1
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
2
|
Pant A, Singh G, Barnwal RP, Sharma T, Singh B. QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis. Int J Pharm 2024; 654:123936. [PMID: 38417727 DOI: 10.1016/j.ijpharm.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Osteoporosis is a metabolic disorder that leads to deterioration of bones. The major challenges confronting osteoporosis therapy include early-stage detection and regular disease monitoring. The present studies employed D-aspartic acid octapeptide (-D-Asp-)8 as bone-targeting peptide for evaluating osteoporosis manifestation, and superparamagnetic iron oxide nanoparticles (SPIONs) as nanocarriers for MRI-aided diagnosis. Thermal decomposition technique was employed to synthesize SPIONs, followed by surface-functionalization with hydrophilic ligands. Failure mode effect analysis and factor screening studies were performed to identify concentrations of SPIONs and ligand as critical material attributes, and systematic optimization was subsequently conducted employing face-centered cubic design. The optimum formulation was delineated using desirability function, and design space demarcated with 178.70 nm as hydrodynamic particle size, -24.40 mV as zeta potential, and 99.89 % as hydrophilic iron content as critical quality attributes. XRD patterns ratified lattice structure and SQUID studies corroborated superparamagnetic properties of hydrophilic SPIONs. Bioconjugation of (-D-Asp-)8 with SPIONs (1:1) was confirmed using UV spectroscopy, FTIR and NMR studies. Cell line studies indicated successful targeting of SPIONs to MG-63 human osteoblasts, ratifying enormous bone-targeting and safety potential of peptide-tethered SPIONs as MRI probes. In vivo MRI imaging studies in rats showcased promising contrast ability and safety of peptide-conjugated SPIONs.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140 401, India.
| |
Collapse
|
3
|
Pant A, Sharma G, Saini S, Kaur G, Jain A, Thakur A, Singh B. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv Transl Res 2024; 14:730-756. [PMID: 37768530 DOI: 10.1007/s13346-023-01427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of - 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0-72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level "A" in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.
Collapse
Affiliation(s)
- Anjali Pant
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumant Saini
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurjeet Kaur
- Department of Renal Transplant Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Atul Jain
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
Mendes M, Branco F, Vitorino R, Sousa J, Pais A, Vitorino C. A two-pronged approach against glioblastoma: drug repurposing and nanoformulation design for in situ-controlled release. Drug Deliv Transl Res 2023; 13:3169-3191. [PMID: 37574500 PMCID: PMC10624718 DOI: 10.1007/s13346-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GB) is one of the most lethal types of neoplasms. Its biologically aggressive nature and the presence of the blood-brain barrier (BBB) limit the efficacy of standard therapies. Several strategies are currently being developed to both overcome the BBB and deliver drugs site specifically to tumor cells. This work hypothesizes a two-pronged approach to tackle GB: drug repurposing with celecoxib (CXB) and a nanoformulation using ultra-small nanostructured lipid carriers (usNLCs). CXB antitumor druggable activity was inspected bioinformatically and screened in four glioma cell lines aiming at the comparison with temozolomide (TMZ), as standard of care. Delving into formulation design, it was tailored aiming at (i) improving the drug solubility/loading properties, (ii) assigning a thermal-triggerable drug release based on a lipid matrix with a low melting point, and (iii) enhancing the cytotoxic effect by selecting a template targetable to tumor cells. For this purpose, an integrated analysis of the critical material attributes (CMAs), critical process parameters (CPPs), and critical quality attributes (CQAs) was conducted under the umbrella of a quality by design approach. CMAs that demonstrate a high-risk level for the final quality and performance of the usNLCs include the drug solubility in lipids (solid and liquid), the lipid composition (envisioning a thermoresponsive approach), the ratio between lipids (solid vs. liquid), and the surfactant type and concentration. Particle size was shown to be governed by the interaction lipid-surfactant followed by surfactant type. The drug encapsulation did not influence colloidal characteristics, making it a promising carrier for lipophilic drugs. In general, usNLCs exhibited a controlled drug release during the 72 h at 37 °C with a final release of ca. 25%, while at 45 °C this was doubled. The in vitro cellular performance depended on the surfactant type and lipid composition, with the formulations containing a sole solid lipid (Suppocire® NB) and Kolliphor® RH40 as surfactant being the most cytotoxic. usNLCs with an average diameter of ca. 70 nm and a narrow size distribution (PdI lower than 0.2) were yielded, exhibiting high stability, drug protection, sustained and thermo-sensitive release properties, and high cytotoxicity to glioma cells, meeting the suitable CQAs for parenteral administration. This formulation may pave the way to a multi-addressable purpose to improve GB treatment.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Rui Vitorino
- iBiMED-Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, UnIC, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Pólo das Ciências da Saúde, 3000-548, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
5
|
Pawde DM, Rahman SNR, Ponneganti S, Goswami A, Borkar RM, Shunmugaperumal T. Analytical Quality-by-Design-Based Systematic Optimization of RP-HPLC Method Conditions to Analyze Simultaneously Chloroquine Phosphate and Flavopiridol in Stress-Induced Combined Drug Solution and Pharmaceutical Emulsions. J Chromatogr Sci 2023; 61:665-677. [PMID: 36355561 DOI: 10.1093/chromsci/bmac088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 08/22/2023]
Abstract
