chemoprotective or can act as chemotherapeutics by inducing autophagy, apoptosis, or otherwise regulating the cell cycle. Many also act as potent antioxidants. Flavonoids are a subclass of bioactive phytochemicals consisting of two phenolic benzene rings, joined together by a heterocyclic pyran or pyrone. It has been observed in multiple studies that there is a correlation between diets rich in flavonoids and a reduction in cancer levels, heart disease, neurodegenerative diseases, and other pathologies. As foods containing flavonoids are widely consumed, and their mechanisms of action are still only partially understood, this review was compiled to compare the effects and mechanisms of action of some of the most widely characterized and publicized flavonoids. The flavonoids silibinin, quercetin, isorhamnetin, luteolin, curcumin genkwanin, and acacetin, together with flavonoid extracts from papaw and Tephroseris kirilowii (Turcz) Holub, a member of the Daisy family, were found to be potent regulators of the cell cycle. The decision to overview these specific flavonoids was based on their therapeutic effects, and/or their potential effects. The sparsity of data comparing these flavonoids was also a key consideration. These flavonoids all modulated to some extent the pathways of autophagy and/or apoptosis and regulated the cell cycle, inflammation, and free radical levels. This explains why they are protective of healthy or moderately damaged cells, but toxic to neoplastic or pre-cancerous cells.
Collapse
Affiliation(s)
- Mark S D'Arcy
- Depatment of Life Sciences, Hertfordshire International College, Hatfield, UK
| |
Collapse
|
10
|
Tian W, Zheng Y, Wang W, Wang D, Tilley M, Zhang G, He Z, Li Y. A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Compr Rev Food Sci Food Saf 2022; 21:2274-2308. [PMID: 35438252 DOI: 10.1111/1541-4337.12960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
The health benefits of whole wheat consumption can be partially attributed to wheat's phytochemicals, including phenolic acids, flavonoids, alkylresorcinols, carotenoids, phytosterols, tocopherols, and tocotrienols. It is of increasing interest to produce whole wheat products that are rich in bioactive phytochemicals. This review provides the fundamentals of the chemistry, extraction, and occurrence of wheat phytochemicals and includes critical discussion of several long-lasting issues: (1) the commonly used nomenclature on distribution of wheat phenolic acids, namely, soluble-free, soluble-conjugated, and insoluble-bound phenolic acids; (2) different extraction protocols for wheat phytochemicals; and (3) the chemistry and application of in vitro antioxidant assays. This review further discusses recent advances on the effects of genotypes, environments, field management, and processing techniques including ultrafine grinding, germination, fermentation, enzymatic treatments, thermal treatments, and food processing. These results need to be interpreted with care due to varied sample preparation protocols and limitations of in vitro assays. The bioaccessibility, bioavailability, metabolism, and potential health benefits of wheat phytochemicals are also reviewed. This comprehensive and critical review will benefit scientific researchers in the field of bioactive compounds of cereal grains and also those in the cereal food industry to produce high-quality functional foods.
Collapse
Affiliation(s)
- Wenfei Tian
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, Kansas, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Michael Tilley
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, Kansas, USA
| | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays, Kansas, USA
| | - Zhonghu He
- National Wheat Improvement Centre, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Centre (CIMMYT) China Office, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
11
|
Song P, Xiao S, Zhang Y, Xie J, Cui X. Mechanism of the Intestinal Absorption of Six Flavonoids from Zizyphi Spinosi Semen Across Caco-2 Cell Monolayer Model. Curr Drug Metab 2021; 21:633-645. [PMID: 32664838 DOI: 10.2174/1389200221666200714100455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/17/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid compounds are one kind of active ingredients isolated from a traditional Chinese herb Zizyphi spinosae semen (ZSS). Studies have shown that ZSS flavonoids have significant antioxidant effects. METHODS In this study, the Caco-2 cell monolayer model was constructed to investigate the intestinal absorption characteristics and mechanism of Isovitexin (IV), Swertisin (ST), Isovitexin-2''-O-β-D-glucopyranoside (IVG), Spinosin (S), 6'''-p-coumaroylspinosin (6-CS) and 6'''-feruloylspinosin (6-FS). RESULTS The results of the bidirectional transport assay showed that the six flavonoids have good intestinal absorption in a near-neutral and 37°C environment, and the absorbability in descending order was 6-FS>6- CS>IVG>S>IV>ST. The results of carrier inhibition experiments and transport kinetics indicated that the absorption mechanism of six flavonoids was energy-dependent monocarboxylate transporter (MCT)-mediated active transport. In particular, the para-cellular pathway also participated in the transport of IV, ST, IVG and S. Furthermore, the efflux process of six flavonoids was mediated by P-glycoprotein (P-gp) and multidrug resistance protein (MRP), which may result in a decrease of bioavailability. CONCLUSION Our findings provide significant information for revealing the relationship between the intestinal absorption mechanism of flavonoids and its structure as well as laying a basis for the research of flavonoid preparations.
