1
|
Qin D, Phung Q, Wu P, Yin Z, Tam S, Tran P, ElSohly AM, Gober J, Hu Z, Zhou Z, Cohen S, He D, Bainbridge TW, Kemball CC, Zarzar J, Sreedhara A, Stephens N, Decalf J, Moussion C, Ye Z, Balazs M, Li Y. A single point mutation on FLT3L-Fc protein increases the risk of immunogenicity. Front Immunol 2025; 16:1519452. [PMID: 40018031 PMCID: PMC11865242 DOI: 10.3389/fimmu.2025.1519452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction As a crucial asset for human health and modern medicine, an increasing number of biotherapeutics are entering the clinic. However, due to their complexity, these drugs have a higher potential to be immunogenic, leading to the generation of anti-drug antibodies (ADAs). Clinically significant ADAs have an impact on pharmacokinetics (PK), pharmacodynamics (PD), effectiveness, and/or safety. Thus, it is crucial to understand, manage and minimize the immunogenicity potential during drug development, ideally starting from the molecule design stage. Methods In this study, we utilized various immunogenicity risk assessment methods, including in silico prediction, dendritic cell internalization, MHC-associated peptide proteomics, in vitro HLA peptide binding, and in vitro T cell proliferation, to assess the immunogenicity risk of FLT3L-Fc variants. Results We identified a single point mutation in the human FLT3L-Fc protein that introduced highly immunogenic T cell epitopes, leading to the induction of T cell responses and thereby increasing the immunogenicity risk in clinical settings. Consequently, the variant with this point mutation was removed from further consideration as a clinical candidate. Discussion This finding underscores the necessity for careful evaluation of mutations during the engineering of protein therapeutics. The integration of multiple immunogenicity risk assessment tools offers critical insights for informed decision-making in candidate sequence design and therapeutic lead selection.
Collapse
Affiliation(s)
- Dan Qin
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Qui Phung
- Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Wu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Zhaojun Yin
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Sien Tam
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Peter Tran
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Adel M. ElSohly
- Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Joshua Gober
- Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Zicheng Hu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Zhenru Zhou
- Proteomic and Genomic Technologies, Genentech Inc., South San Francisco, CA, United States
| | - Sivan Cohen
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, United States
| | - Dongping He
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | | | - Christopher C. Kemball
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Jonathan Zarzar
- Pharmaceutical Development, Genentech Inc., South San Francisco, CA, United States
| | - Alavattam Sreedhara
- Pharmaceutical Development, Genentech Inc., South San Francisco, CA, United States
| | - Nicole Stephens
- Analytical Development & Quality Control, Genentech Inc., South San Francisco, CA, United States
| | - Jérémie Decalf
- Cancer Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Christine Moussion
- Cancer Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Zhengmao Ye
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Mercedesz Balazs
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| | - Yinyin Li
- Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
2
|
Carter PJ, Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat Rev Drug Discov 2024; 23:898-913. [PMID: 39424922 DOI: 10.1038/s41573-024-01051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Remarkable progress has been made in recent decades in engineering antibodies and other protein therapeutics, including enhancements to existing functions as well as the advent of novel molecules that confer biological activities previously unknown in nature. These protein therapeutics have brought major benefits to patients across multiple areas of medicine. One major ongoing challenge is that protein therapeutics can elicit unwanted immune responses (immunogenicity) in treated patients, including the generation of anti-drug antibodies. In rare and unpredictable cases, anti-drug antibodies can seriously compromise therapeutic safety and/or efficacy. Systematic deconvolution of this immunogenicity problem is confounded by the complexity of its many contributing factors and the inherent limitations of available experimental and computational methods. Nevertheless, continued progress with the assessment and mitigation of immunogenicity risk at the preclinical stage has the potential to reduce the incidence and severity of clinical immunogenicity events. This Review focuses on identifying key unsolved anti-drug antibody-related challenges and offers some pragmatic approaches towards addressing them. Examples are drawn mainly from antibodies, given that the majority of available clinical data are from this class of protein therapeutics. Plausible and seemingly tractable solutions are in sight for some immunogenicity problems, whereas other challenges will likely require completely new approaches.
