1
|
Majeed A, Akhtar M, Khan M, Ijaz M, Hussain P, Maqbool T, Hanan H. Hemocompatible and biocompatible hybrid nanocarriers for enhanced oral bioavailability of paclitaxel: in vivo evaluation. Colloids Surf B Biointerfaces 2024; 242:114073. [PMID: 39018915 DOI: 10.1016/j.colsurfb.2024.114073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
Oral administration of BCS class IV anticancer agents has always remained challenging and frequently results in poor oral bioavailability. The goal of the current study was to develop hybrid nanoparticles (HNPs) employing cholesterol and poloxamer-407 to boost paclitaxel's (PTX) oral bioavailability. A series of HNPs with different cholesterol and poloxamer-407 ratios were developed utilizing a single-step nanoprecipitation technique. The PTX loaded HNPs were characterized systematically via particle size, zeta potential, polydispersity index, surface morphology, in vitro drug release, FTIR, DSC, XRD, acute oral toxicity analysis, hemolysis evaluation, accelerated stability studies, and in vivo pharmacokinetic analysis. The HNPs were found within the range of 106.6±55.60 - 244.5±88.24 nm diameter with the polydispersity index ranging from 0.20±0.03 - 0.51±0.11. SEM confirmed circular, nonporous, and smooth surfaces of HNPs. PTX loaded HNPs exhibited controlled release profile. The compatibility between the components of formulation, thermal stability, and amorphous nature of HNPs were confirmed by FTIR, DSC, and XRD, respectively. Acute oral toxicity analysis revealed that developed system have no deleterious effects on the animals' cellular structures. HNPs demonstrated notable cytotoxic effects and were hemocompatible at relatively higher concentrations. In vivo pharmacokinetic profile (AUC0-∞, AUMC0-∞, t1/2, and MRT0-∞) of the PTX loaded HNPs was improved as compared to pure PTX. It is concluded from our findings that the developed HNPs are hemocompatible, biocompatible and have significantly enhanced the oral bioavailability of PTX.
Collapse
Affiliation(s)
- Asma Majeed
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan.
| | - Mehran Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Punjab 54000, Pakistan
| | - Pakeeza Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Punjab 54000, Pakistan
| | - Hanasul Hanan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| |
Collapse
|
2
|
Nijhawan HP, Shyamsundar P, Prabhakar B, Yadav KS. PEGylated pH-Responsive Liposomes for Enhancing the Intracellular Uptake and Cytotoxicity of Paclitaxel in MCF-7 Breast Cancer Cells. AAPS PharmSciTech 2024; 25:216. [PMID: 39289249 DOI: 10.1208/s12249-024-02930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to develop paclitaxel (PTX)-loaded PEGylated (PEG)-pH-sensitive (SpH) liposomes to enhance drug delivery efficiency and cytotoxicity against MCF-7 breast cancer cells. PTX-loaded PEG-SpH liposomes were prepared using the thin film hydration method. ATR-FTIR compatibility studies revealed no significant interactions among liposome formulation components. TEM images confirmed spherical morphology, stability, and an ideal size range (180-200 nm) for improved blood circulation. At pH 5.5, liposomes exhibited increased size and positive zeta potential, indicating pH-sensitive properties due to CHEMS response to the acidic tumor microenvironment. Conversely, at pH 7.4, liposomes showed a slightly larger size (199.25 ± 1.64 nm) and a more negative zeta potential (-36.94 ± 0.32 mV), suggesting successful PEG-SpH surface modification, enhancing stability, and reducing aggregation. PTX-loaded PEG-SpH liposomes demonstrated high encapsulation efficiency (84.57 ± 0.92% w/w) and drug loading capacity (4.12 ± 0.26% w/w). In-vitro drug release studies revealed accelerated first-order PTX release at pH 5.5 and a controlled zero-order release at pH 7.4. Cellular uptake studies on MCF-7 cells demonstrated enhanced PTX uptake, attributed to mPEG-PCL incorporation prolonging circulation time and CHEMS facilitating PTX release in the tumor microenvironment. Furthermore, PTX-loaded PEG-SpH liposomes exhibited significantly improved cytotoxicity with an IC50 value of 1.107 µM after 72-h incubation, approximately 90% lower than plain PTX solution. Stability studies confirmed the robustness of the liposomal formulation under various storage conditions. These findings highlight the potential of PEGylated pH-responsive liposomes as effective nanocarriers for enhancing PTX therapy against breast cancer.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Pooja Shyamsundar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to Be University), Mumbai, India.
| |
Collapse
|
3
|
Jan N, Shah H, Khan S, Nasar F, Madni A, Badshah SF, Ali A, Bostanudin MF. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3565-3584. [PMID: 38015258 DOI: 10.1007/s00210-023-02865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cytarabine, an antimetabolite antineoplastic agent, has been utilized to treat various cancers. However, because of its short half-life, low stability, and limited bioavailability, achieving an optimal plasma concentration requires continuous intravenous administration, which can lead to toxicity in normal cells and tissues. Addressing these limitations is crucial to optimize the therapeutic efficacy of cytarabine while minimizing its adverse effects. The use of novel drug delivery systems, such as polymer-based nanocarriers have emerged as promising vehicles for targeted drug delivery due to their unique properties, including high stability, biocompatibility, and tunable release kinetics. In this review, we examine the application of various polymer-based nanocarriers, including polymeric nanoparticles, polymeric micelles, dendrimers, polymer-drug conjugates, and nano-hydrogels, for the delivery of cytarabine. The article highlights the limitations of conventional cytarabine administration which often lead to suboptimal therapeutic outcomes and systemic toxicity. The rationale for using polymer-based nanocarriers is discussed, highlighting their ability to overcome challenges by providing controlled drug release, improved stability, and enhanced targeting capabilities. In summary, this review offers a valuable resource for drug delivery scientists by providing insights into the design principles, formulation strategies, and potential applications of polymer-based nanocarriers that can enhance the therapeutic efficacy of cytarabine.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan.
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan.
| | - Hassan Shah
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- Cadson College of Pharmacy, Kharian, 50090, Punjab, Pakistan
| | - Faiza Nasar
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
5
|
Imam F, Mukhopadhyay S, Kothiyal P, Alshehri S, Saad Alharbi K, Afzal M, Iqbal M, Rashid Khan M, Khalid Anwer M, Ahmed Hattab Alanazi A, Ghanem Alqahtani A, Abdullah Alhamamah M. Formulation and characterization of polymeric nanoparticle of Rivastigmine for effective management of Alzheimer's disease. Saudi Pharm J 2024; 32:102048. [PMID: 38585197 PMCID: PMC10997905 DOI: 10.1016/j.jsps.2024.102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.