A design of experiments (DoE)-driven RP-HPLC method conditions was employed to analyze simultaneously chloroquine (CQ) phosphate and flavopiridol (FLAP) in emulsions and solution. After subjecting the various critical method attributes to preliminary risk assessment and screening by Pareto-chart-based fractional factorial design, the 17 runs were produced in Box-Behnken design for optimization. Analysis of variance, lack of fit, prediction equations, 3D response surface plots and contour plots were used to evaluate the critical analytical attributes such as retention time, tailing factor and theoretical plate count. The optimized RP-HPLC method conditions include 262 nm as detection wavelength, 37°C temperature for column, 20-μl injection volume, 1-ml/min flow rate and mobile phase mixture [70:30 ratio of 0.4% triethylamine in methanol&sodium phosphate buffer (11 mM, pH 3.0)]. The studied validation parameters were found within the ICH-prescribed limits. Exposing the combined drug solution at oxidative stress condition resulted to diminish the FLAP recovery value (53.39 ± 0.86) and arrival of an extra chromatographic peak. However, the % drug entrapment efficiency values of 96.22 ± 2.47 and 85.86 ± 3.66, respectively, were noticed for CQ phosphate and FLAP in emulsions. Thus, DoE-driven approach could be helpful for systematically optimizing RP-HPLC method conditions.
Collapse
Affiliation(s)
- Datta Maroti Pawde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| | - Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| | - Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| | - Roshan Murlidhar Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Changsari, Assam 781101, India
| |
Collapse
|
6
|
Dias Assis BR, Gomes IP, de Castro JT, Rivelli GG, de Castro NS, Gomez-Mendoza DP, Bagno FF, Hojo-Souza NS, Chaves Maia AL, Lages EB, da Fonseca FG, Ribeiro Teixeira SM, Fernandes AP, Gazzinelli RT, Castro Goulart GA. Quality attributes of CTVad1, a nanoemulsified adjuvant for phase I clinical trial of SpiN COVID-19 vaccine. Nanomedicine (Lond) 2023; 18:1175-1194. [PMID: 37712604 DOI: 10.2217/nnm-2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Aim: To develop, characterize and evaluate an oil/water nanoemulsion with squalene (CTVad1) to be approved as an adjuvant for the SpiN COVID-19 vaccine clinical trials. Materials & methods: Critical process parameters (CPPs) of CTVad1 were standardized to meet the critical quality attributes (CQAs) of an adjuvant for human use. CTVad1 and the SpiN-CTVad1 vaccine were submitted to physicochemical, stability, in vitro and in vivo studies. Results & conclusion: All CQAs were met in the CTVad1 production process. SpiN- CTVad1 met CQAs and induced high levels of antibodies and specific cellular responses in in vivo studies. These results represented a critical step in the process developed to meet regulatory requirements for the SpiN COVID-19 vaccine clinical trial.
Collapse
Affiliation(s)
- Bruna Rodrigues Dias Assis
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Isabela Pereira Gomes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Júlia Teixeira de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Graziella Gomes Rivelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Salazar de Castro
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Diana Paola Gomez-Mendoza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Natália Satchiko Hojo-Souza
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
| | - Ana Luiza Chaves Maia
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Eduardo Burgarelli Lages
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| | - Flávio Guimaraes da Fonseca
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz-Minas, Belo Horizonte, MG, 30190-002, Brazil
- Department of Biochemistry & Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceuticals, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Centro de Tecnologia de Vacinas da Universidade Federal de Minas Gerais, Belo Horizonte, Belo Horizonte, MG, 31310-260, Brazil
| |
Collapse
|
7
|
McGrath RN, Xu Y, Taylor A. Screening main and interaction effects in a Plackett-Burman design. COMMUN STAT-SIMUL C 2023. [DOI: 10.1080/03610918.2023.2171058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Richard N. McGrath
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, Ohio, USA
| | - Yuhang Xu
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, Ohio, USA
| | - Anna Taylor
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA
| |
Collapse
|
8
|
Waghule T, Saha RN, Singhvi G. Exploring microfluidics and membrane extrusion for the formulation of temozolomide-loaded liposomes: investigating the effect of formulation and process variables. J Liposome Res 2022:1-13. [DOI: 10.1080/08982104.2022.2139844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, India
| |
Collapse
|
9
|
Hirono K, A. Udugama I, Hayashi Y, Kino-oka M, Sugiyama H. A Dynamic and Probabilistic Design Space Determination Method for Mesenchymal Stem Cell Cultivation Processes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Hirono
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Isuru A. Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Hayashi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Szoleczky R, Budai-Szűcs M, Csányi E, Berkó S, Tonka-Nagy P, Csóka I, Kovács A. Analytical Quality by Design (AQbD) Approach to the Development of In Vitro Release Test for Topical Hydrogel. Pharmaceutics 2022; 14:707. [PMID: 35456541 PMCID: PMC9026520 DOI: 10.3390/pharmaceutics14040707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to adapt the analytical quality by design (AQbD) approach to design an effective in vitro release test method using USP apparatus IV with a semi-solid adapter (SSA) for diclofenac sodium hydrogel. The analytical target profile (ATP) of the in vitro release test and ultra-high-performance liquid chromatography were defined; the critical method attributes (CMAs) (min. 70% of the drug should be released during the test, six time points should be obtained in the linear portion of the drug release profile, and the relative standard deviation of the released drug should not be over 10%) were selected. An initial risk assessment was carried out, in which the CMAs (ionic strength, the pH of the media, membrane type, the rate of flow, the volume of the SSA (sample amount), the individual flow rate of cells, drug concentration %, and the composition of the product) were identified. With the results, it was possible to determine the high-risk parameters of the in vitro drug release studies performed with the USP apparatus IV with SSA, which were the pH of the medium and the sample weight of the product. Focusing on these parameters, we developed a test protocol for our hydrogel system.