Collapse
Affiliation(s)
- Paul J Carter
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA, USA.
| | - Valerie Quarmby
- Department of BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
3
|
Harris CT, Cohen S. Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs 2024; 38:205-226. [PMID: 38261155 PMCID: PMC10912315 DOI: 10.1007/s40259-023-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA
| | - Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA.
| |
Collapse
|
4
|
Lteif M, Pallardy M, Turbica I. Antibodies internalization mechanisms by dendritic cells and their role in therapeutic antibody immunogenicity. Eur J Immunol 2024; 54:e2250340. [PMID: 37985174 DOI: 10.1002/eji.202250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Internalization and processing by antigen-presenting cells such as dendritic cells (DCs) are critical steps for initiating a T-cell response to therapeutic antibodies. Consequences are the production of neutralizing antidrug antibodies altering the clinical response, the presence of immune complexes, and, in some rare cases, hypersensitivity reactions. In recent years, significant progress has been made in the knowledge of cellular uptake mechanisms of antibodies in DCs. The uptake of antibodies could be directly related to their immunogenicity by regulating the quantity of materials entering the DCs in relation to antibody structure. Here, we summarize the latest insights into cellular uptake mechanisms and pathways in DCs. We highlight the approaches to study endocytosis, the impact of endocytosis routes on T-cell response, and discuss the link between how DCs internalize therapeutic antibodies and the potential mechanisms that could give rise to immunogenicity. Understanding these processes could help in developing assays to evaluate the immunogenicity potential of biotherapeutics.
Collapse
Affiliation(s)
- Maria Lteif
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Marc Pallardy
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Isabelle Turbica
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
5
|
Tsai WTK, Li Y, Yin Z, Tran P, Phung Q, Zhou Z, Peng K, Qin D, Tam S, Spiess C, Brumm J, Wong M, Ye Z, Wu P, Cohen S, Carter PJ. Nonclinical immunogenicity risk assessment for knobs-into-holes bispecific IgG 1 antibodies. MAbs 2024; 16:2362789. [PMID: 38845069 PMCID: PMC11164226 DOI: 10.1080/19420862.2024.2362789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Bispecific antibodies, including bispecific IgG, are emerging as an important new class of antibody therapeutics. As a result, we, as well as others, have developed engineering strategies designed to facilitate the efficient production of bispecific IgG for clinical development. For example, we have extensively used knobs-into-holes (KIH) mutations to facilitate the heterodimerization of antibody heavy chains and more recently Fab mutations to promote cognate heavy/light chain pairing for efficient in vivo assembly of bispecific IgG in single host cells. A panel of related monospecific and bispecific IgG1 antibodies was constructed and assessed for immunogenicity risk by comparison with benchmark antibodies with known low (Avastin and Herceptin) or high (bococizumab and ATR-107) clinical incidence of anti-drug antibodies. Assay methods used include dendritic cell internalization, T cell proliferation, and T cell epitope identification by in silico prediction and MHC-associated peptide proteomics. Data from each method were considered independently and then together for an overall integrated immunogenicity risk assessment. In toto, these data suggest that the KIH mutations and in vitro assembly of half antibodies do not represent a major risk for immunogenicity of bispecific IgG1, nor do the Fab mutations used for efficient in vivo assembly of bispecifics in single host cells. Comparable or slightly higher immunogenicity risk assessment data were obtained for research-grade preparations of trastuzumab and bevacizumab versus Herceptin and Avastin, respectively. These data provide experimental support for the common practice of using research-grade preparations of IgG1 as surrogates for immunogenicity risk assessment of their corresponding pharmaceutical counterparts.