Collapse
Affiliation(s)
- Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | - Preeti Kothiyal
- School of Pharmacy and Research, Dev Bhoomi Uttarakhand University, Navagaon, Maduwala, Dehradun 248007, Uttarakhand, India
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Al-Qassim, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrazaq Ahmed Hattab Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Security Forces Specialized Polyclinics in East Riyadh, General Department of Medical Services, MOI, P. O. Box 7838, Riyadh 11134, Saudi Arabia
| | - Ali Ghanem Alqahtani
- Department of Pharmaceutical Care, Assir Health, Ministry of Health, Abha 11176, Saudi Arabia
| | - Mohammed Abdullah Alhamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Yao M, Wu M, Yuan M, Wu M, Shen A, Chen Y, Lian D, Liu X, Peng J. Enhancing the therapeutic potential of isoliensinine for hypertension through PEG-PLGA nanoparticle delivery: A comprehensive in vivo and in vitro study. Biomed Pharmacother 2024; 174:116541. [PMID: 38565063 DOI: 10.1016/j.biopha.2024.116541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Hypertension, a highly prevalent chronic disease, is known to inflict severe damage upon blood vessels. In our previous study, isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), exhibits antihypertensive and vascular smooth muscle proliferation-inhibiting effects, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare isoliensinine loaded by PEG-PLGA polymer nanoparticles to increase its efficacy METHOD: We synthesized and thoroughly characterized PEG-PLGA nanoparticles loaded with isoliensinine using a nanoprecipitation method, denoted as, PEG-PLGA@Isoliensinine. Additionally, we conducted comprehensive investigations into the stability of PEG-PLGA@Isoliensinine, in vitro drug release profiles, and in vivo pharmacokinetics. Furthermore, we assessed the antihypertensive efficacy of this nano-system through in vitro experiments on A7R5 cells and in vivo studies using AngII-induced mice. RESULT The findings reveal that PEG-PLGA@Isoliensinine significantly improves isoliensinine absorption by A7R5 cells and enhances targeted in vivo distribution. This translates to a more effective reduction of AngII-induced hypertension and vascular smooth muscle proliferation. CONCLUSION In this study, we successfully prepared PEG-PLGA@Isoliensinine by nano-precipitation, and we confirmed that PEG-PLGA@Isoliensinine surpasses free isoliensinine in its effectiveness for the treatment of hypertension, as demonstrated through both in vivo and in vitro experiments. SIGNIFICANCE This study lays the foundation for isoliensinine's clinical use in hypertension treatment and vascular lesion protection, offering new insights for enhancing the bioavailability of traditional Chinese medicine components. Importantly, no toxicity was observed, affirming the successful implementation of this innovative drug delivery system in vivo and offers a promising strategy for enhancing the effectiveness of Isoliensinine and propose an innovative avenue for developing novel formulations of traditional Chinese medicine monomers.
Collapse
Affiliation(s)
- Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China
| | - Meng Yuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Youqin Chen
- Department of Pediatrics,Case Western Reserve University School of Medicine,Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, PR China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| |
Collapse
|
7
|
Thakur NS, Rus I, Sparks E, Agrahari V. Dual stimuli-responsive and sustained drug delivery NanoSensoGel formulation for prevention of cisplatin-induced ototoxicity. J Control Release 2024; 368:66-83. [PMID: 38331002 DOI: 10.1016/j.jconrel.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Cisplatin (CisPt)-induced ototoxicity (CIO) is delineated as a consequence of CisPt-induced intracellular generation of reactive oxygen species (ROS) which can be circumvented by Bucillamine (BUC; an antioxidant drug with sulfhydryl groups) and Diltiazem (DLT, L-type calcium channel blocker). However, its effective accumulation in the Organ of Corti and cell cytoplasm is desired. Therefore, a biocompatible BUC- and DLT-nanoparticles (NPs)-impregnated dual stimuli-responsive formulation (NanoSensoGel) presented here with ROS- and thermo-responsive properties for the sustained and receptive delivery of drugs. The ROS-responsive polypropylene sulfide- methyl polyethylene glycol-2000 (PPS-mPEG2000) polymer was rationally designed, synthesized, and characterized to fabricate BUC- and DLT-loaded PPS-mPEG2000-NPs (BUC- and DLT-NPs). The fabricated BUC- and DLT-NPs showed efficient cellular uptake, intracellular delivery, ROS responsiveness, and cytoprotective effect which was characterized using cellular internalization, intracellular ROS, mitochondrial superoxide, and Caspase 3/7 assays on the House Ear Institute-Organ of Corti-1 (HEI-OC1) cells. The composite NanoSensoGel (i.e., ROS-responsive BUC- and DLT-NPs suspended in the thermo-responsive hydrogel) present in a sol state at room temperature and turned to gel above 33°C, which could be essential for retaining the formulation at the target site for long-term release. The NanoSensoGel showed sustained release of BUC and DLT following Fickian release diffusion kinetics. Overall, a novel NanoSensoGel formulation developed in this study has demonstrated its great potential in delivering therapeutics in the inner ear for prophylactic treatment of CIO, and associated hearing loss.
Collapse
Affiliation(s)
- Neeraj S Thakur
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Iulia Rus
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ethan Sparks
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vibhuti Agrahari
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
8
|
Chatterjee S, Chakraborty P, Dutta S, Karak S, Mahalanobis S, Ghosh N, Dewanjee S, Sil PC. Formulation of Carnosic-Acid-Loaded Polymeric Nanoparticles: An Attempt to Endorse the Bioavailability and Anticancer Efficacy of Carnosic Acid against Triple-Negative Breast Cancer. ACS APPLIED BIO MATERIALS 2024; 7:1656-1670. [PMID: 38364267 DOI: 10.1021/acsabm.3c01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is considered to be one of the most difficult subtypes of breast cancer (BC) to treat. The sheer absence of certain receptors makes it very tough to target, leaving high-dose chemotherapy as probably the sole therapeutic option at the cost of nonspecific toxic effects. Carnosic acid (CA) has been established as a potential chemotherapeutic agent against a range of cancer cells. However, its in vivo chemotherapeutic potential is significantly challenged due to its poor pharmacokinetic attributes. In this study, poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were formulated to circumvent the biopharmaceutical limitations of CA. CA-loaded polymeric NPs (CA-PLGA NPs) have been evaluated as a potential therapeutic option in the treatment of TNBC. Different in vitro studies exhibited that CA-PLGA NPs significantly provoked oxidative-stress-mediated apoptotic death in MDA-MB-231 cells. The improved anticancer potential of CA-PLGA NPs over CA was found to be associated with improved cellular uptake of the nanoformulation by TNBC cells. In vivo studies also established the improvement in the chemotherapeutic efficacy of CA-nanoformulation over that of free CA without showing any sign of systemic toxicity. Thus, CA-PLGA NPs emerge as a promising candidate to fix two bugs with a single code, resolving biopharmaceutical attributes of CA as well as introducing a treatment option for TNBC.
Collapse
Affiliation(s)
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sanchari Karak
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | | | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
9
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
10
|
Yousefi Adlsadabad S, Hanrahan JW, Kakkar A. mRNA Delivery: Challenges and Advances through Polymeric Soft Nanoparticles. Int J Mol Sci 2024; 25:1739. [PMID: 38339015 PMCID: PMC10855060 DOI: 10.3390/ijms25031739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Single-stranded messenger ribonucleic acid (mRNA) plays a pivotal role in transferring genetic information, and tremendous effort has been devoted over the years to utilize its transcription efficacy in therapeutic interventions for a variety of diseases with high morbidity and mortality. Lipid nanocarriers have been extensively investigated for mRNA delivery and enabled the rapid and successful development of mRNA vaccines against SARS-CoV-2. Some constraints of lipid nanocarriers have encouraged the development of alternative delivery systems, such as polymer-based soft nanoparticles, which offer a modular gene delivery platform. Such macromolecule-based nanocarriers can be synthetically articulated for tailored parameters including mRNA protection, loading efficacy, and targeted release. In this review, we highlight recent advances in the development of polymeric architectures for mRNA delivery, their limitations, and the challenges that still exist, with the aim of expediting further research and the clinical translation of such formulations.