Collapse
Affiliation(s)
- Réka Szoleczky
- Egis Pharmaceuticals Plc., Laboratory of Finished Product Analytical Development 3, Bökényföldi Str. 116-120, 1165 Budapest, Hungary; (R.S.); (P.T.-N.)
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| | - Péter Tonka-Nagy
- Egis Pharmaceuticals Plc., Laboratory of Finished Product Analytical Development 3, Bökényföldi Str. 116-120, 1165 Budapest, Hungary; (R.S.); (P.T.-N.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, 6720 Szeged, Hungary; (M.B.-S.); (E.C.); (S.B.); (I.C.)
| |
Collapse
|
12
|
Sarisaltik-Yasin D, Uslu A, Uyar E, Erdinc M, Teksin ZS. QbD Application for a Fixed-Dose Combination with Biowaiver Potential: Evaluations of In Vitro and In Vivo Applications. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Application of Quality by Design Approach to the Pharmaceutical Development of Anticancer Crude Extracts of Crocus sativus Perianth. Sci Pharm 2022. [DOI: 10.3390/scipharm90010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The application of the Quality by Design (QbD) concept to extracts obtained from Crocus sativus perianth with potential anticancer activity will ensure the safety, efficiency, and quality control of the entire technological process, as well as determine the critical factors affecting the quality of extracts. Potentially critical points of the production of the plant extracts, including the cultivation and processing of the plant materials, the extraction process, and the choice of solvents, were identified using the Ishikawa diagram and FMEA risk assessment methods as well as the corrective actions proposed. The Herbal Chemical Marker Ranking System (HerbMars) approach was used to justify the Q-markers choice of Crocus, which takes into account bioavailability, pharmacological activity, and the presence of the selected standard. An experimental design (DoE) was used to assess the influence of potentially critical factors on the efficiency of the compound extraction from raw materials with water or ethanol. The presence of 16 compounds in Crocus perianth was determined by HPLC and their quantitative assessment was established. Selected compounds (ferulic acid, mangiferin, crocin, rutin, isoquercitrin) can be used for the quality control of Crocus perianth. In addition, the stigmas from the Volyn region met the requirements of ISO 3632 for saffron as a spice (category I). The cytotoxic activity against melanoma (IGR39) and triple-negative breast cancer (MDA-MB-231) cell lines of the hydroethanolic extract of C. sativus perianth was significantly more pronounced than the water extract, probably due to the chemical composition of the constituent components. The results show that the QbD approach is a powerful tool for process development for the production of quality herbal drugs.
Collapse
|
14
|
Saha I, Palak A, Rai VK. Relevance of NLC-gel and microneedling-assisted tacrolimus ointment against severe psoriasiform: In vitro dermal retention kinetics, in vivo activity and drug distribution. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Shaikh F, Patel M, Patel V, Patel A, Shinde G, Shelke S, Pathan I. Formulation and optimization of cilnidipine loaded nanosuspension for the enhancement of solubility, dissolution and bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Sharma V, Singh L, Verma N. QbD enabled Process Variable Study to Develop Sustained Release Chitosan-Alginate Embedded Delivery System for Improved Patient Compliance. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902021000319803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Quality-by-design in pharmaceutical development: From current perspectives to practical applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:497-526. [PMID: 36651549 DOI: 10.2478/acph-2021-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
Current pharmaceutical research directions tend to follow a systematic approach in the field of applied research and development. The concept of quality-by-design (QbD) has been the focus of the current progress of pharmaceutical sciences. It is based on, but not limited, to risk assessment, design of experiments and other computational methods and process analytical technology. These tools offer a well-organized methodology, both to identify and analyse the hazards that should be handled as critical, and are therefore applicable in the control strategy. Once implemented, the QbD approach will augment the comprehension of experts concerning the developed analytical technique or manufacturing process. The main activities are oriented towards the identification of the quality target product profiles, along with the critical quality attributes, the risk management of these and their analysis through in silico aided methods. This review aims to offer an overview of the current standpoints and general applications of QbD methods in pharmaceutical development.