Collapse
Affiliation(s)
- Panpan Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Sa Xiao
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xusheng Cui
- Shijiazhuang Yiling pharmaceutical Co. Ltd, Hebei, 050035, China
| |
Collapse
|
12
|
Zhai M, Gong D, Gao Q, Zhang H, Sun G. Evaluating the spectrum-effect profiling and pharmacokinetics of Tieshuang Anshen Prescription with better sedative-hypnotic effect based on Fe 2+ than Hg 2. Biomed Pharmacother 2021; 141:111923. [PMID: 34328091 DOI: 10.1016/j.biopha.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Although Zhusha Anshen Pill (ZSASP) is a commonly used traditional prescription for insomnia, the safety of cinnabar in the formula has always been controversial since its initial application in medical fields. Here, we developed a new prescription, Tieshuang Anshen Prescription (TSASP), by improving ZSASP with Fe2+ instead of Hg2+. Besides, TSASP was further optimized by establishing and testing the HPLC fingerprint and its sedative-hypnotic effect of formulas with different compatibility ratios and performing correlation spectrum analysis. The safety of TSASP was also evaluated by HE staining of liver and kidney. In addition, a validated and robust UHPLC-MS/MS method was established to demonstrate the pharmacokinetic characteristics of berberine, palmatine, jatrorrhizine, ligustilide, catalpol, loganin, liquiritin and liquiritigenin after oral administration of TSASP. Our study originally provides a new non-toxic prescription, TSASP, with better sedative-hypnotic effect in comparison with ZSASP, revealing that Fe2+ could replace Hg2+ to eliminate its toxicity and play a sedative role. Meanwhile, we believe that our pharmacokinetics results may contribute valuable reference to both TSASP's specific mechanism of action and its further clinical efficacy and effectiveness research.
Collapse
Affiliation(s)
- Manhuayun Zhai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dandan Gong
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qiannan Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Guoxiang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
13
|
Chen M, Ren X, Sun S, Wang X, Xu X, Li X, Wang X, Li X, Yan X, Li R, Wang Y, Liu X, Dong Y, Fu X, She G. Structure, Biological Activities and Metabolism of Flavonoid Glucuronides. Mini Rev Med Chem 2021; 22:322-354. [PMID: 34036917 DOI: 10.2174/1389557521666210521221352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. METHODS Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. RESULTS We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc.. CONCLUSION Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides' biological activities and mechanisms.
Collapse
Affiliation(s)
- Min Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Siqi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Gaimei She
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia 750004, China
| |
Collapse
|
14
|
Zhu G, Yin J, Cuny GD. Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals. Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug discovery has historically faced many unusual challenges attributed to unique parasite biology and technical burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
Collapse
|
15
|
Yuan W, Wang J, An X, Dai M, Jiang Z, Zhang L, Yu S, Huang X. UPLC-MS/MS Method for the Determination of Hyperoside and Application to Pharmacokinetics Study in Rat After Different Administration Routes. Chromatographia 2021; 84:249-256. [PMID: 33487663 PMCID: PMC7810192 DOI: 10.1007/s10337-020-04002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
A rapid and sensitive UPLC-MS/MS method was developed and fully validated for the quantification of hyperoside in rat plasma after intragastric, intraperitoneal and intravenous administration. Geniposide was used as an internal standard, and simple liquid–liquid extraction by ethyl acetate was utilized for to extracting the analytes from the rat plasma samples. Chromatographic separation was carried out on an InfinityLab Poroshell 120EC-C18column (2.1 mm × 50 mm, 1.9-Micro, Agilent technologies, USA). The mobile phase consisted of methanol (A) and water (B) (containing 0.1% acetic acid) at a flow rate of 0.4 mL/min. A run time of 3 min for each sample made it possible to analyze more than 300 plasma samples per day. The validated linear ranges of hyperoside were 2–1000 ng/mL in rat plasma. The intra-day and inter-day precision were within 2.6–9.3%, and accuracy were ± 8.6%. And the results of recovery and matrix interference studies were well within the accepted variability limits. Finally, this method was fully validated and successfully applied to the pharmacokinetic studies of hyperoside via different administration routes in rats.
Collapse
Affiliation(s)
- Wenjing Yuan
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Jingjing Wang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Xiaofei An
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210009 People's Republic of China
| | - Mingxin Dai
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Zhenzhou Jiang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Luyong Zhang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Center for Drug Screening and Pharmacodynamics Evaluation, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006 People's Republic of China
| | - Sen Yu
- Mosim Co., Ltd, Nanjing, 210009 People's Republic of China
| | - Xin Huang
- Institute of Pharmaceutical Research, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009 People's Republic of China.,National Nanjing Center for Drug Screening, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| |
Collapse
|
16
|
Jang HH, Noh H, Kim HW, Cho SY, Kim HJ, Lee SH, Lee SH, Gunter MJ, Ferrari P, Scalbert A, Freisling H, Kim JB, Choe JS, Kwon O. Metabolic tracking of isoflavones in soybean products and biosamples from healthy adults after fermented soybean consumption. Food Chem 2020; 330:127317. [PMID: 32569934 DOI: 10.1016/j.foodchem.2020.127317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Fermentation may enhance the nutritional properties of foods by increasing metabolite bioactivity or bioavailability. This study explored the effect of fermentation on isoflavone bioavailability and metabolism. Isoflavone metabolites were tracked in foods and biospecimens of healthy adults after fermented soybean (FS) or non-fermented soybean (NFS) consumption in a randomized, controlled, crossover intervention study. The change in soybean isoflavones caused by fermentation resulted in faster absorption and higher bioavailability after consumption of FS. Although the urinary level of total isoflavone metabolites was similar after the consumption of the two diets, urinary genistein 7-O-sulfate was derived as a discriminant metabolite for the FS diet by partial least squares discriminant analysis. This study suggests that an isoflavone conjugate profile might be a more appropriate marker than total isoflavone levels for discriminating between the consumption of FS and NFS diets.