Collapse
Affiliation(s)
| | - John W. Hanrahan
- Department of Physiology, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
11
|
Saren BN, Mahajan S, Aalhate M, Kumar R, Chatterjee E, Maji I, Gupta U, Guru SK, Singh PK. Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer. Colloids Surf B Biointerfaces 2024; 233:113631. [PMID: 37979483 DOI: 10.1016/j.colsurfb.2023.113631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
Dasatinib (DST) is a tyrosine kinase inhibitor with established antiproliferative activity in Triple-negative breast cancer. Conventional treatment strategies with DST have several pitfalls related to the development of resistance, lower cellular uptake and unwanted adverse effects. To address these issues, we have prepared P-selectin-targeted nanoparticles of DST with fucoidan (FUC) as a ligand. Poly lactide-co-glycolide nanoparticles of DST were coated with chitosan (CH) and FUC via electrostatic interaction (DST-CH-FUC-NPs). The mean particle size of 210.36 ± 0.66 nm and a polydispersity index of 0.234 ± 0.013 was observed for DST-CH-FUC-NPs. TEM and FTIR analysis proved CH coating followed by an FUC layer on nanoparticles. DST-CH-FUC-NPs showed a sustained release profile up to 120 h and 2.9 times less hemolytic potential than free DST suspension. DST-CH-FUC-NPs demonstrated 8-fold higher cytotoxicity compared to free DST in MDA-MB-231 cells. Rhodamine-CH-FUC- NPs showed 19 times and 3 times higher cellular uptake than free Rhodamine and Rhodamine-CH-NPs, respectively. DST-CH-FUC-NPs also displayed increased ROS production and mitochondrial membrane potential damage. Apoptosis study revealed a 7.5-fold higher apoptosis index for DST-CH-FUC-NPs than free DST. Subsequently, the DST-CH-FUC-NPs showed increased inhibition of cell migration, where approximately 5 % wound closure was noted. Further, DST-CH-FUC-NPs confirmed higher disruption of lysosomal membrane integrity, which is well correlated with apoptosis results. In addition, developed NPs were nontoxic on MCF 10 A normal cells. All these findings suggest that fabricated DST-CH-FUC-NPs are promising biocompatible carriers for tumor-targeted delivery and enhanced efficacy of dasatinib.
Collapse
Affiliation(s)
- Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
12
|
Sharma S, Dang S. Polysorbate 80 surface modified PLGA nanoparticles: an in-vitro evaluation of cellular uptake and cytotoxicity on neuro-2a cells. J Microencapsul 2023; 40:534-548. [PMID: 37530105 DOI: 10.1080/02652048.2023.2244095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
AIM Present study focuses on the development of P80 coated PLGA Nanoparticles loaded with drugs, paroxetine (P80-Par-PLGA-NPs) and clonidine (P80-CLD-PLGA-NPs) for in-vitro evaluation of Cellular Uptake & Cytotoxicity on Neuro-2a cells. METHOD P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs were developed and characterised for zeta size, potential, PDI, EE%, DL%, TEM, SEM, FTIR, DSC, in-vitro release, cytotoxicity, histopathological and cell uptake studies using rhodamine loaded P80-NPs. RESULT Mean particle diameter of P80-Par-PLGA-NPs and P80-CLD-PLGA-NPs was 204; 182.7 nm, ZP of -21.8; -18.72 mV and 0.275; 0.341 PDI, respectively. TEM and SEM images revealed homogenous surface morphology. In-vitro drug release showed sustained and complete release in 72 h. Cell viability (>90%) at Cmax and no cytotoxicity in histopathology was observed. Significant higher uptake (96.9%) of P80-modified-NPS was observed as compared to unmodified-NPs (81%) (p < 0.05). CONCLUSION The finding clearly indicated a higher cell uptake of drugs via surface modified P80-coated PLGA-NPs as compared to unmodified particles.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
13
|
Yadav KS, Raut HC, Nijhawan HP. Inhalable spray-dried polycaprolactone-based microparticles of Sorafenib Tosylate with promising efficacy on A549 cells. Pharm Dev Technol 2023; 28:755-767. [PMID: 37665569 DOI: 10.1080/10837450.2023.2251148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The study developed and evaluated Sorafenib Tosylate (SRT)-loaded polymeric microparticles (MPs) using biodegradable polymer polycaprolactone (PCL) as a potential inhalable carrier for NSCLC. MPs were prepared by spray-drying an oil-in-water (o/w) emulsion. The optimized MPs demonstrated excellent flowability, particle size of 2.84 ± 0.5 μm, zeta potential of -14.0 ± 1.5 mV, and 85.08 ± 5.43% entrapment efficiency. ATR-FTIR/DSC studies revealed a lack of characteristic peaks of the crystalline drug signifying good entrapment of the drug. MPs were spherical and uniform in SEM pictures. The MPs showed a biphasic release pattern up to 72h. The Anderson cascade impactor (ACI) investigation demonstrated the highest drug deposition at stage 4, which revealed that the MPs can reach the lungs' secondary and terminal bronchi. Inhalable MPs had an efficient aerodynamic property with a mass median aerodynamic diameter (MMAD) of 2.63 ± 1.3 μm, a geometric standard deviation (GSD) of 1.93 ± 0.2 μm, and a fine particle fraction (FPF) of 87 ± 2.5%. Finally, in cytotoxicity studies on A549 cancer cells, MPs had an IC50 value of 0.6011 ± 0.8 μM, which was 85.68% lower than free drug. These findings suggest SRT-loaded inhalable PCL-based MPs as a novel NSCLC treatment.
Collapse
Affiliation(s)
- Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Hrushikesh C Raut
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| | - Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
14
|
Tiwari S, Liu S, Anees M, Mehrotra N, Thakur A, Tawa GJ, Grewal G, Stone R, Kharbanda S, Singh H. Quatramer™ encapsulation of dual-targeted PI3-Kδ/HDAC6 inhibitor, HSB-510, suppresses growth of breast cancer. Bioeng Transl Med 2023; 8:e10541. [PMID: 37693068 PMCID: PMC10487321 DOI: 10.1002/btm2.10541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/12/2023] Open
Abstract
Multiple studies have shown that the progression of breast cancer depends on multiple signaling pathways, suggesting that therapies with multitargeted anticancer agents will offer improved therapeutic benefits through synergistic effects in inhibiting cancer growth. Dual-targeted inhibitors of phosphoinositide 3-kinase (PI3-K) and histone deacetylase (HDAC) have emerged as promising cancer therapy candidates. However, poor aqueous solubility and bioavailability limited their efficacy in cancer. The present study investigates the encapsulation of a PI3-Kδ/HDAC6 dual inhibitor into hybrid block copolymers (polylactic acid-methoxy polyethylene glycol; polylactic acid-polyethylene glycol-polypropylene glycol-polyethylene glycol-polylactic acid) (HSB-510) as a delivery system to target PI3-Kδ and HDAC6 pathways in breast cancer cells. The prepared HSB-510 showed an average diameter of 96 ± 3 nm, a zeta potential of -17 ± 2 mV, and PDI of ˂0.1 with a slow and sustained release profile of PI3-Kδ/HDAC6 inhibitors in a nonphysiological buffer. In vitro studies with HSB-510 have demonstrated substantial growth inhibition of breast cancer cell lines, MDA-MB-468, SUM-149, MCF-7, and Ehrlich ascites carcinoma (EAC) as well as downregulation of phospho-AKT, phospho-ERK, and c-Myc levels. Importantly, bi-weekly treatment of Balb/c wild-type mice harboring EAC cells with HSB-510 at a dose of 25 mg/kg resulted in significant tumor growth inhibition. The treatment with HSB-510 was without any significant effect on the body weights of the mice. These results demonstrate that a novel Quatramer encapsulation of a PI3-Kδ/HDAC6 dual inhibitor (HSB-510) represents an approach for the successful targeting of breast cancer and potentially other cancer types.