Collapse
|
18
|
Patel MS, Patel AD, Damor S. Design and Development of Dual Release Reconstitutable Oral Suspension of Cefpodoxime Proxetil for Pediatric Patient Using Risk-Based Quality by Design Approach. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Raval MK, Garala KC, Patel JM, Parikh RK, Sheth NR. Functionality improvement of Chlorzoxazone by crystallo-co-agglomeration using multivariate analysis approach. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1799126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mihir K. Raval
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Jaydeep M. Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Navin R. Sheth
- Gujarat Technological University, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Rana H, Dholakia M, Gohel M, Omri A, Thakkar V, Gandhi T. Demonstration of Advanced Data Mining Tools for Optimization of Pellets Employing Modified Extrusion-pelletization Technique. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201217155123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The multi particulate drug delivery system is preferred due to its numerous
advantages but the batch to batch consistency and to achieve desired physical properties are the major
challenges in the formulation of such dosage form.
Objective:
The objective of the present study was to explore the concept of quality by design for the
development of galantamine HBr controlled release pellets using a modified palletization technique.
Methods:
Compritol 888 and Ethocel were chosen as hydrophobic release retardants, while Avicel
was chosen as pelletization aid. A compatibility study was conducted between the drug and excipients.
Drug loaded extrudes were prepared by using a mixture of isopropyl alcohol, and dichloromethane.
Before converting the wet extrudes into pellets, pregelatinized starch was sprinkled on them to improve
the physical properties of the pellets. The pellets were characterized for size, shape, and flow.
The critical evaluation parameter was the drug dissolution pattern in distilled water. The dissolution
data were treated with advanced data mining techniques. The in-vivo profile was predicted employing
pharmacokinetic parameters of the drug and in-vitro drug release data of optimized batch pellets.
Results:
The failure mode and effect analysis revealed that the amount of Compritol 888 ATO and
Ethocel were the most critical formulation parameters. The results of FTIR and DSC revealed compatibility
between the drug and the excipients. The spherical pellets exhibited good flow. The drug dissolution
studies of the batches, prepared according to the central composite design, revealed modified
drug release. Multiple regression analysis and analysis of variance were performed to identify statistically
significant factors. Contour plots demonstrated the impact of the amount of Compritol 888 and
ethyl cellulose. The Design-Expert software was used to identify optimized formulation. The predicted
in-vivo plasma concentration-time profile revealed the modified drug release up to 12h.
Conclusions:
Compritol and Ethocel were able to retard the drug release up to 12 hrs in distilled water.
The innovative finding of this study is the use of a dry binder (pregelatinized starch) to improve the
characteristics of pellets. Other dry binders are expected to show a similar effect. The newer processing
technique can be of use in the industry.
Collapse
Affiliation(s)
- Hardika Rana
- Department of Pharmaceutics and Pharmaceutical Technology, Anand Pharmacy College, Anand, Gujarat, India
| | - Mansi Dholakia
- Faculty of Pharmacy, Dharamsinh Desai University, Nadiad - 387001, India
| | - Mukesh Gohel
- Department of Pharmaceutics and Pharmaceutical Technology, Anand Pharmacy College, Anand, Gujarat, India
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Vaishali Thakkar
- Department of Pharmaceutics and Pharmaceutical Technology, Anand Pharmacy College, Anand, Gujarat, India
| | - Tejal Gandhi
- Department of Pharmaceutics and Pharmaceutical Technology, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
22
|
Singhai VD, Maheshwari R, Sharma S, Paliwal S. Employment of Quality by Design Approach via Response Surface Methodology to Optimize and Develop Modified-release Formulation of Hydrochlorothiazide. Curr Comput Aided Drug Des 2021; 17:266-280. [PMID: 32101133 DOI: 10.2174/1573409916666200226114517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heart attack predominantly occurs during the last phase of sleep and early morning hours, causing millions of death worldwide. Hydrochlorothiazide (HCTZ) is a recommended drug for the prevention of heart disease, but its long action (>4 h) dosage form is lacking in the commercial market and development of modified-release formulation may have industrial significance. Regulatory agencies emphasize Quality by Design based approach for product development to entrust quality in the product. OBJECTIVE The current research aimed to develop a quality product profile of HCTZ modifiedrelease tablets (MRT; ~14 h) by applying Response Surface Methodology using the computational QbD approach. METHODS Three independent factors were identified by qualitative and quantitative risk assessment. Statistical terms like p-value, lack of fit, the sum of square, R-squared value, model F value, and linear equations were determined. Graphical tools like normal plot of residual, residual vs predicted plot and box cox plot were used to verify the model selection. The graphical relationship among the critical, independent variables was represented using the Contour plot and 3-D surface plot. Design space was identified by designing an overlay plot using response surface design. RESULTS Excellent correlation was observed between actual and predicted values. Similarity Factor (F2) of reproducible trials was 78 and 79, and content uniformity was 100.9% and 100.4%. Average weight, hardness, thickness, diameter, and friability were within acceptable limits. CONCLUSION QbD approach, along with a quality risk management tool, provided an efficient and effective paradigm to build quality MRT of HCTZ.