Collapse
Affiliation(s)
- Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea; Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea
| | - Hwayoung Noh
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heon-Woong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Su-Yeon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Hyeon-Jeong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Seon-Hye Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Pietro Ferrari
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Augustin Scalbert
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Heinz Freisling
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jung-Bong Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jeong-Sook Choe
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
17
|
Wu X, Li M, Xiao Z, Daglia M, Dragan S, Delmas D, Vong CT, Wang Y, Zhao Y, Shen J, Nabavi SM, Sureda A, Cao H, Simal-Gandara J, Wang M, Sun C, Wang S, Xiao J. Dietary polyphenols for managing cancers: What have we ignored? Trends Food Sci Technol 2020; 101:150-164. [DOI: 10.1016/j.tifs.2020.05.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Ancuceanu R, Dinu M, Dinu-Pirvu C, Anuţa V, Negulescu V. Pharmacokinetics of B-Ring Unsubstituted Flavones. Pharmaceutics 2019; 11:E370. [PMID: 31374885 PMCID: PMC6723510 DOI: 10.3390/pharmaceutics11080370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
B-ring unsubstituted flavones (of which the most widely known are chrysin, baicalein, wogonin, and oroxylin A) are 2-phenylchromen-4-one molecules of which the B-ring is devoid of any hydroxy, methoxy, or other substituent. They may be found naturally in a number of herbal products used for therapeutic purposes, and several have been designed by researchers and obtained in the laboratory. They have generated interest in the scientific community for their potential use in a variety of pathologies, and understanding their pharmacokinetics is important for a grasp of their optimal use. Based on a comprehensive survey of the relevant literature, this paper examines their absorption (with deglycosylation as a preliminary step) and their fate in the body, from metabolism to excretion. Differences among species (inter-individual) and within the same species (intra-individual) variability have been examined based on the available data, and finally, knowledge gaps and directions of future research are discussed.
Collapse
Affiliation(s)
- Robert Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Dinu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Cristina Dinu-Pirvu
- Department of Physical Chemistry and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest 020956, Romania
| | - Valentina Anuţa
- Department of Physical Chemistry and Colloidal Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest 020956, Romania
| | - Vlad Negulescu
- Department of Toxicology, Clinical Pharmacology and Psychopharmacology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Ahn-Jarvis JH, Parihar A, Doseff AI. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants (Basel) 2019; 8:E202. [PMID: 31261915 PMCID: PMC6680729 DOI: 10.3390/antiox8070202] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Flavonoids, one of the most abundant phytochemicals in a diet rich in fruits and vegetables, have been recognized as possessing anti-proliferative, antioxidant, anti-inflammatory, and estrogenic activities. Numerous cellular and animal-based studies show that flavonoids can function as antioxidants by preventing DNA damage and scavenging reactive oxygen radicals, inhibiting formation of DNA adducts, enhancing DNA repair, interfering with chemical damage by induction of Phase II enzymes, and modifying signaling pathways. Recent evidence also shows their ability to regulate the immune system. However, findings from clinical trials have been mixed with no clear consensus on dose, frequency, or type of flavonoids best suited to elicit many of the beneficial effects. Delivery of these bioactive compounds to their biological targets through "targeted designed" food processing strategies is critical to reach effective concentration in vivo. Thus, the identification of novel approaches that optimize flavonoid bioavailability is essential for their successful clinical application. In this review, we discuss the relevance of increasing flavonoid bioavailability, by agricultural engineering and "targeted food design" in the context of the immune system and cancer.
Collapse
Affiliation(s)
| | - Arti Parihar
- Department of Science, Bellingham Technical College, WA, 98225, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, MI, 48864, USA.
| |
Collapse
|
20
|
Li Y, Song W, Ou X, Luo G, Xie Y, Sun R, Wang Y, Qi X, Hu M, Liu Z, Zhu L. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Determine the Disposition of Esculetin-7-O-Glucuronide and 4-Methylesculetin-7-O-Glucuronide. Drug Metab Dispos 2019; 47:203-214. [PMID: 30602435 DOI: 10.1124/dmd.118.083493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 12/27/2018] [Indexed: 01/02/2023] Open
Abstract
Esculetin (ET)-7-O-glucuronide (ET-G) and 4-methylesculetin (4-ME)-7-O-glucuronide (4-ME-G) are the main glucuronide of ET and 4-ME, respectively. The disposition mediated by efflux transporters for glucuronide has significant influence on the pharmacokinetic profile and efficacy of bioactive compounds. In the current study, transporter gene knockout mice and Caco-2 cells were used to explore the effects of breast cancer resistance protein (BCRP) and multidrug resistance-associated protein 2 (MRP2) on the disposition of ET-G and 4-ME-G. After oral or i.v. administration of ET and 4-ME, the area under the plasma concentration-time curve from time 0 to the last data point or infinity values of ET, 4-ME, and their glucuronides (ET-G and 4-ME-G) were remarkably and significantly increased in most Bcrp1-/- and Mrp2-/- mice compared with those in wild-type FVB mice (P < 0.05). These results were accompanied with a significant increase of maximum plasma concentration values (P < 0.05). In Caco-2 monolayers, the efflux and clearance rates of ET-G and 4-ME-G were markedly reduced by the BCRP inhibitor Ko143 and MRP2 inhibitor MK571 on the apical side (P < 0.05). In an intestinal perfusion study, the excretion of ET-G was significantly decreased in perfusate and increased in plasma in Bcrp1-/- mice compared with those in wild-type FVB mice (P < 0.05). The 4-ME-G concentration was also decreased in the bile in transporter gene knockout mice. ET and 4-ME showed good permeability in both Caco-2 monolayers [apparent permeability (Papp ) ≥ 0.59 × 10-5 cm/s] and duodenum (Papp ≥ 1.81). In conclusion, BCRP and MRP2 are involved in excreting ET-G and 4-ME-G. ET and 4-ME are most likely absorbed via passive diffusion in the intestines.