Collapse
Affiliation(s)
- Sachchidanand Tiwari
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Suiyang Liu
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mohd Anees
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Neha Mehrotra
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
| | - Ashish Thakur
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Gregory J. Tawa
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Gurmit Grewal
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Richard Stone
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Surender Kharbanda
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
| | - Harpal Singh
- Centre for Biomedical EngineeringIndian Institute of Technology DelhiNew DelhiIndia
- Department of Biomedical EngineeringAll India Institute of Medical Sciences DelhiNew DelhiIndia
| |
Collapse
|
15
|
Mishra AK, Neha S, Rani L, Jain A, Dewangan HK, Sahoo PK. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model. J Drug Deliv Sci Technol 2023; 86:104580. [DOI: 10.1016/j.jddst.2023.104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
16
|
Ajisebiola BS, Oladele JO, Adeyi AO. Kaempferol from Moringa oleifera demonstrated potent antivenom activities via inhibition of metalloproteinase and attenuation of Bitis arietans venom-induced toxicities. Toxicon 2023; 233:107242. [PMID: 37558138 DOI: 10.1016/j.toxicon.2023.107242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Bitis arietans venom (BAV) can induce severe pathophysiological disorders after envenoming. However, studies have shown that the Moringa oleifera fraction is effective against BAV toxicities and contains bioactive compounds with significant antivenom potency. This research aimed to identify the main active antivenom compound in the M. oleifera fraction responsible for neutralizing the toxicities induced by BAV. The compounds identified from M. oleifera fraction were docked in silico against the catalytic site of the Snake Venom Metalloproteinase (SVMP) to determine the lead inhibitor compound. The antivenom potency of the lead inhibitor compound was tested against BAV toxicities and metalloproteinase isolated from BAV using in vitro and in vivo methods, while EchiTab-Plus polyvalent antivenom served as a standard drug. The in silico prediction revealed kaempferol as the lead inhibitor compound with a docking score of -7.0 kcal/mol. Kaempferol effectively inhibited metalloproteinase activity at 0.2 mg/ml, compared to antivenom (0.4 mg/ml) and demonstrated significant antihaemorrhagic, antihaemolytic and coagulant effects against BAV activities. Furthermore, kaempferol showed a significant dose-dependent effect on altered haematological indices observed in rats challenged with LD50 of BAV. Envenomed rats also showed an increase in oxidative stress biomarkers and antioxidant enzyme activity in the heart and kidney. However, treatment with kaempferol significantly (P < 0.05) decreased malondialdehyde levels and SOD activity with concomitant enhancement of glutathione levels. Severe histopathological defects noticed in the organ tissues of envenomed rats were ameliorated after kaempferol treatment. Kaempferol is identified as the main active antivenom compound in M. oleifera, and this research highlights the potential of the compound as an effective alternative to snakebite treatment.
Collapse
Affiliation(s)
- Babafemi Siji Ajisebiola
- Department of Zoology, Osun State University, Osogbo, Nigeria; Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
17
|
Bhargave H, Nijhawan H, Yadav KS. PEGylated Erlotinib HCl Injectable Nanoformulation for Improved Bioavailability. AAPS PharmSciTech 2023; 24:101. [PMID: 37038015 DOI: 10.1208/s12249-023-02560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
The present study was undertaken to synthesize PEGylated monomethoxy poly (ethylene glycol)-poly (ε-Caprolactone) (mPEG-PCL) block copolymer and formulate Erlotinib HCl-loaded mPEG-PCL nanoparticles for enhancing the bioavailability of the drug. Using the ring-opening polymerization technique, PEGylated mPEG-PCL block copolymer was synthesized, and the structure of the copolymer was characterized using FTIR, 1H-NMR, and DSC techniques. The solvent evaporation approach was used to effectively encapsulate Erlotinib HCl within block copolymeric nanoparticles. Erlotinib HCl-loaded mPEG-PCL nanoparticles had a mean particle size of 146.5 ± 2.37 nm and a zeta potential of -27.8 ± 2.77 mV. The nanoparticles had a percent entrapment efficiency of 80.78 ± 0.09%. The in vitro drug release of Erlotinib HCl-loaded copolymeric nanoparticles showed a slow and sustained release behavior which could be maintained for up to 72 h. The Korsmeyer-Peppas fitting findings indicated that the drug release process followed a non-Fickian diffusion mechanism. The pharmacokinetic (PK) behavior of the developed nanoformulation was studied in albino Wistar rats, and the relative bioavailability of the optimized NP formulation given by intravenous route was found to be 187.33%. The PK data suggested that Erlotinib HCl-loaded mPEG-PCL copolymeric nanoparticles can dramatically alter the PK behavior of Erlotinib HCl and greatly improve the drug's bioavailability by as much as three times when compared to the oral formulation. As a result, it was established that the block copolymeric nanoparticles have promise for the effective encapsulation of Erlotinib HCL for an injectable formulation with increased bioavailability.
Collapse
Affiliation(s)
- Hardik Bhargave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Harsh Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to be University, Mumbai, 400056, India.
| |
Collapse
|
18
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
19
|
Co-encapsulation of PI3-Kδ/HDAC6 dual inhibitor and Navitoclax in Quatramer™ nanoparticles for synergistic effect in ER+ breast cancer. Int J Pharm 2022; 628:122343. [DOI: 10.1016/j.ijpharm.2022.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
20
|
Bahlool AZ, Fattah S, O’Sullivan A, Cavanagh B, MacLoughlin R, Keane J, O’Sullivan MP, Cryan SA. Development of Inhalable ATRA-Loaded PLGA Nanoparticles as Host-Directed Immunotherapy against Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081745. [PMID: 36015371 PMCID: PMC9415714 DOI: 10.3390/pharmaceutics14081745] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 μm as measured by cascade impaction, and a volumetric median diameter of 4.09 μm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB.
Collapse
Affiliation(s)
- Ahmad Z. Bahlool
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sarinj Fattah
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
| | - Andrew O’Sullivan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland RCSI, D02 YN77 Dublin, Ireland
| | - Ronan MacLoughlin
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Mary P. O’Sullivan
- Department of Clinical Medicine, Trinity Translational Medicine Institute, St. James’s Hospital, Trinity College Dublin, The University of Dublin, D08 9WRT Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, D02 YN77 Dublin, Ireland
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, D02 PN40 Dublin, Ireland
- SFI Centre for Research in Medical Devices (CÚRAM), NUIG & RCSI, H91 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
21
|
Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Pulingam T, Foroozandeh P, Chuah JA, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:576. [PMID: 35159921 PMCID: PMC8839423 DOI: 10.3390/nano12030576] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the body's targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based polymeric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymerization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The desired characteristics of NPs and their target applications are determining factors in the choice of method used for their production. This review article aims to shed light on the different methods employed for the production of PNPs and to discuss the effect of experimental parameters on the physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (T.P.); (P.F.); (J.-A.C.)