Collapse
Affiliation(s)
- Vikas D Singhai
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's NMIMS, Hyderabad, Telangana-509301, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| |
Collapse
|
23
|
Rahman SNR, Katari O, Pawde DM, Boddeda GSB, Goswami A, Mutheneni SR, Shunmugaperumal T. Application of Design of Experiments® Approach-Driven Artificial Intelligence and Machine Learning for Systematic Optimization of Reverse Phase High Performance Liquid Chromatography Method to Analyze Simultaneously Two Drugs (Cyclosporin A and Etodolac) in Solution, Human Plasma, Nanocapsules, and Emulsions. AAPS PharmSciTech 2021; 22:155. [PMID: 33987739 DOI: 10.1208/s12249-021-02026-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
The objectives of current investigation are (1) to find out wavelength of maximum absorbance (λmax) for combined cyclosporin A and etodolac solution followed by selection of mobile phase suitable for the RP-HPLC method, (2) to define analytical target profile and critical analytical attributes (CAAs) for the analytical quality by design, (3) to screen critical method parameters with the help of full factorial design followed by optimization with face-centered central composite design (CCD) approach-driven artificial neural network (ANN)-linked with the Levenberg-Marquardt (LM) algorithm for finding the RP-HPLC conditions, (4) to perform validation of analytical procedures (trueness, linearity, precision, robustness, specificity and sensitivity) using combined drug solution, and (5) to determine drug entrapment efficiency value in dual drug-loaded nanocapsules/emulsions, percentage recovery value in human plasma spiked with two drugs and solution state stability analysis at different stress conditions for substantiating the double-stage systematically optimized RP-HPLC method conditions. Through isobestic point and scouting step, 205 nm and ACN:H2O mixture (74:26) were selected respectively as the λmax and mobile phase. The ANN topology (3:10:4) indicating the input, hidden and output layers were generated by taking the 20 trials produced from the face-centered CCD model. The ANN-linked LM model produced minimal differences between predicted and observed values of output parameters (or CAAs), low mean squared error and higher correlation coefficient values in comparison to the respective values produced by face-centered CCD model. The optimized RP-HPLC method could be applied to analyze two drugs concurrently in different formulations, human plasma and solution state stability checking.
Collapse
|
24
|
van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney AK, Kontoravdi C, Shattock R, Shah N. Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases. NPJ Vaccines 2021; 6:65. [PMID: 33927197 PMCID: PMC8085199 DOI: 10.1038/s41541-021-00322-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Rapid-response vaccine production platform technologies, including RNA vaccines, are being developed to combat viral epidemics and pandemics. A key enabler of rapid response is having quality-oriented disease-agnostic manufacturing protocols ready ahead of outbreaks. We are the first to apply the Quality by Design (QbD) framework to enhance rapid-response RNA vaccine manufacturing against known and future viral pathogens. This QbD framework aims to support the development and consistent production of safe and efficacious RNA vaccines, integrating a novel qualitative methodology and a quantitative bioprocess model. The qualitative methodology identifies and assesses the direction, magnitude and shape of the impact of critical process parameters (CPPs) on critical quality attributes (CQAs). The mechanistic bioprocess model quantifies and maps the effect of four CPPs on the CQA of effective yield of RNA drug substance. Consequently, the first design space of an RNA vaccine synthesis bioreactor is obtained. The cost-yield optimization together with the probabilistic design space contribute towards automation of rapid-response, high-quality RNA vaccine production.
Collapse
Affiliation(s)
- Damien van de Berg
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Zoltán Kis
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Carl Fredrik Behmer
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Karnyart Samnuan
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Anna K Blakney
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- University of British Columbia, Michael Smith Laboratories and School of Biomedical Engineering, Vancouver, BC, Canada
| | - Cleo Kontoravdi
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK
| | - Robin Shattock
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Nilay Shah
- Centre for Process Systems Engineering, Department of Chemical Engineering, Faculty of Engineering, Imperial College London, London, UK.