Collapse
Affiliation(s)
- Yuhuan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Wenjie Song
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaojun Ou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Guangkuo Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Yushan Xie
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Rongjin Sun
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| | - Lijun Zhu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (Y.L., W.S., X.O., G.L., Y.X., R.S., Y.W., X.Q., M.H., Z.L., L.Z.); State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (Special Administration Region), People's Republic of China (Z.L.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (M.H.)
| |
Collapse
|
21
|
Wang L, Sun R, Zhang Q, Luo Q, Zeng S, Li X, Gong X, Li Y, Lu L, Hu M, Liu Z. An update on polyphenol disposition via coupled metabolic pathways. Expert Opin Drug Metab Toxicol 2018; 15:151-165. [PMID: 30583703 DOI: 10.1080/17425255.2019.1559815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Polyphenols, which are widely distributed in plants and the human diets, are known to have numerous biological activities. However, the low bioavailability of polyphenols is mediated by coupled metabolic pathways. Areas covered: The key role of the interplay between drug metabolic enzymes (DMEs) and efflux transporters (ETs), nuclear receptors (NRs), and intestinal microflora in the disposition of polyphenols is summarized. Expert opinion: ETs are shown to act as a 'revolving door', facilitating and/or controlling cellular polyphenol glucuronide/sulfate excretion. Elucidating the mechanisms underlying the glucuronidation/sulfation-transport interplay and structure-activity relationships (SAR) of glucuronide/sulfate efflux by an ET is important. Some new physiologically based pharmacokinetic (PBPK) models could be developed to predict the interplay between glucuronides/sulfates and ETs. Additionally, the combined actions of uridine-5'-diphosphate glucuronosyltransferases, ETs, and intestinal microflora/enterocyte-derived β-glucuronidase enable triple recycling (local, enteric, and enterohepatic recycling), thereby increasing the residence time of polyphenols and their glucuronides in the local intestine and liver. Further studies are necessary to explore these recycling mechanisms and interactions between polyphenols and the intestinal microbiota. Since NRs govern the inducible expression of target genes that encode DMEs and ETs. Determination of the regulation mechanism mediated by NRs using transgenic and knockout animals is still needed.
Collapse
Affiliation(s)
- Liping Wang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Rongjin Sun
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qisong Zhang
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Qing Luo
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Sijing Zeng
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xiaoyan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Xia Gong
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Yuhuan Li
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Linlin Lu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China
| | - Ming Hu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Zhongqiu Liu
- a Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine , Guangzhou University of Chinese Medicine , Guangzhou, Guangdong , China.,b State Key Laboratory of Quality Research in Chinese Medicine , Macau University of Science and Technology , Macau , SAR , China
| |
Collapse
|
22
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
23
|
Li S, Xu J, Yao Z, Hu L, Qin Z, Gao H, Krausz KW, Gonzalez FJ, Yao X. The roles of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated proteins (MRPs/ABCCs) in the excretion of cycloicaritin-3-O-glucoronide in UGT1A1-overexpressing HeLa cells. Chem Biol Interact 2018; 296:45-56. [PMID: 30237061 DOI: 10.1016/j.cbi.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022]
Abstract
Cycloicaritin is a bioactive natural phenolic compound from Epimedium species. However, the glucuronidation and excretion which would influence oral bioavailability and pharmacokinetics of cycloicaritin still remain unknown. Here we aimed to establish UGT1A1 stably transfected HeLa cells, and to determine the contributions of BCRP and MRPs transporters to excretion of cycloicaritin-3-O-glucuronide. First, β-estradiol was used to validate the expression of active UGT1A1 protein in engineered HeLa1A1 cells. Furthermore, Ko143 (5 and 20 μM) led to a significant decrease (42.4%-63.8%, p < 0.01) in CICT-3-G excretion and obvious accumulation (19.7%-54.2%, p < 0.05) of intracellular CICT-3-G, while MK571 (5 and 20 μM) caused a significant reduction (46.8%-64.8%, p < 0.05) in the excretion and obvious elevation (50.7%-85.2%, p < 0.01) of intracellular level of CICT-3-G. Furthermore, BCRP knocked-down brought marked reduction in excretion rates of CICT-3-G (26.0%-42.2%, p < 0.01), whereas MRP1 and MRP4-mediated silencing led to significant decrease in the excretion of CICT-3-G (23.8%-35.4%, p < 0.05 for MRP1 and 11.9%-16.0%, p < 0.05 for MRP4). By contrast, neither CICT-3-G excretion nor CICT-3-G accumulation altered in MRP3 knocked-down cells as compared to scramble cells. Taken together, BCRP, MRP1 and MRP4 were identified as the most important contributors for CICT-3-G excretion. Meanwhile, the UGT1A1 modified HeLa cells were a simple and practical tool to study UGT1A1-mediated glucuronidation and to characterize BCRP and MRPs-mediated glucuronide transport at a cellular level.
Collapse
Affiliation(s)
- Shishi Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jinjin Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Liufang Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Hao Gao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
24
|
Yang B, Liu H, Yang J, Gupta VK, Jiang Y. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Chalet C, Rubbens J, Tack J, Duchateau GS, Augustijns P. Intestinal disposition of quercetin and its phase-II metabolites after oral administration in healthy volunteers. ACTA ACUST UNITED AC 2018; 70:1002-1008. [PMID: 29761870 DOI: 10.1111/jphp.12929] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Quercetin is one of the main dietary flavonoids and undergoes a substantial intestinal phase-II metabolism. Quercetin conjugates have been detected in plasma and in urine, but their presence in the small intestine has not been assessed. This study aimed to investigate the intestinal metabolism and metabolite excretion of quercetin by the human small intestinal wall after oral dosing. METHODS Six healthy volunteers were given a capsule of 500 mg of quercetin with 240 ml of water. Duodenal fluids were collected using the intraluminal sampling technique for 4 h and analysed by LC-MS/MS. KEY FINDINGS Phase-II metabolites of quercetin were detected and quantified in aspirated intestinal fluids. Metabolites appeared almost immediately after administration, indicating an intestinal metabolism and apical excretion into the lumen. Quercetin-3'-O-glucuronide was found to be the main intestinal metabolite. Our results could not conclude on the enterohepatic recycling of quercetin or its metabolites, although several individual profiles showed distinctive peaks. CONCLUSIONS This study highlights the intestinal metabolism and excretion of quercetin and its conjugates in humans and gives insights into the relevant concentrations which should be used to investigate potential food-drug interactions in vitro.