Collapse
Affiliation(s)
- Wen-Ting K. Tsai
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Yinyin Li
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhaojun Yin
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Peter Tran
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Qui Phung
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Zhenru Zhou
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, CA, USA
| | - Kun Peng
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Dan Qin
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Sien Tam
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Christoph Spiess
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| | - Jochen Brumm
- Department of Nonclinical Biostatistics, Genentech, Inc, South San Francisco, CA, USA
| | - Manda Wong
- Department of Structural Biology, Genentech, Inc, South San Francisco, CA, USA
| | - Zhengmao Ye
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Patrick Wu
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Sivan Cohen
- Department of Bioanalytical Sciences, Genentech, Inc, South San Francisco, CA, USA
| | - Paul J. Carter
- Department of Antibody Engineering, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
6
|
Jarvi NL, Balu-Iyer SV. A mechanistic marker-based screening tool to predict clinical immunogenicity of biologics. COMMUNICATIONS MEDICINE 2023; 3:174. [PMID: 38066254 PMCID: PMC10709359 DOI: 10.1038/s43856-023-00413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/21/2023] [Indexed: 01/01/2024] Open
Abstract
BACKGROUND The efficacy and safety of therapeutic proteins are undermined by immunogenicity driven by anti-drug antibodies. Immunogenicity risk assessment is critically necessary during drug development, but current methods lack predictive power and mechanistic insight into antigen uptake and processing leading to immune response. A key mechanistic step in T-cell-dependent immune responses is the migration of mature dendritic cells to T-cell areas of lymphoid compartments, and this phenomenon is most pronounced in the immune response toward subcutaneously delivered proteins. METHODS The migratory potential of monocyte-derived dendritic cells is proposed to be a mechanistic marker for immunogenicity screening. Following exposure to therapeutic protein in vitro, dendritic cells are analyzed for changes in activation markers (CD40 and IL-12) in combination with levels of the chemokine receptor CXCR4 to represent migratory potential. Then a transwell assay captures the intensity of dendritic cell migration in the presence of a gradient of therapeutic protein and chemokine ligands. RESULTS Here, we show that an increased ability of the therapeutic protein to induce dendritic cell migration along a gradient of chemokine CCL21 and CXCL12 predicts higher immunogenic potential. Expression of the chemokine receptor CXCR4 on human monocyte-derived dendritic cells, in combination with activation markers CD40 and IL-12, strongly correlates with clinical anti-drug antibody incidence. CONCLUSIONS Mechanistic understanding of processes driving immunogenicity led to the development of a predictive tool for immunogenicity risk assessment of therapeutic proteins. These predictive markers could be adapted for immunogenicity screening of other biological modalities.
Collapse
Affiliation(s)
- Nicole L Jarvi
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
7
|
Gokemeijer J, Wen Y, Jawa V, Mitra-Kaushik S, Chung S, Goggins A, Kumar S, Lamberth K, Liao K, Lill J, Phung Q, Walsh R, Roberts BJ, Swanson M, Singh I, Tourdot S, Kroenke MA, Rup B, Goletz TJ, Gupta S, Malherbe L, Pattijn S. Survey Outcome on Immunogenicity Risk Assessment Tools for Biotherapeutics: an Insight into Consensus on Methods, Application, and Utility in Drug Development. AAPS J 2023; 25:55. [PMID: 37266912 DOI: 10.1208/s12248-023-00820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
A survey conducted by the Therapeutic Product Immunogenicity (TPI) community within the American Association of Pharmaceutical Scientists (AAPS) posed questions to the participants on their immunogenicity risk assessment strategies prior to clinical development. The survey was conducted in 2 phases spanning 5 years, and queried information about in silico algorithms and in vitro assay formats for immunogenicity risk assessments and how the data were used to inform early developability effort in discovery, chemistry, manufacturing and control (CMC), and non-clinical stages of development. The key findings representing the trends from a majority of the participants included the use of high throughput in silico algorithms, human immune cell-based assays, and proteomics based outputs, as well as specialized assays when therapeutic mechanism of action could impact risk assessment. Additional insights into the CMC-related risks could also be gathered with the same tools to inform future process development and de-risk critical quality attributes with uncertain and unknown risks. The use of the outputs beyond supporting early development activities was also noted with participants utilizing the risk assessments to drive their clinical strategy and streamline bioanalysis.
Collapse
Affiliation(s)
- Jochem Gokemeijer
- Bristol Myers Squibb, 100 Binney Street, Cambridge, Massachusetts, 02143, USA.