| |
Collapse
|
23
|
Bibi N, ur Rehman A, Rana NF, Akhtar H, Khan MI, Faheem M, Jamal SB, Ahmed N. Formulation and characterization of curcumin nanoparticles for skin cancer treatment. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Forouharshad M, Ajalloueian F. Tunable self‐assembled
stereocomplexed‐
polylactic acid nanoparticles as a drug carrier. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mahdi Forouharshad
- Nano‐Bioscience Research Group DTU‐Food, Technical University of Denmark Lyngby Denmark
| | - Fatemeh Ajalloueian
- Department of Health Technology Technical University of Denmark Lyngby Denmark
| |
Collapse
|
25
|
Xu Q, Li Q, Yang Z, Huang P, Hu H, Mo Z, Qin Z, Xu Z, Chen T, Yang S. Lenvatinib and Cu 2-xS nanocrystals co-encapsulated in poly(D,L-lactide- co-glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. J Mater Chem B 2021; 9:9908-9922. [PMID: 34842266 DOI: 10.1039/d1tb01808f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lenvatinib (LT) is gradually replacing sorafenib as an alternative targeted drug against advanced hepatocellular carcinoma (HCC). However, the anticancer effects of LT are still limited because of its low cytotoxicity, multidrug resistance (MDR), and tumor relapse. Herein, we constructed a smart biophotonic nanoplatform to overcome the barriers preventing high performance. LT and copper sulfide nanocrystals (Cu2-xS NCs) with excellent photothermal properties in the near-infrared-II (NIR-II) zone were co-encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) through nanoprecipitation. Both in vitro and in vivo evaluations demonstrated that Cu2-xS NCs enhanced the anticancer efficacy of LT, without recurrence. In addition, the presence of copper ions could allow glutathione (GHS) to be consumed and oxygen to be produced, likely suppressing the expression of P-glycoprotein (P-gp) and overcoming the issue of MDR relating to LT. More importantly, synergistic chemo-photothermal therapy with LT and Cu2-xS NCs was more effective than any single therapy or theoretical combination. This nanoplatform is promising for advancing future LT-based treatment strategies for HCC therapy.
Collapse
Affiliation(s)
- Qi Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Qiuting Li
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Piao Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Han Hu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhimin Mo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zizhen Qin
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
26
|
Xiao X, Hu Q, Deng X, Shi K, Zhang W, Jiang Y, Ma X, Zeng J, Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacol Res 2021; 175:106005. [PMID: 34843960 DOI: 10.1016/j.phrs.2021.106005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
As a source of various compounds, natural products have long been important and valuable for drug development. Kaempferol (KP) is the most common flavonol with bioactive activity and has been extracted from many edible plants and traditional Chinese medicines. It has a wide range of pharmacological effects on inflammation, oxidation, and tumour and virus regulation. The liver is an important organ and is involved in metabolism and activity. Because the pathological process of liver diseases is extremely complicated, liver diseases involving ALD, NASH, liver fibrosis, and HCC are often complicated and difficult to treat. Fortunately, there have been many reports that KP has a good pharmacological effect on a series of complex liver diseases. To fully understand the mechanism of KP and provide new ideas for its clinical application in the treatment of liver diseases, this article reviews the pharmacological mechanism and potential value of KP in different studies involving various liver diseases. In the trilogy of liver disease, high concentrations of ROS stimulate peroxidation and activate the inflammatory signal cascade, which involves signalling pathways such as MAPK/JAK-STAT/PERK/Wnt/Hipp, leading to varying degrees of cell degradation and liver damage. The development of liver disease is promoted in an inflammatory environment, which is conducive to the activation of TGF-β1, leading to increased expression of pro-fibrosis and pro-inflammatory genes. Inflammation and oxidative stress promote the formation of tumour microenvironments, and uncontrolled autophagy of cancer cells further leads to the development of liver cancer. The main pathway in this process is AMPK/PTEN/PI3K-Akt/TOR. KP can not only protect liver parenchymal cells through a variety of antioxidant and anti-apoptotic mechanisms but also reduces the immune inflammatory response in the liver microenvironment, thereby preventing cell apoptosis; it can also inhibit the ER stress response, prevent inflammation and inhibit tumour growth. KP exerts multiple therapeutic effects on liver disease by regulating precise signalling targets and is expected to become an emerging therapeutic opportunity to treat liver disease in the future.
Collapse
Affiliation(s)
- Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaiyun Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaoyin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
27
|
Evaluation of the In Vitro Cytotoxic Activity of Ursolic Acid PLGA Nanoparticles against Pancreatic Ductal Adenocarcinoma Cell Lines. MATERIALS 2021; 14:ma14174917. [PMID: 34501007 PMCID: PMC8434451 DOI: 10.3390/ma14174917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Among all the types of cancer, Pancreatic Ductal Adenocarcinoma remains one of the deadliest and hardest to fight and there is a critical unmet need for new drugs and therapies for its treatment. Naturally derived compounds, such as pentacyclic triterpenoids, have gathered attention because of their high cytotoxic potential towards pancreatic cancer cells, with a wide biological activity spectrum, with ursolic acid (UA) being one of the most interesting. However, due to its minimal water solubility, it is necessary to prepare a nanocarrier vehicle to aid in the delivery of this compound. Poly(lactic-co-glycolic acid) or PLGA polymeric nanocarriers are an essential tool for ursolic acid delivery and can overcome the lack in its biological activity observed after incorporating within liposomes. We prepared UA-PLGA nanoparticles with a PEG modification, to achieve a long circulation time, by using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay towards AsPC-1 and BxPC-3 cells, with TEM visualization of the nanoparticles and their cellular uptake. We established repeatable preparation procedures of the nanoparticles and achieved biologically active nanocarriers with an IC50 below 30 µM, with an appropriate size for intravenous dosage (around 140 nm), high sample homogeneity (below 0.2) and reasonable encapsulation efficiency (up to 50%). These results represent the first steps in the development of potentially effective PDAC therapies based on novel biologically active and promising triterpenoids.
Collapse
|
28
|
Jani P, Suman S, Subramanian S, Korde A, Gohel D, Singh R, Sawant K. Development of mitochondrial targeted theranostic nanocarriers for treatment of gliomas. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Razuvaeva EV, Kalinin KT, Sedush NG, Nazarov AA, Volkov DS, Chvalun SN. Structure and cytotoxicity of biodegradable poly(d,l-lactide-co-glycolide) nanoparticles loaded with oxaliplatin. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 2021; 170:284-297. [PMID: 33340624 DOI: 10.1016/j.ijbiomac.2020.12.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Amany Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy, Pharos University of Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
31
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: Characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Shah P, Sarolia J, Vyas B, Wagh P, Ankur K, Kumar MA. PLGA nanoparticles for nose to brain delivery of Clonazepam: formulation, optimization by 32 Factorial design, in vitro and in vivo evaluation. Curr Drug Deliv 2020; 18:805-824. [PMID: 32640955 DOI: 10.2174/1567201817666200708115627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intranasal administration of biodegradable nanoparticles has been extensively studied for targeting the drug directly to CNS through olfactory or trigeminal route bypassing blood brain barrier. OBJECTIVE The objective of the present study was to optimize Clonazepam loaded PLGA nanoparticles (CLO-PNPs) by investigating the effect of process variables on the responses using 32 full factorial design. METHODS Effect of two independent factors-amount of PLGA and concentration of Poloxamer 188, were studied at low, medium and high levels on three dependent responses-%Entrapment efficiency, Particle size (nm) and %cumulative drug release at 24hr. RESULTS %EE, Particle size and %CDR at 24hr of optimized batch was 63.7%, 165.1 nm and 86.96% respectively. Nanoparticles were radiolabeled with 99mTc and biodistribution was investigated in BALB/c mice after intranasal & intravenous administrations. Significantly higher brain/blood uptake ratios and AUC values in brain following intranasal administration of CLO-PNPs indicated more effective brain targeting of CLO. Higher brain uptake of intranasal CLO-PNPs was confirmed by rabbit brain scintigraphy imaging. Histopathological study performed on goat nasal mucosa revealed no adverse response of nanoparticles. TEM image exhibited spherical shaped particles in nano range. DSC and XRD studies suggested Clonazepam encapsulation within PLGA matrix. The onset of occurrence of PTZ-induced seizures in rats was significantly delayed by intranasal nanoparticles as compared to intranasal & intravenous CLO-SOL. CONCLUSION This investigation exhibits rapid rate and higher extent of CLO transport in brain with intranasal CLO-PNPs suggesting a better option as compared to oral & parenteral route in management of acute status epilepticus.