Collapse
Affiliation(s)
- Clément Chalet
- Unilever R&D, Vlaardingen, The Netherlands.,Drug Delivery and Disposition, Gasthuisberg O&N II, KU Leuven, Leuven, Belgium
| | - Jari Rubbens
- Drug Delivery and Disposition, Gasthuisberg O&N II, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), Gasthuisberg O&N1, KU Leuven, Leuven, Belgium
| | | | - Patrick Augustijns
- Drug Delivery and Disposition, Gasthuisberg O&N II, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Drennen C, Gorse E, Stratford RE. Cellular Pharmacokinetic Model-Based Analysis of Genistein, Glyceollin, and MK-571 Effects on 5 (and 6)-Carboxy-2',7'-Dichloroflourescein Disposition in Caco-2 Cells. J Pharm Sci 2018; 107:1194-1203. [PMID: 29247742 PMCID: PMC5856607 DOI: 10.1016/j.xphs.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
Pharmacokinetic modeling was used to describe 5 (and 6)-carboxy-2',7'-dichloroflourescein (CDF) disposition in Caco-2 cells following CDF or CDFDA (CDF diacetate) dosing. CDF transcellular flux was modeled by simple passive diffusion. CDFDA dosing models were based on simultaneous fitting of CDF levels in apical, basolateral, and intracellular compartments. Predicted CDF efflux was 50% higher across the apical versus the basolateral membrane. This difference was similar following apical and basolateral CDFDA dosing, despite intracellular levels being 3-fold higher following basolateral dosing, thus supporting nonsaturable CDF efflux kinetics. A 3-compartment catenary model with intracellular CDFDA hydrolysis described CDF disposition. This model predicted that apical CDF efflux was not altered in the presence of MK-571, and that basolateral membrane clearance was enhanced to account for reduced intracellular CDF in the presence of this multidrug resistance-associated protein (MRP) inhibitor. Similar effects were predicted for glyceollin, while genistein exposure had no predicted effects on CDF efflux. These modulator effects are discussed in the context of model predicted intracellular CDF concentrations relative to reports of CDF affinity (measured by Km) for MRP2 and MRP3. This model-based analysis confirms the complexity of efflux kinetics and suggests that other transporters may have contributed to CDF efflux.
Collapse
Affiliation(s)
- Callie Drennen
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Erin Gorse
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Robert E Stratford
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
27
|
UGT-mediated metabolism plays a dominant role in the pharmacokinetic behavior and the disposition of morusin in vivo and in vitro. J Pharm Biomed Anal 2018; 154:339-353. [PMID: 29571132 DOI: 10.1016/j.jpba.2018.02.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Morusin is a prenylated flavone isolated from mulberry, the branch and root bark of various Morus species, which possesses diverse pharmacological activities. However, it lacks extensive studies about its absorption and disposition. This study investigated the pharmacokinetic behavior of morusin in rat, and its first-pass metabolism in situ. The metabolic pathway of morusin was further investigated by 12 human recombinant UDP-glucuronosyltransferases (UGTs), 9 CYP450s, as well as liver and intestinal microsomes. Four mono-glucuronide metabolites (M-5-G, M-4'-G, M-2'-G, and MII-2) were identified in rat intestine and bile by LC-MS/MS, while three of them were also detected in plasma (M-5-G, M-4'-G, and MII-2). M-4'-G was the principal conjugate. However, few CYP450 metabolites were found in rat intestine and bile. Only a small amount of MI-1 could be detected in rat plasma. UGT1A1, 1A3, 1A7, and 2B7 were the major contributors to morusin glucuronidation. Morusin exhibited substrate inhibition kinetic characteristics in all UGTs. Clearance rates of M-4'-G in HLM, RLM, UGT1A1, UGT1A3, and UGT2B7 were 137.02, 127.55, 32.54, 41.18, and 35.07 ml/min/mg, respectively. Besides, CYP3A5, 3A4, and 2C19 primarily contributed to the oxidative metabolism of morusin. The pharmacokinetic curves of morusin and its conjugates presented double peaks, showing that an enterohepatic recycling may exist. In conclusion, glucuronidation was confirmed to be the crucial metabolic pathway for morusin in vivo, and M-4'-G was the main metabolite.