| |
Collapse
|
25
|
Implications of phospholipid-based nanomixed micelles of olmesartan medoxomil with enhanced lymphatic drug targeting ability and systemic bioavailability. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Jang EH, Park YS, Choi DH. Investigation of the effects of materials and dry granulation process on the mirabegron tablet by integrated QbD approach with multivariate analysis. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111548. [DOI: 10.1016/j.msec.2020.111548] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
|
28
|
Chalikwar SS, Surana SJ, Goyal SN, Chaturvedi KK, Dangre PV. Solid self-microemulsifying nutraceutical delivery system for hesperidin using quality by design: assessment of biopharmaceutical attributes and shelf-life. J Microencapsul 2020; 38:61-79. [PMID: 33245007 DOI: 10.1080/02652048.2020.1851788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIM The present study endeavours to develop a solid self-microemulsifying nutraceutical drug delivery system for hesperidin (HES) using quality by design (QbD) to improve its biopharmaceutical attributes. METHODS A 32 full factorial design was employed to study the influence of factors on selected responses. Risk assessment was performed by portraying Ishikawa fishbone diagram and failure mode effect analysis (FMEA). The in vivo antidiabetic study was carried on induced diabetic rats. RESULTS The optimised liquid SMEDDS-HES (OF) formulation showed emulsification time (Y 1) = 102.5 ± 2.52 s, globule size (Y 2) = 225.2 ± 3.40 nm, polydispersity index (Y 3) = 0.294 ± 0.62, and zeta potential (Y 4) = -25.4 ± 1.74 mV, respectively. The solid SMEDDS-HES (SOF-7) formulation was characterised by FTIR, PXRD, DSC, and SEM. The shelf life of SOF-7 was found to be 32.88 months. The heamatological and histopathological data of diabetic rats showed prominent antidiabetic activity. CONCLUSIONS The optimised formulation showed improved dissolution, desired stability, and promising antidiabetic activity.
Collapse
Affiliation(s)
- Shailesh S Chalikwar
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sanjay J Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Sameer N Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India.,Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Kaushalendra K Chaturvedi
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Pankaj V Dangre
- Department of Pharmaceutical Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
29
|
Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110995. [DOI: 10.1016/j.msec.2020.110995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/04/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
|
30
|
A Precise Prediction Method for the Properties of API-Containing Tablets Based on Data from Placebo Tablets. Pharmaceutics 2020; 12:pharmaceutics12070601. [PMID: 32605318 PMCID: PMC7408303 DOI: 10.3390/pharmaceutics12070601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/05/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
We previously reported a novel method for the precise prediction of tablet properties (e.g., tensile strength (TS)) using a small number of experimental data. The key technique of this method is to compensate for the lack of experimental data by using data of placebo tablets collected in a database. This study provides further technical knowledge to discuss the usefulness of this prediction method. Placebo tablets consisting of microcrystalline cellulose, lactose, and cornstarch were prepared using the design of an experimental method, and their TS and disintegration time (DT) were measured. The response surfaces representing the relationship between the formulation and the tablet properties were then created. This study investigated tablets containing four different active pharmaceutical ingredients (APIs) with a drug load ranging from 20–60%. Overall, the TS of API-containing tablets could be precisely predicted by this method, while the prediction accuracy of the DT was much lower than that of the TS. These results suggested that the mode of action of APIs on the DT was more complicated than that on the TS. Our prediction method could be valuable for the development of tablet formulations.
Collapse
|
31
|
Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm 2020; 147:19-37. [DOI: 10.1016/j.ejpb.2019.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
|
32
|
Muliadi AR, Banda A, Mao C. Recent Progress in Roll Compaction Process Development for Pharmaceutical Solid Dosage Form Manufacture. CONTINUOUS PHARMACEUTICAL PROCESSING 2020. [DOI: 10.1007/978-3-030-41524-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
33
|
Rahman SNR, Pawde DM, Katari O, Hmingthansanga V, Shunmugaperumal T. Systematic Optimization, In Vitro Drug Release, and Preliminary Nonclinical Toxicity Assessment of Nonphospholipid-Based Topical Ophthalmic Emulsions Containing 0.05 or 0.1% w/w Cyclosporin A for Dry-Eye Syndrome Management. AAPS PharmSciTech 2019; 21:36. [PMID: 31879832 DOI: 10.1208/s12249-019-1587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 11/30/2022] Open
Abstract
The objectives of the present investigations are (1) to envisage a risk assessment plan for nonphospholipid-based topical ophthalmic emulsions with the help of failure mode and effect analysis (FMEA), (2) to screen the risky formulation and process variables by the Taguchi design, (3) to optimize systematically an emulsion formula by face-centered central composite design (CCD), (4) to incorporate cyclosporin A (0.05 or 0.1% w/w) into the optimized emulsions and predict the in vitro drug release kinetic via a particle diffusion-controlled mathematical model equation, and (5) to assess the emulsion's toxicity using in vitro hemolysis study. Through the risk priority number (RPN) scores of FMEA, half-normal and Pareto charts of the Taguchi design, 3D-response surface graphs, and overlay plots of CCD, the emulsion formula was systematically optimized. Irrespective of the two different drug loadings into optimized emulsions, the drug entrapment efficiency values ranged from 73.20 ± 0.13 to 74.42 ± 0.15%. The film diffusion or ion-exchange process fails to interpret the in vitro drug release kinetic profile. A permissible percentage hemolysis value of above 10% but below 25% guidance was observed for emulsions with or without cyclosporin A. The systematically optimized phospholipidless ophthalmic emulsions could further be exploited commercially for managing dry-eye syndrome.