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, New Jersey, 08540, USA
| | | | - Shan Chung
- Genentech Inc., South San Francisco, California, 94080, USA
| | - Alan Goggins
- Merck & Co., Inc., South San Francisco, California, 94080, USA
| | - Seema Kumar
- EMD Serono Research & Development Institute, (A Business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts, 01826, USA
| | | | - Karen Liao
- Merck & Co., Inc., West Point, Pennsylvania, 19486, USA
| | - Jennie Lill
- Genentech Inc., South San Francisco, California, 94080, USA
| | - Qui Phung
- Genentech Inc., South San Francisco, California, 94080, USA
| | - Robin Walsh
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | | | - Michael Swanson
- Janssen R&D LLC., 1400 McKean Road, Spring House, Pennsylvania, 19477, USA
| | | | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, Massachusetts, 01810, USA
| | - Mark A Kroenke
- Clinical Immunology, Amgen, Thousand Oaks, California, 91320, USA
| | - Bonita Rup
- Bonnie Rup Consulting, LLC, 42 Commonwealth Ave, Boston, Massachusetts, 02116, USA
| | | | | | - Laurent Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | | |
Collapse
|
8
|
Arata Y, Motoyama S, Yano M, Ikuno T, Ito S, Matsushita T, Takeiri A, Nishito Y, Yabuki N, Mizuno H, Sampei Z, Mishima M, Honda M, Kiyokawa J, Suzuki H, Chiba S, Tabo M, Kubo C. Rapid in vitro assessment of the immunogenicity potential of engineered antibody therapeutics through detection of CD4 + T cell interleukin-2 secretion. MAbs 2023; 15:2253570. [PMID: 37682072 PMCID: PMC10494738 DOI: 10.1080/19420862.2023.2253570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic antibodies sometimes elicit anti-drug antibodies (ADAs) that can affect efficacy and safety. Engineered antibodies that contain artificial amino acid sequences are potentially highly immunogenic, but this is currently difficult to predict. Therefore, it is important to efficiently assess immunogenicity during the development of complex antibody-based formats. Here, we present an in vitro peripheral blood mononuclear cell-based assay that can be used to assess immunogenicity potential within 3 days. This method involves examining the frequency and function of interleukin (IL)-2-secreting CD4+ T cells induced by therapeutic antibodies. IL-2-secreting CD4+ T cells seem to be functionally relevant to the immunogenic potential due to their proliferative activity and the expression of several cytokines. The rates of the donors responding to low and high immunogenic proteins, mAb1, and keyhole limpet hemocyanin were 1.3% and 93.5%, respectively. Seven antibodies with known rates of immunogenicity (etanercept, emicizumab, abciximab, romosozumab, blosozumab, humanized anti-human A33 antibody, and bococizumab) induced responses in 1.9%, 3.8%, 6.4%, 10.0%, 29.2%, 43.8%, and 89.5% of donors, respectively. These data are comparable with ADA incidences in clinical settings. Our results show that this assay can contribute to the swift assessment and mechanistic understanding of the immunogenicity of therapeutic antibodies.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shigeki Motoyama
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mariko Yano
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tatsuya Ikuno
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tomochika Matsushita
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Akira Takeiri
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Yukari Nishito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Nami Yabuki
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hideaki Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masayuki Mishima
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Jumpei Kiyokawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hiromi Suzuki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shuichi Chiba
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mitsuyasu Tabo
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Chiyomi Kubo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| |
Collapse
|
9
|
Swanson MD, Rios S, Mittal S, Soder G, Jawa V. Immunogenicity Risk Assessment of Spontaneously Occurring Therapeutic Monoclonal Antibody Aggregates. Front Immunol 2022; 13:915412. [PMID: 35967308 PMCID: PMC9364768 DOI: 10.3389/fimmu.2022.915412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Aggregates of therapeutic proteins have been associated with increased immunogenicity in pre-clinical models as well as in human patients. Recent studies to understand aggregates and their immunogenicity risks use artificial stress methods to induce high levels of aggregation. These methods may be less biologically relevant in terms of their quantity than those that occur spontaneously during processing and storage. Here we describe the immunogenicity risk due to spontaneously occurring therapeutic antibody aggregates using peripheral blood mononuclear cells (PBMC) and a cell line with a reporter gene for immune activation: THP-1 BLUE NFκB. The spontaneously occurring therapeutic protein aggregates were obtained from process intermediates and final formulated drug substance from stability retains. Spontaneously occurring aggregates elicited innate immune responses for several donors in a PBMC assay with cytokine and chemokine production as a readout for immune activation. Meanwhile, no significant adaptive phase responses to spontaneously occurring aggregate samples were detected. While the THP-1 BLUE NFκB cell line and PBMC assays both responded to high stress induced aggregates, only the PBMC from a limited subset of donors responded to processing-induced aggregates. In this case study, levels of antibody aggregation occurring at process relevant levels are lower than those induced by stirring and may pose lower risk in vivo. Our methodologies can further inform additional immunogenicity risk assessments using a pre-clinical in vitro risk assessment approach utilizing human derived immune cells.