Collapse
|
28
|
Wang L, Chen Q, Zhu L, Zeng X, Li Q, Hu M, Wang X, Liu Z. Simultaneous determination of tilianin and its metabolites in mice using ultra-high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 32. [PMID: 29144552 DOI: 10.1002/bmc.4139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Liping Wang
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Qingwei Chen
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Xuejun Zeng
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Qiang Li
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ming Hu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
- College of Pharmacy; University of Houston; Houston TX USA
| | - Xinchun Wang
- The First Affiliated Hospital of the Medical College; Shihezi University; Shihezi China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine; Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
29
|
Estrela JM, Mena S, Obrador E, Benlloch M, Castellano G, Salvador R, Dellinger RW. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60:9413-9436. [PMID: 28654265 DOI: 10.1021/acs.jmedchem.6b01026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Salvador Mena
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Gloria Castellano
- Department of Health and Functional Valorization, San Vicente Martir Catholic University , 46008 Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, University of Valencia , 46010 Valencia, Spain
| | | |
Collapse
|
30
|
Jiang H, Yu J, Zheng H, Chen J, Wu J, Qi X, Wang Y, Wang X, Hu M, Zhu L, Liu Z. Breast Cancer Resistance Protein and Multidrug Resistance Protein 2 Regulate the Disposition of Acacetin Glucuronides. Pharm Res 2017; 34:1402-1415. [PMID: 28421306 DOI: 10.1007/s11095-017-2157-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022]
Abstract
PURPOSE To determine the mechanism responsible for acacetin glucuronide transport and the bioavailability of acacetin. METHODS Area under the curve (AUC), clearance (CL), half-life (T1/2) and other pharmacokinetic parameters were determined by the pharmacokinetic model. The excretion of acacetin glucuronides was evaluated by the mouse intestinal perfusion model and the Caco-2 cell model. RESULTS In pharmacokinetic studies, the bioavailability of acacetin in FVB mice was 1.3%. Acacetin was mostly exposed as acacetin glucuronides in plasma. AUC of acacetin-7-glucuronide (Aca-7-Glu) was 2-fold and 6-fold higher in Bcrp1 (-/-) mice and Mrp2 (-/-) mice, respectively. AUC of acacetin-5-glucuronide (Aca-5-Glu) was 2-fold higher in Bcrp1 (-/-) mice. In mouse intestinal perfusion, the excretion of Aca-7-Glu was decreased by 1-fold and 2-fold in Bcrp1 (-/-) and Mrp2 (-/-) mice, respectively. In Caco-2 cells, the efflux rates of Aca-7-Glu and Aca-5-Glu were significantly decreased by breast cancer resistance protein (BCRP) inhibitor Ko143 and multidrug resistance protein 2 (MRP2) inhibitor LTC4. The use of these inhibitors markedly increased the intracellular acacetin glucuronide content. CONCLUSIONS BCRP and MRP2 regulated the in vivo disposition of acacetin glucuronides. The coupling of glucuronidation and efflux transport was probably the primary reason for the low bioavailability of acacetin.
Collapse
Affiliation(s)
- Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Haihui Zheng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiamei Chen
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, 832008, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
- Department of Pharmacological and Pharmaceutical Sciences College of Pharmacy, University of Houston, Houston, Texas, 77030, USA
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
31
|
Zhang Q, Zhu L, Gong X, Ruan Y, Yu J, Jiang H, Wang Y, Qi X, Lu L, Liu Z. Sulfonation Disposition of Acacetin: In Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4921-4931. [PMID: 28540728 DOI: 10.1021/acs.jafc.7b00854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acacetin, an important component of acacia honey, exerts extensive therapeutic effects on many cancers. However, the sulfonation disposition of acacetin has rarely been reported. Therefore, this study aimed to investigate the sulfonation disposition of acacetin systematically. The results showed that acacetin-7-sulfate was the main metabolite mediated primarily by sulfotransferases (SULT) 1A1. Dog liver S9 presented the highest formation rate of acacetin-7-sulfate. Compared with that in wild-type Friend Virus B (FVB) mice, plasma exposure of acacetin-7-sulfate decreased significantly in multidrug resistance protein 1 knockout (Mrp1-/-) mice vut increased clearly in breast cancer resistance protein knockout (Bcrp-/-) mice. In Caco-2 monolayers, the efflux and clearance of acacetin-7-sulfate was reduced distinctly by the BCRP inhibitor Ko143 on the apical side and by the MRP1 inhibitor MK571 on the basolateral side. In conclusion, acacetin sulfonation was mediated mostly by SULT1A1. Acacetin-7-sulfate was found to be transported mainly by BCRP and MRP1. Hence, SULT1A1, BCRP, and MRP1 are responsible for acacetin-7-sulfate exposure in vivo.
Collapse
Affiliation(s)
- Qisong Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Xia Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - XiaoXiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou, Guangdong 510515, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou, Guangdong 510006, China
| |
Collapse
|
32
|
Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev 2017; 49:105-138. [PMID: 28266877 DOI: 10.1080/03602532.2017.1293682] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.
Collapse
Affiliation(s)
- Guangyi Yang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China.,b Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine , Shiyan , Hubei , China
| | - Shufan Ge
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Rashim Singh
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Sumit Basu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Katherine Shatzer
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Ming Zen
- d Department of Thoracic and Cardiomacrovascular Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jiong Liu
- e Department of Digestive Diseases Surgery , Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Yifan Tu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA
| | - Chenning Zhang
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jinbao Wei
- a Department of Pharmacy , Institute of Wudang Herbal Medicine Research, Taihe Hospital, Hubei University of Medicine , Shiyan , Hubei , China
| | - Jian Shi
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Lijun Zhu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Zhongqiu Liu
- f Department of Pharmacy , Institute of Translational Chinese Medicine, Guangzhou University of Chinese Medicine , Guangzhou , Guangdong , China
| | - Yuan Wang
- g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Song Gao
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| | - Ming Hu
- c Department of Pharmacological and Pharmaceutical Sciences , College of Pharmacy, University of Houston , Houston , TX , USA.,g Department of Pharmacy , College of Pharmacy, Hubei University of Medicine , Shiyan , Hubei , China
| |
Collapse
|
33
|
Zhang Y, Fei F, Zhen L, Zhu X, Wang J, Li S, Geng J, Sun R, Yu X, Chen T, Feng S, Wang P, Yang N, Zhu Y, Huang J, Zhao Y, Aa J, Wang G. Sensitive analysis and simultaneous assessment of pharmacokinetic properties of crocin and crocetin after oral administration in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1044-1045:1-7. [PMID: 28056427 DOI: 10.1016/j.jchromb.2016.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/13/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