Collapse
|
34
|
Patel A, Patel A, Patel R, Dharamsi A. Application of Failure Mode Effect Analysis in Wurster-Based Pelletization Technology: a Technical Note. AAPS PharmSciTech 2019; 20:324. [PMID: 31654266 DOI: 10.1208/s12249-019-1516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022] Open
Abstract
The deployment of oral multi-unit pellet formulation has gained significant attention in recent years conferring to numerous applications, especially in achieving modified release and acid resistance property. The fluidized bed coating, specifically Wurster technique is commercially utilized for pellet manufacturing, which is a complex process involving too many variables. Risk assessment tools can be employed to determine the critical variables affecting the pre-defined quality profile and screen out important parameters out of literally hundreds of variables to develop a robust product. The present review aims to describe possibly all the variables involved in Wurster coating process and application of FMEA in pellet manufacturing. A brief case study regarding applicability of FMEA to study the effects of critical factors is outlined. Risk assessment tools assist to reduce number of trials to manageable levels with aid of prior art, literature, and preliminary trials to develop an optimized product.
Collapse
|
35
|
Singh BN. Product Development, Manufacturing, and Packaging of Solid Dosage Forms Under QbD and PAT Paradigm: DOE Case Studies for Industrial Applications. AAPS PharmSciTech 2019; 20:313. [PMID: 31529232 DOI: 10.1208/s12249-019-1515-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/18/2019] [Indexed: 11/30/2022] Open
Abstract
An integrated approach based on QbD and PAT provides a systematic and innovative framework for product development, manufacturing, and quality risk management. In this context, the significance of the outcome of design of experiments (DOEs) to the selection of the product design, robust commercial manufacturing process, design space, and overall control strategy remains vital for the success of a drug product throughout its life cycle. This paper aims at discussing selected recent DOE case studies conducted during QbD-based and integrated QbD/PAT-based development of solid oral formulations and process improvement studies. The main focus of this paper is to highlight the rationales and importance of design selection during development and applications of mathematical models and statistical tools in analyzing DOE and PAT data for developing a design space, control strategy, and improved process monitoring. A total of 25 case studies (includes 9 PAT application studies) have been discussed in this paper which cover 11 manufacturing processes commonly utilized for solid dosage forms. Two case studies relevant to selection of packaging design for solid dosage forms are also briefly discussed to complete the scope. Overall, for a successful modern QbD approach, it is highly important that DOEs are conducted and analyzed in a logical sequence which involves designs that are phase-appropriate and quality-driven and facilitate both statistical and chemometric thinking at each development stage. This approach can result into higher regulatory flexibility along with lower economic burden during life cycle of a product, irrespective of regulatory path used (NDA or ANDA).
Collapse
|
36
|
Tabora JE, Lora Gonzalez F, Tom JW. Bayesian probabilistic modeling in pharmaceutical process development. AIChE J 2019. [DOI: 10.1002/aic.16744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jose E. Tabora
- Chemical & Synthetic Development, Product Development Bristol‐Myers Squibb Company New Brunswick NJ USA
| | - Federico Lora Gonzalez
- Chemical & Synthetic Development, Product Development Bristol‐Myers Squibb Company New Brunswick NJ USA
| | - Jean W. Tom
- Chemical & Synthetic Development, Product Development Bristol‐Myers Squibb Company New Brunswick NJ USA
| |
Collapse
|
37
|
Bejarano A, Hewa Nadungodage C, Wang F, Catlin AC, Hoag SW. Decision Support for Excipient Risk Assessment in Pharmaceutical Manufacturing. AAPS PharmSciTech 2019; 20:223. [PMID: 31214878 DOI: 10.1208/s12249-019-1440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Excipients have always been a key input into pharmaceutical products, profoundly affecting product quality. Currently, most of our knowledge of excipient critical quality attributes is empirical, gained through experience, and shared through publications and other sources. The behavior of excipients is complicated, with many different failure modes that depend on the type of dosage form. Even within the same dosage form, there can be multiple failure modes depending on the manufacturing method. This complex behavior creates many possible combinations to assess when designing a formulation or evaluating regulatory submissions. Formulation science could be improved if data from different sources could be made widely available through an interactive system using a consistent, structured format to help formulators and regulators assess the risk of excipient usage for a particular dosage form with a particular manufacturing method. This paper describes a decision support system that was created for assessing excipient risk in different types of formulations and considering different types of manufacturing methods, dosage forms, and excipient functionality. The Excipient Risk Assessment System consists of a database that stores knowledge about factors that affect formulation design and a decision support processor that manages selections for creating formulation scenarios and assigning risk. Formulation and risk assessment data are provided by formulation science experts. This enables the system to assess compatibility among excipients, functionality, dosage forms, and manufacturing methods selected for formulations. The interface guides users through the creation of formulation scenarios and displays customized, interactive risk assessment reports for users to search and explore.