Collapse
Affiliation(s)
- Pranav Shah
- Maliba Pharmacy College, Bardoli Mahuva Road, Dist. Surat, Gujarat. India
| | - Jayant Sarolia
- Maliba Pharmacy College, Bardoli Mahuva Road, Dist. Surat, Gujarat. India
| | - Bhavin Vyas
- Maliba Pharmacy College, Bardoli Mahuva Road, Dist. Surat, Gujarat. India
| | - Priti Wagh
- Maliba Pharmacy College, Bardoli Mahuva Road, Dist. Surat, Gujarat. India
| | - Kaul Ankur
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Ministry of Defence, Brig. S. K. Mazumdar Marg, New Delhi -110 054. India
| | - Mishra Anil Kumar
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Ministry of Defence, Brig. S. K. Mazumdar Marg, New Delhi -110 054. India
| |
Collapse
|
33
|
Faghmous N, Bouzid D, Boumaza M, Touati A, Boyron O. Optimization of chitosan-coated W/O/W multiple emulsion stabilized with Span 80 and Tween 80 using Box–Behnken design. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1774387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Naima Faghmous
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Pharmaceutical Engineering, Faculty of Process Engineering, Salah Boubnider Constantine 3 University, Constantine, Algeria
| | - Djallel Bouzid
- Process Engineering Laboratory for Sustainable Development and Health Products, National Polytechnic School of Constantine, Constantine, Algeria
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Marwa Boumaza
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Asma Touati
- Department of Process Engineering, National Polytechnic School of Constantine Malek Bennabi, Constantine, Algeria
| | - Olivier Boyron
- Chemistry, Catalysis, Polymers and Processes, Villeurbanne Cedex, France
| |
Collapse
|
34
|
QbD based approach for formulation development of spray dried microparticles of erlotinib hydrochloride for sustained release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Shamarekh KS, Gad HA, Soliman ME, Sammour OA. Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Turasan H, Bonilla J, Bozkurt F, Maldonado L, Li X, Yilmaz T, Sadeghi R, Kokini J. Comparison of the fabrication methods, formation dynamics, structure, and delivery performance of solid nanoparticles and hollow layer‐by‐layer edible/biodegradable nanodelivery systems. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hazal Turasan
- Department of Food SciencePurdue University West Lafayette Indiana USA
| | - Jose Bonilla
- Department of Food SciencePurdue University West Lafayette Indiana USA
| | - Fatih Bozkurt
- Department of Food Science and Human NutritionUniversity of Illinois at Urbana‐Champaign Urbana‐Champaign Illinois USA
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical University Istanbul Turkey
- Department of Food Engineering, Faculty of Engineering and ArchitectureMus Alparslan University Mus Turkey
| | - Luis Maldonado
- Department of Food SciencePurdue University West Lafayette Indiana USA
- Food Science and Technology DepartmentPanamerican School of Agriculture Zamorano, Municipality of San Antonio de Oriente Francisco Morazán Honduras
| | - Xingfei Li
- Department of Food SciencePurdue University West Lafayette Indiana USA
- School of Food Science and Technology, Jiangnan University Wuxi Jiangsu Province China
| | - Tuncay Yilmaz
- Department of Food SciencePurdue University West Lafayette Indiana USA
- Department of Food ScienceManisa Celal Bayar University Manisa Turkey
| | - Rohollah Sadeghi
- Department of Food SciencePurdue University West Lafayette Indiana USA
- School of Food Science, University of Idaho Moscow Idaho USA
| | - Jozef Kokini
- Department of Food SciencePurdue University West Lafayette Indiana USA
| |
Collapse
|
37
|
Nie X, Liu Y, Li M, Yu X, Yuan W, Huang S, Ren D, Wang Y, Wang Y. SP94 Peptide-Functionalized PEG-PLGA Nanoparticle Loading with Cryptotanshinone for Targeting Therapy of Hepatocellular Carcinoma. AAPS PharmSciTech 2020; 21:124. [PMID: 32342227 DOI: 10.1208/s12249-020-01655-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/07/2020] [Indexed: 12/28/2022] Open
Abstract
To achieve improved drug delivery efficiency to hepatocellular carcinoma (HCC), biodegradable poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles (NP), surface-modified with SP94 peptide, were designed for the efficient delivery of cryptotanshinone to the tumor for the treatment of HCC. Cryptotanshinone NP and SP94-NP were prepared by using nanoprecipitation. The physicochemical and pharmaceutical properties of the NP and SP94-NP were characterized, and the release kinetics suggested that both NP and SP94-NP provided continuous, slow release of cryptotanshinone for 48 h. The in vitro cellular experiment demonstrated that SP94-NP significantly enhanced the cellular uptake of cryptotanshinone and induced high cytotoxicity and cellular apoptosis of hepatocellular carcinoma (HepG2) cells. The in vivo detecting results of targeting effect using the Cy5.5 probe evidenced that SP94-NP showed an accumulation in tumor more efficiently than that of unconjugated ones. Meanwhile, SP94-NP exhibited the smallest tumor size than other groups and showed no toxicity to body. The results of this study provide a promising nanoplatform for the targeting of HCC.
Collapse
|
38
|
Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020; 6:e03451. [PMID: 32140583 PMCID: PMC7049635 DOI: 10.1016/j.heliyon.2020.e03451] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/07/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Poly (lactic-co-glycolic acid) has received much academic attention for developing nanotherapeutics and FDA has approved it for several applications. An important parameter that dictates the bioavailability and hence the biological effect of the drug is drug release from its delivering system. This study offers a comparative mathematical analysis of drug release from Poly (lactic-co-glycolic acid)–based nanoparticles to suggest a general model explaining multi-mechanistic release they provide. Methods Eight release models, zero order, first order, Higuchi, Hixson-Crowell, the square root of mass, the three-second root of mass, Weibull and Korsmeyer-Peppas, as well as the second degree polynomial equation were applied to 60 data sets. The models analysed regarding several types of errors, regression parameters and average Akaike information criterion. Results and discussion Most of the data sets present the highest R2, the lowest overall error and AIC for the Weibull model. Weibull model with the mean AIC = -36.37 and mean OE = 7.24 and the highest NE less than 5, 10, 15 and 20 % in most of the cases best fits the release data from various PLGA-based drug delivery systems that are studied. Weibull model seems to show enough flexibility to describe various release patterns PLGA provides.