Abstract
Crocin and crocetin in rat plasma were simultaneously analysed using ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS), and method was fully validated. For the first time, levels of both crocin and crocetin in plasma were profiled after oral administration of crocin, and this UPLC-MS/MS approach was applied to evaluate pharmacokinetics and relative bioavailability of crocin and crocetin in rats. It was shown that crocin transformed into crocetin quickly in the gastrointestinal tract, and crocetin was 56-81 fold higher exposed in rat plasma than crocin after oral administration of crocin. A comparison study revealed that an oral administration of equal molar crocin achieved higher exposure of crocetin in rat plasma than that of crocetin. It was suggested that oral administration of crocin has the advantages over crocetin, and crocetin may be the active component potentially responsible for the pharmacological effect of crocin.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Fei Fei
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Le Zhen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Xuanxuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, No. 282, Hanzhong Road, Nanjing 210029, PR China
| | - Jiankun Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Sijia Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Jianliang Geng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Runbin Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Xiaoyi Yu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Tingting Chen
- Mianyang Nanshan Experimental High School, Mianyang 621000, PR China
| | - Siqi Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Pei Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Na Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Yejin Zhu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Jingqiu Huang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Yuqing Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| | - Jiye Aa
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009, PR China
| |
Collapse
|
34
|
Dai P, Luo F, Wang Y, Jiang H, Wang L, Zhang G, Zhu L, Hu M, Wang X, Lu L, Liu Z. Species- and gender-dependent differences in the glucuronidation of a flavonoid glucoside and its aglycone determined using expressed UGT enzymes and microsomes. Biopharm Drug Dispos 2016; 36:622-35. [PMID: 26317684 DOI: 10.1002/bdd.1989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/13/2015] [Accepted: 08/22/2015] [Indexed: 11/09/2022]
Abstract
Flavonoids occur naturally as glucosides and aglycones. Their common phenolic hydroxyl groups may trigger extensive UDP-glucuronosyltransferase (UGT)- catalysed metabolism. Unlike aglycones, glucosides contain glucose moieties. However, the influence of these glucose moieties on glucuronidation of glucosides and aglycones remains unclear. In this study, the flavonoid glucoside tilianin and its aglycone acacetin were used as model compounds. The glucuronidation characteristics and enzyme kinetics of tilianin and acacetin were compared using human UGT isoforms, liver microsomes and intestinal microsomes obtained from different animal species. Tilianin and acacetin were metabolized into different glucuronides, with UGT1A8 produced as the main isoform. Assessment of enzyme kinetics in UGT1A8, human liver microsomes and human intestinal microsomes revealed that compared with tilianin, acacetin displayed lower Km (0.6-, 0.7- and 0.6-fold, respectively), higher Vmax (20-, 60- and 230-fold, respectively) and higher clearance (30-, 80- and 300-fold, respectively). Furthermore, glucuronidation of acacetin and tilianin showed significant species- and gender-dependent differences. In conclusion, glucuronidation of flavonoid aglycones is faster than that of glucosides in the intestine and the liver. Understanding the metabolism and species- and gender-dependent differences between glucosides and aglycones is crucial for the development of drugs from flavonoids.
Collapse
Affiliation(s)
- Peimin Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Feifei Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liping Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,First Affiliated Hospital of the Medical College, Shihezi University, Xin Jiang, 832008, China
| | - Guiyu Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas, 77030, USA
| | - Xinchun Wang
- First Affiliated Hospital of the Medical College, Shihezi University, Xin Jiang, 832008, China
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
35
|
Zheng L, Zhu L, Zhao M, Shi J, Li Y, Yu J, Jiang H, Wu J, Tong Y, Liu Y, Hu M, Lu L, Liu Z. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters. AAPS JOURNAL 2016; 18:1289-1299. [PMID: 27393480 DOI: 10.1208/s12248-016-9951-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Lijun Zhu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Min Zhao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jian Shi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuhuan Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jia Yu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Huangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jinjun Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yunli Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yuting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ming Hu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, Texas, 77030, USA
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Zhongqiu Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China. .,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
36
|
Zeng M, Sun R, Basu S, Ma Y, Ge S, Yin T, Gao S, Zhang J, Hu M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol Nutr Food Res 2016; 60:1006-19. [PMID: 26843117 DOI: 10.1002/mnfr.201500692] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Abstract
SCOPE Enterohepatic recycling is often thought to involve mostly phase II metabolites generated in the liver. This study aims to determine if direct biliary excretion of extrahepatically generated glucuronides would also enable recycling. METHODS AND RESULTS Conventional and modified intestinal perfusion models along with intestinal and liver microsomes were used to determine the contribution of extrahepatically derived glucuronides. Glucuronidation of four flavonoids (genistein, biochanin A, apigenin, and chrysin at 2.5-20 μM) were generally more rapid in the hepatic than intestinal microsomes. Furthermore, when aglycones (at 10 μM each) were perfused, larger (1.7-9 fold) amounts of glucuronides were found in the bile than in the luminal perfusate. However, higher concentrations of glucuronides were not found in jugular vein than portal vein, and apigenin glucuronide actually displayed a significantly lower concentration in jugular vein (<1 nM) than portal vein (≈4 nM). A direct portal infusion of four flavonoid glucuronides (5.9-10.4 μM perfused at 2 mL/h) showed that the vast majority (>65%) of the glucuronides (except for biochanin A glucuronide) administered were efficiently excreted into the bile. CONCLUSION Direct biliary excretion of extrahepatically generated flavonoid glucuronides is a highly efficient clearance mechanism, which should enable enterohepatic recycling of flavonoids without hepatic conjugating enzymes.