Collapse
Affiliation(s)
- Michael D. Swanson
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
- *Correspondence: Michael D. Swanson,
| | - Shantel Rios
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Sarita Mittal
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - George Soder
- Analytical R&D, Merck Research Laboratories, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Vibha Jawa
- Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
10
|
Introducing dendritic cell antibody internalization as an immunogenicity risk assessment tool. Bioanalysis 2022; 14:703-713. [PMID: 35593734 DOI: 10.4155/bio-2022-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Immunogenicity risk assessment assays are powerful tools that assess the relative immunogenicity of potential biotherapeutics. We detail here the development of a novel assay that measures the degree of antibody internalization by antigen-presenting cells as a predictor of immunogenicity. Results & methodology: The assay uses the fluorescence signal from the antibody bound to the outside of the cell as well as inside the cell to determine internalization. To calculate the amount of internalized antibody, the fluorescent signal from the outside was subtracted from the fluorescent signal from the inside, which is referred to as the internalization index. Conclusion: This assay format demonstrated that antibody-based biotherapeutics with higher clinical immunogenicity internalized to a higher degree than therapeutic antibodies with lower clinical immunogenicity.
Collapse
|
11
|
Zeunik R, Ryuzoji AF, Peariso A, Wang X, Lannan M, Spindler LJ, Knierman M, Copeland V, Patel C, Wen Y. Investigation of immune responses to oxidation, deamidation, and isomerization in therapeutic antibodies using preclinical immunogenicity risk assessment assays. J Pharm Sci 2022; 111:2217-2229. [DOI: 10.1016/j.xphs.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/30/2023]
|
12
|
Wen Y, Wang X, Cahya S, Anderson P, Velasquez C, Torres C, Ferrante A, Kaliyaperumal A. Comparability study of monocyte derived dendritic cells, primary monocytes, and THP1 cells for innate immune responses. J Immunol Methods 2021; 498:113147. [PMID: 34508774 DOI: 10.1016/j.jim.2021.113147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/06/2021] [Indexed: 01/23/2023]
Abstract
Immunogenicity is one major challenge to the successful development of biotherapeutics because it could adversely affect PK/PD, safety, and efficacy. Preclinical immunogenicity risk assessment strategies and assays have been developed and implemented to screen and optimize discovery molecules. Internalization by antigen presenting cells (APC) and innate immune activation are initial prerequisite steps in eliciting immune responses to biotherapeutics. Dendritic cells (DC)- and monocyte-based assays are employed to interrogate such risks, and their value has been well documented in the literature. However, these assays have limited throughput, exhibit higher variability, and entail lengthy and complex procedures as they are based on primary cells such as peripheral blood mononuclear cells (PBMC) from individual donors. Herein, we investigated THP1 cells as surrogate cells to study APC internalization and innate immune activation. Comparability studies showed that THP1 cells could resemble innate immune responses of monocyte-derived DC and primary CD14+ monocytes using a panel of therapeutic antibodies. In addition, an automated high throughput THP1 internalization assay was qualified to enable risk assessment at pre‑lead stages. The results demonstrated that THP1 cells can be utilized to assess immunogenicity risk in a high throughput manner.
Collapse
Affiliation(s)
- Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Xiaoli Wang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Suntara Cahya
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Paul Anderson
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Candyd Velasquez
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Carina Torres
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | - Andrea Ferrante
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA
| | | |
Collapse
|
13
|
Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem 2021; 630:114323. [PMID: 34339665 DOI: 10.1016/j.ab.2021.114323] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
Fluorescence resonance energy transfer (FRET)-based biosensors are effective analytical tools extensively used in fields of biomedicine, pharmacology, toxicology, and food sciences. Ratiometric imaging of substantial cellular processes, molecular components, and biological interactions is widely performed by these biosensors. A variety of FRET-based biosensors have provided comprehensive insights into underlying mechanisms of pathological conditions in live cells, tissues, and organisms. Moreover, integration of FRET-based biosensors with the current bioanalytical techniques allows for accurate, rapid, and sensitive diagnosis and proposes the advanced strategies for treatment. Precise analysis of ligand-receptor interactions by FRET-based biosensors has presented a basis for determination of novel therapeutic agents. Therefore, this study was designed to review the recent developments in FRET-based biosensors and their biomedical applications. In addition, characteristics, challenges, and outlooks of these biosensors were discussed.