Collapse
Affiliation(s)
| | - Mohammad Ghazali
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
39
|
Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics 2020; 12:E65. [PMID: 31952147 PMCID: PMC7023308 DOI: 10.3390/pharmaceutics12010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
The introduction of nanotechnology into pharmaceutical application revolutionized the administration of antitumor drugs through the modulation of their accumulation in specific organs/body compartments, a decrease in their side-effects and their controlled release from innovative systems. The use of plant-derived proteins as innovative, safe and renewable raw materials to be used for the development of polymeric nanoparticles unlocked a new scenario in the drug delivery field. In particular, the reduced size of the colloidal systems combined with the peculiar properties of non-immunogenic polymers favored the characterization and evaluation of the pharmacological activity of the novel nanoformulations. The aim of this review is to describe the physico-chemical properties of nanoparticles composed of vegetal proteins used to retain and deliver anticancer drugs, together with the most important preparation methods and the pharmacological features of these potential nanomedicines.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
40
|
Bali NR, Shinde MP, Rathod SB, Salve PS. Enhanced transdermal permeation of rasagiline mesylate nanoparticles: design, optimization, and effect of binary combinations of solvent systems across biological membrane. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2019.1706507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nikhil R. Bali
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Mahesh P. Shinde
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Shahadev B. Rathod
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Pramod S. Salve
- University Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
41
|
Martins C, Chauhan VM, Selo AA, Al-Natour M, Aylott JW, Sarmento B. Modelling protein therapeutic co-formulation and co-delivery with PLGA nanoparticles continuously manufactured by microfluidics. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00395a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Formulating protein therapeutics into nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) provides key features such as protection against clearance, sustained release and less side effects by possible attachment of targeting ligands.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-393 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Veeren M. Chauhan
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Amjad A. Selo
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Mohammad Al-Natour
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Jonathan W. Aylott
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-393 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| |
Collapse
|
42
|
Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao CX. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04747] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Da Zou
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Krishna Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz khas, New Delhi 110016, India
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
43
|
Salehi B, Selamoglu Z, S. Mileski K, Pezzani R, Redaelli M, C. Cho W, Kobarfard F, Rajabi S, Martorell M, Kumar P, Martins N, Subhra Santra T, Sharifi-Rad J. Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules 2019; 9:773. [PMID: 31771220 PMCID: PMC6995526 DOI: 10.3390/biom9120773] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. The main modality to fight against cancer is surgery, radiotherapy, and chemotherapy, and more recently targeted therapy, gene therapy and immunotherapy, which play important roles in treating cancer patients. In the last decades, chemotherapy has been well developed. Nonetheless, administration of the drug is not always successful, as limited drug dosage can reach the tumor cells.. In this context, the possibility to use an encapsulated anti-cancer drug may potentially solve the problem. Liposomal cytarabine is a formulation with pronounced effectiveness in lymphomatous meningitis and reduced cardiotoxicity if compared to liposomal anthracyclines. Thus, the future liposomal cytarabine use could be extended to other diseases given its reduction in cytotoxic side effects compared to the free formulation. This review summarizes the chemistry and biology of liposomal cytarabine, with exploration of its clinical implications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Campus, 51240 Nigde, Turkey;
| | - Ksenija S. Mileski
- Department of Morphology and Systematic of Plants, Institute of Botany and Botanical Garden “Jevremovac,” Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia;
| | - Raffaele Pezzani
- O.U. Endocrinology, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy;
| | - Marco Redaelli
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy;
- Venetian Institute for Molecular Science and Experimental Technologies, VIMSET. Pz Milani, 4 30010 Liettoli di Campolongo Maggiore, VE, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 23871, Iran;
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile;
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology, (Deemed To Be University-MHRD), Nirjuli (Itanagar) 791109, India;
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
44
|
Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther Deliv 2019; 10:683-696. [PMID: 31744396 DOI: 10.4155/tde-2019-0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: The manuscript describes the performance of nanoparticles loaded with antidepressant drug for nose-to-brain drug delivery. Materials & methods: Poly-lactic-co-glycolic acid-loaded nanoparticles of agomelatine were prepared by nanoprecipitation method using poloxamer 407 as stabilizer. The process parameters were optimized using factorial design. Results: The drug-loaded nanoparticles having low particle size (<200 nm) with narrow size distribution and required zeta potential (-22.7 mV) to avoid aggregation showed sustained release profile and were found to have higher permeability as observed from ex vivo studies when compared with plain drug suspension. Histopathology test showed that the optimized formulation was free from nasal toxicity on the goat nasal mucosa. Pharmacodynamic study showed significant reduction in immobility time in rats treated with the formulation which indicated antidepressant activity of the formulation. Conclusion: The prepared agomelatin-loaded poly-lactic-co-glycolic acid nanoparticles showed prominent antidepressant activity by nose-to-brain delivery as observed from various studies.
Collapse
|
45
|
Streck S, Neumann H, Nielsen HM, Rades T, McDowell A. Comparison of bulk and microfluidics methods for the formulation of poly-lactic- co-glycolic acid (PLGA) nanoparticles modified with cell-penetrating peptides of different architectures. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100030. [PMID: 31517295 PMCID: PMC6733288 DOI: 10.1016/j.ijpx.2019.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023]
Abstract
The efficient and reproducible production of nanoparticles using bulk nanoprecipitation methods is still challenging because of low batch to batch reproducibility. Here, we optimize a bulk nanoprecipitation method using design of experiments and translate to a microfluidic device to formulate surface-modified poly-lactic-co-glycolic (PLGA) nanoparticles. Cell-penetrating peptides (CPPs) with a short, long linear or branched architecture were used for the surface modification of PLGA nanoparticles. The microfluidics method was more time efficient than the bulk nanoprecipitation method and allowed the formulation of uniform PLGA nanoparticles with a size of 150 nm, a polydispersity index below 0.150 and with better reproducibility in comparison to the bulk nanoprecipitation method. After surface modification the size of CPP-tagged PLGA nanoparticles increased to 160–180 nm and the surface charge of the CPP-tagged PLGA nanoparticles varied between −24 mV and +3 mV, depending on the architecture and concentration of the conjugated CPP. Covalent attachment of CPPs to the PLGA polymer was confirmed with FTIR by identifying the formation of an amide bond. The conjugation efficiency of CPPs to the polymeric PLGA nanoparticles was between 32 and 80%. The development and design of reproducible nanoformulations with tuneable surface properties is crucial to understand interactions at the nano-bio interface.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Arlene McDowell
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
46
|
Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med 2019; 18:2759-2776. [PMID: 31572524 PMCID: PMC6755486 DOI: 10.3892/etm.2019.7886] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Kaempferol, also known as kaempferol-3 or kaempferide, is a flavonoid compound that naturally occurs in tea, as well as numerous common vegetables and fruits, including beans, broccoli, cabbage, gooseberries, grapes, kale, strawberries, tomatoes, citrus fruits, brussel sprouts, apples and grapefruit. The present review mainly summarizes the application of kaempferol in treating diseases and the underlying mechanisms that are currently being studied. Due to its anti-inflammatory properties, it may be used to treat numerous acute and chronic inflammation-induced diseases, including intervertebral disc degeneration and colitis, as well as post-menopausal bone loss and acute lung injury. In addition, it has beneficial effects against cancer, liver injury, obesity and diabetes, inhibits vascular endothelial inflammation, protects the cranial nerve and heart function, and may be used for treating fibroproliferative disorders, including hypertrophic scar.
Collapse
Affiliation(s)
- Jie Ren
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yanhong Qian
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Bozhou Chen
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
47
|
Ma X, Özliseli E, Zhang Y, Pan G, Wang D, Zhang H. Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy. Biomater Sci 2019; 7:634-644. [PMID: 30534690 DOI: 10.1039/c8bm01333k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer is an exceptionally confounding disease that demands the development of powerful drug/drugs, without inducing heavy adverse side effects. Thus, different approaches have been applied to improve the targeted delivery of cancer drugs: for example by using nanocarriers. However, nanocarriers are foreign materials, which need further validation for their biocompatibility and biodegradability. In this study, we have chemically conjugated the hydrophilic anticancer drug doxorubicin (DOX) with the hydrophobic drug paclitaxel (PTX) through a redox-sensitive disulfide bond, abbreviated to DOX-S-S-PTX. Subsequently, due to its amphiphilic characterization, the prodrug can self-assemble into nanoparticles under microfluidic nanoprecipitation. These novel prodrug nanoparticles have a super-high drug loading degree of 89%, which is impossible to achieve by any nanocarrier systems, and can be tailored to 180 nm to deliver themselves to the target, and release DOX and PTX under redox conditions, which are often found in cancer cells. By evaluating cell viability in MDA-MB-231, MDA-MB-231/ADR and MEF cell lines, we observed that the prodrug nanoparticles effectively killed the cancer cells, and selectively conquered the MDA-MB-231/ADR. Meanwhile, MEF cells were spared due to their lack of a redox condition. The cell interaction results show that the reduced intermediate of the prodrug can also bind to parent drug biological targets. The hemolysis results show that the nanoparticles are biocompatible in blood. Computer modelling suggested that the prodrug is unlikely to bind to biological targets that parent drugs still strongly interact with. Finally, we confirm that the prodrug nanoparticles have no therapeutic effect in blood or healthy cells, but can selectively eliminate the cancer cells that meet the redox conditions to cleave the disulfide bond and release the drugs DOX and PTX.