Collapse
Affiliation(s)
- Min Zeng
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rongjin Sun
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.,Hubei Provincial Technology and Research Center for Comprehensive Development of Medicinal Herbs, Hubei University of Medicine, Shiyan, Hubei, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yong Ma
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Song Gao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jun Zhang
- Department of Thoracic and Cardiomacrovascular Surgery, Hubei University of Medicine Affiliated Shiyan Taihe Hospital, Shiyan, Hubei, China
| | - Ming Hu
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| |
Collapse
|
37
|
Zeng C, Jiang W, Tan M, Yang X, He C, Huang W, Xing J. Optimization of the process variables of tilianin-loaded composite phospholipid liposomes based on response surface-central composite design and pharmacokinetic study. Eur J Pharm Sci 2016; 85:123-31. [PMID: 26883760 DOI: 10.1016/j.ejps.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
Abstract
Tilianin is attracting considerable attention because of its antihypertensive, anti-atherogenic and anticonvulsive efficacy. However, tilianin has poor oral bioavailability. Thus, to improve the oral bioavailability of tilianin, composite phospholipid liposomes were adopted in this work as a novel nanoformulation. The aim was to develop and formulate tilianin composite phospholipid liposomes (TCPLs) through ethanol injection and to apply the response surface-central composite design to optimize the tilianin composite phospholipid liposome formulation. The independent variables were the amount of phospholipids (X1), amount of cholesterol (X2) and weight ratio of phospholipid to drug (X3); the depended variables were particle size (Y1) and encapsulation efficiency (EE) (Y2) of TCPLs. Results indicated that the optimum preparation conditions were as follows: phospholipid amount, 500 mg, cholesterol amount, 50mg and phospholipid/drug ratio, 25. These variables were also the major contributing variables for particle size (101.4 ± 6.1 nm), higher EE (90.28% ± 1.36%), zeta potential (-18.3 ± 2.6 mV) and PDI (0.122 ± 0.027). Subsequently, differential scanning calorimetry techniques were used to investigate the molecular interaction in TCPLs, and the in vitro drug release of tilianin and TCPLs was investigated by the second method of dissolution in the Chinese Pharmacopoeia (Edition 2015). Furthermore, pharmacokinetics in Sprague Dawley rats was evaluated using a rat jugular vein intubation tube. Results demonstrated that the Cmax of TCPLs became 5.7 times higher than that of tilianin solution and that the area under the curve of TCPLs became about 4.6-fold higher than that of tilianin solution. Overall, our results suggested that the prepared tilianin composite phospholipid liposome formulations could be used to improve the bioavailability of tilianin after oral administration.
Collapse
Affiliation(s)
- Cheng Zeng
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830054, PR China; Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Wen Jiang
- Department of pharmacy, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Meie Tan
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Xiaoyi Yang
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Chenghui He
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Jianguo Xing
- Xinjiang Institute of Materia Medica, Urumqi 830004, PR China.
| |
Collapse
|
38
|
Chimezie C, Ewing A, Schexnayder C, Bratton M, Glotser E, Skripnikova E, Sá P, Boué S, Stratford RE. Glyceollin Effects on MRP2 and BCRP in Caco-2 Cells, and Implications for Metabolic and Transport Interactions. J Pharm Sci 2016; 105:972-981. [PMID: 26296158 DOI: 10.1002/jps.24605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Glyceollins are phytoalexins produced in soybeans under stressful growth conditions. On the basis of prior evaluations, they show potential to treat multiple diseases, including certain cancers, Type 2 diabetes, and cardiovascular conditions. The aim of the present study was to expand on recent studies designed to initially characterize the intestinal disposition of glyceollins. Specifically, studies were undertaken in Caco-2 cells to evaluate glyceollins' effects on apical efflux transporters, namely, MRP2 and BCRP, which are the locus of several intestinal drug-drug and drug-food interactions. 5- (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used to provide a readout on MRP2 activity, whereas BODIPY-prazosin provided an indication of BCRP alteration. Glyceollins were shown to reverse MRP2-mediated CDF transport asymmetry in a concentration-dependent manner, with activity similar to the MRP2 inhibitor, MK-571. Likewise, they demonstrated concentration-dependent inhibition of BCRP-mediated efflux of BODIPY-prazosin with a potency similar to that of Ko143. Glyceollin did not appreciably alter MRP2 or BCRP expression following 24 h of continuous exposure. The possibility that glyceollin mediated inhibition of genistein metabolite efflux by either transporter was evaluated. However, results demonstrated an interaction at the level of glyceollin inhibition of genistein metabolism rather than inhibition of metabolite transport.
Collapse
Affiliation(s)
- Chukwuemezie Chimezie
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Adina Ewing
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Chandler Schexnayder
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Melyssa Bratton
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Glotser
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Skripnikova
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Pedro Sá
- Universidade Federal do Vale do São Francisco, Petrolina, PE 56403-917, Brazil
| | - Stephen Boué
- Southern Regional Research Center, U.S.D.A., New Orleans, Louisiana 70124
| | - Robert E Stratford
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125.
| |
Collapse
|
39
|
Genistein and Glyceollin Effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010017. [PMID: 26703673 PMCID: PMC4730408 DOI: 10.3390/ijerph13010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2) and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP) function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6)-carboxy-2′,7′-dichloroflourescein (CDF) was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.
Collapse
|
40
|
Development and validation of a highly sensitive LC–MS/MS method for the determination of acacetin in human plasma and its application to a protein binding study. Arch Pharm Res 2015; 39:213-220. [DOI: 10.1007/s12272-015-0697-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
41
|
Shi J, Zheng H, Yu J, Zhu L, Yan T, Wu P, Lu L, Wang Y, Hu M, Liu Z. SGLT-1 Transport and Deglycosylation inside Intestinal Cells Are Key Steps in the Absorption and Disposition of Calycosin-7-O- -D-Glucoside in Rats. Drug Metab Dispos 2015; 44:283-96. [DOI: 10.1124/dmd.115.067009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022] Open
|