Collapse
|
14
|
In vitro immunogenicity prediction: bridging between innate and adaptive immunity. Bioanalysis 2021; 13:1071-1081. [PMID: 34124935 DOI: 10.4155/bio-2021-0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of antidrug antibodies (ADAs) is an undesirable potential outcome of administration of biotherapeutics and involves the innate and adaptive immune systems. ADAs can have detrimental clinical consequences: they can reduce biotherapeutic efficacy or produce adverse events. Because animal models are considered poor predictors of immunogenicity in humans, in vitro assays with human innate and adaptive immune cells are commonly used alternatives that can reveal cell-mediated unwanted immune responses. Multiple methods have been developed to assess the immune cell response following exposure to biotherapeutics and estimate the potential immunogenicity of biotherapeutics. This review highlights the role of innate and adaptive immune cells as the drivers of immunogenicity and summarizes the use of these cells in assays to predict clinical ADA.
Collapse
|
15
|
Cohen S, Myneni S, Batt A, Guerrero J, Brumm J, Chung S. Immunogenicity risk assessment for biotherapeutics through in vitro detection of CD134 and CD137 on T helper cells. MAbs 2021; 13:1898831. [PMID: 33729092 PMCID: PMC7993230 DOI: 10.1080/19420862.2021.1898831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Biotherapeutics, which are biologic medications that are natural or bioengineered products of living cells, have revolutionized the treatment of many diseases. However, unwanted immune responses still present a major challenge to their widespread adoption. Many patients treated with biotherapeutics develop antigen-specific anti-drug antibodies (ADAs) that may reduce the efficacy of the therapy or cross-react with the endogenous counterpart of a protein therapeutic, or both. Here, we describe an in vitro method for assessing the immunogenic risk of a biotherapeutic. We found a correlation between clinical immunogenicity and the frequency with which a biotherapeutic stimulated an increase in CD134, CD137, or both cell surface markers on CD4+ T cells. Using high-throughput flow cytometry, we examined the effects of 14 biotherapeutics with diverse rates of clinical immunogenicity on peripheral blood mononuclear cells from 120 donors with diverse human leukocyte antigen class II-encoding alleles. Biotherapeutics with high rates of ADA development in the clinic had higher proportions of CD4+ T cells positive for CD134 or CD137 than biotherapeutics with low clinical immunogenicity. This method provides a rapid and simple preclinical test of the immunogenic potential of a new candidate biotherapeutic or biosimilar. Implementation of this approach during biotherapeutic research and development enables rapid elimination of candidates that are likely to cause ADA-related adverse events and detrimental consequences.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Srividya Myneni
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Anna Batt
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Joyce Guerrero
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Jochen Brumm
- Department of Biostatistics, Genentech Inc, South San Francisco, CA, USA
| | - Shan Chung
- Department of BioAnalytical Sciences, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
16
|
The Impact of Product and Process Related Critical Quality Attributes on Immunogenicity and Adverse Immunological Effects of Biotherapeutics. J Pharm Sci 2020; 110:1025-1041. [PMID: 33316242 DOI: 10.1016/j.xphs.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.
Collapse
|
17
|
Walsh RE, Lannan M, Wen Y, Wang X, Moreland CA, Willency J, Knierman MD, Spindler L, Liu L, Zeng W, Rocha GV, Obungu V, Lu J, Kaliyaperumal A, Ferrante A, Siegel R, Malherbe LP. Post-hoc assessment of the immunogenicity of three antibodies reveals distinct immune stimulatory mechanisms. MAbs 2020; 12:1764829. [PMID: 32370596 PMCID: PMC8648324 DOI: 10.1080/19420862.2020.1764829] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Robin E. Walsh
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Megan Lannan
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Yi Wen
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA, USA
| | - Xiaoli Wang
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA, USA
| | | | - Jill Willency
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael D. Knierman
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Laura Spindler
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Ling Liu
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Wei Zeng
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Guilherme V. Rocha
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Victor Obungu
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Jirong Lu
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Arunan Kaliyaperumal
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA, USA
| | - Andrea Ferrante
- Lilly Biotechnology Center, Lilly Research Laboratories, Eli Lilly and Company, San Diego, CA, USA
| | - Robert Siegel
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Laurent P. Malherbe
- Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|