Collapse
Affiliation(s)
- Xiaodong Ma
- Department of Radiology affiliated Hospital of Jiangsu University Jiangsu University, 212001 Zhenjiang, P.R. China
| | | | | | | | | | | |
Collapse
|
48
|
Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11167-11176. [PMID: 30810026 DOI: 10.1021/acsami.8b22579] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Photothermal therapy (PTT) has shown great promise to spatiotemporally ablate cancer cells, and further understanding of the immune system response to PTT treatment would contribute to improvement in therapeutic outcomes. Herein, we utilize microfluidic technology to prepare biocompatible conjugated polymer nanoparticles (CP NPs) as PTT agents and assess the immune response triggered by CP-based PTT treatment in vitro and in vivo. Through careful control of the antisolvent, CP NPs with a uniform diameter of 52 nm were obtained. The c-RGD-functionalized CP NPs exhibit high photothermal conversion efficiency, inducing effective cancer cell death under an 808 nm laser illumination. Using macrophage cells as the model, CP NPs demonstrate effective activation of proinflammatory immune response. Furthermore, in tumor-bearing mice model, a single round of CP NP-assisted PTT could efficiently induce antitumor immunity activation and ultimately inhibit tumor growth. The study provides detailed understanding of both microfluidic technology for CP NP fabrication and photothermal-triggered antitumor immune responses.
Collapse
Affiliation(s)
- Zhe Wang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bing Guo
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Eshu Middha
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| | - Zemin Huang
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Qinglian Hu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou 310032 , China
| | - Bin Liu
- Department of Chemical and Bio-Molecular Engineering , National University of Singapore , 117585 , Singapore
| |
Collapse
|
49
|
Liang B, Li N, Zhang S, Qi A, Feng J, Jing W, Shi C, Ma Z, Gao S. Idarubicin-loaded methoxy poly(ethylene glycol)- b-poly(l-lactide-co-glycolide) nanoparticles for enhancing cellular uptake and promoting antileukemia activity. Int J Nanomedicine 2019; 14:543-556. [PMID: 30666113 PMCID: PMC6333394 DOI: 10.2147/ijn.s190027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Nanoparticle (NP)-based drug delivery approaches have tremendous potential for enhancing treatment efficacy and decreasing doses of chemotherapeutics. Idarubicin (IDA) is one of the most common chemotherapeutic drugs used in the treatment of acute myeloid leukemia (AML). However, severe side effects and drug resistance markedly limit the application of IDA. Methods In this study, we encapsulated IDA in polymeric NPs and validated their antileukemia activity in vitro and in vivo. Results NPs with an average diameter of 84 nm was assembled from a methoxy poly(ethylene glycol)-b-poly(l-lactide-co-glycolide) (mPEG-PLGA). After loading of IDA, IDA-loaded mPEG-PLGA NPs (IDA/mPEG-PLGA NPs) were formed. The in vitro release data showed that the IDA/mPEG-PLGA NPs have excellent sustained release property. IDA/mPEG-PLGA NPs had exhibited the lower IC50 than pure IDA. Moreover, IDA/mPEG-PLGA NPs in the same concentration substantially induced apoptosis than did pure IDA. Most importantly, IDA/MPEG-PLGA NPs significantly decreased the infiltration of leukemia blasts and improved the overall survival of MLL-AF9-induced murine leukemia compared with free IDA. However, the blank NPs were nontoxic to normal cultured cells in vitro, suggesting that NPs were the safe carrier. Conclusion Our data suggest that IDA/mPEG-PLGA NPs might be a suitable carrier to encapsulate IDA. Low dose of IDA/mPEG-PLGA NPs can be used as a conventional dosage for antileukemia therapy to reduce side effect and improve survival.
Collapse
Affiliation(s)
- Bin Liang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang 325000, China
| | - Na Li
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS, Wenzhou, Zhejiang 325000, China
| | - Shuofei Zhang
- Department of Orthodontics, Stomatological Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Aihua Qi
- Department of Internal Medicine, Zaoqiang People's Hospital, Zaoqiang, Hebei 053100, China
| | - Jianhua Feng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang 325000, China
| | - Weiwei Jing
- Department of Obstetrics and Gynecology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS, Wenzhou, Zhejiang 325000, China
| | - Zhaipu Ma
- Department of Bioinformatics, College of Life Science, Hebei University, Baoding, Hebei 071002, China,
| | - Shenmeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, Zhejiang 325000, China,
| |
Collapse
|
50
|
Jain NK, R. S. P, Bavya MC, Prasad R, Bandyopadhyaya R, Naidu VGM, Srivastava R. Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy. RSC Adv 2019; 9:26572-26581. [PMID: 35528602 PMCID: PMC9070431 DOI: 10.1039/c9ra03407b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022] Open
Abstract
Localized cancer rates are on an upsurge, severely affecting mankind across the globe. Timely diagnosis and adopting appropriate treatment strategies could improve the quality of life significantly reducing the mortality and morbidity rates. Recently, nanotherapeutics has precipitously shown increased efficacy for controlling abnormal tissue growth in certain sites in the body, among which ligand functionalized nanoparticles (NP) have caught much attention for improved survival statistics via active targeting. Our focus was to repurpose the antihelminthic drug, niclosamide (NIC), which could aid in inhibiting the abnormal growth of cells restricted to a specific region. The work here presents a one-pot synthesis of niclosamide encapsulated, hyaluronic acid functionalized core–shell nanocarriers [(NIC-PLGA NP)HA] for active targeting of localized cancer. The synthesized nanocarriers were found to possess spherical morphology with mean size of 150.8 ± 9 nm and zeta potential of −24.9 ± 7.21 mV. The encapsulation efficiency was found to be 79.19 ± 0.16% with a loading efficiency of 7.19 ± 0.01%. The nanohybrids exhibited extreme cytocompatibility upon testing with MDA-MB-231 and L929 cell lines. The rate of cancer cell elimination was approximately 85% with targeted cell imaging results being highly convincing. [(NIC-PLGA NP)HA] demonstrates increased cellular uptake leading to a hike in reactive oxygen species (ROS) generation, combating tumour cells aiding in the localized treatment of cancer and associated therapy. Localized binding of nanoparticulate formulation, actively targeting the receptors present on the cell surface.![]()
Collapse
Affiliation(s)
- Nishant Kumar Jain
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Prabhuraj R. S.
- Centre for Research in Nanotechnology and Science
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - M. C. Bavya
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - Rajdip Bandyopadhyaya
- Department of Chemical Engineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| | - V. G. M. Naidu
- Department of Pharmacology & Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Guwahati
- India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay (IIT-B)
- Mumbai
- India
| |
Collapse
|