Collapse
|
38
|
Panigrahi KC, Patra CN, Rao MEB. Quality by Design Enabled Development of Oral Self-Nanoemulsifying Drug Delivery System of a Novel Calcimimetic Cinacalcet HCl Using a Porous Carrier: In Vitro and In Vivo Characterisation. AAPS PharmSciTech 2019; 20:216. [PMID: 31172322 DOI: 10.1208/s12249-019-1411-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/03/2019] [Indexed: 11/30/2022] Open
Abstract
In this present research, work quality by design-enabled development of cinacalcet HCl (CH)-loaded solid self-nanoemulsifying drug delivery system (S-SNEDDS) was conducted using a porous carrier in order to achieve immediate drug release and better oral bioavailability. Capmul MCM (CAP), Tween 20 (TW 20) and Transcutol P (TRP) were selected as excipients. Cumulative % drug release at 30 min (Q30), emulsification times (ET), mean globule size (GS) and polydispersity index (PDI) were identified as critical quality attributes (CQAs). Factor mode effect analysis (FMEA) and Taguchi screening design were applied for screening of factors. The optimised single dose of S-SNEDDS obtained using Box-Behnken design (BBD) consisted of 30 mg of CH, 50 mg of CAP, 149.75 mg of TW 20, 55 mg of TRP and 260.75 mg of Neusilin US2. It showed an average Q30 of 97.6%, ET of 23.3 min, GS of 89.5 nm and PDI of 0.211. DSC, XRD and SEM predict the amorphous form of S-SNEDDS. In vivo pharmacokinetic study revealed better pharmacokinetic parameters of S-SNEDDS. The above study concluded that the optimised S-SNEDDS is effective to achieve the desired objective. Graphical Abstract.
Collapse
|
39
|
Development of sorafenib loaded nanoparticles to improve oral bioavailability using a quality by design approach. Int J Pharm 2019; 566:229-238. [PMID: 31136778 DOI: 10.1016/j.ijpharm.2019.05.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/07/2023]
Abstract
Sorafenib, a potent anticancer drug, has low absorption in the gastrointestinal tract due to its poor aqueous solubility. The main purpose of this investigation was to design sorafenib nanoparticle using a newly developed technique, nanoparticulation using fat and supercritical fluid (NUFS™) to improve the absorption of sorafenib. The quality by design (QbD) tool was adopted to define the optimal formulation variables: hydroxypropyl methyl cellulose (HPMC), polyvinyl pyrrolidone K30 (PVP), and poloxamer. The studied response variables were particle size of nanoparticle, dissolution (5, 60, and 180 min), drug concentration time profile of nanoparticle formulations, and maximum drug concentration. The result of particle size revealed that an increase in concentration of poloxamer and HPMC decreased the particle size of nanoparticles (p < 0.05). Likewise, the concentration of drug release at different time point (5, 60, and 180 min) showed HPMC and poloxamer had positive effects on drug dissolution while PVP had negative effects on it. The design space was built in accordance with the particle size of nanoparticle (target < 500 nm) and dissolution of sorafenib (target > 7 µm/mL), following failure probability analysis using Monte Carlo simulations. In vivo pharmacokinetics studies in beagle dogs demonstrated that optimized formulation of sorafenib (F3 and F4 tablets) exhibited higher blood drug profiles indicating better absorption compared to the reference tablet (Nexavar®). In conclusion, this study showed the importance of systematic formulation design for understanding the effect of formulation variables on the characteristics of nanoparticles of the poorly soluble drug.
Collapse
|
40
|
Assessment of material and process attributes' influence on tablet quality using a QbD and DEM combined approach. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Facilitating industry translation of custom 3d printed bone prostheses and scaffolds through Quality by Design. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.promfg.2019.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Chordiya M, Gangurde H, Sancheti V. Quality by design: A Roadmap for quality pharmaceutical products. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2019. [DOI: 10.4103/jrptps.jrptps_2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
43
|
Javed MN, Alam MS, Waziri A, Pottoo FH, Yadav AK, Hasnain MS, Almalki FA. QbD Applications for the Development of Nanopharmaceutical Products. PHARMACEUTICAL QUALITY BY DESIGN 2019:229-253. [DOI: 10.1016/b978-0-12-815799-2.00013-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
44
|
QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Shah HP, Prajapati ST. Quality by design based development and optimization of novel gastroretentive floating osmotic capsules of clopidogrel bisulfate. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0405-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Martinez-Marquez D, Mirnajafizadeh A, Carty CP, Stewart RA. Application of quality by design for 3D printed bone prostheses and scaffolds. PLoS One 2018; 13:e0195291. [PMID: 29649231 PMCID: PMC5896968 DOI: 10.1371/journal.pone.0195291] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
3D printing is an emergent manufacturing technology recently being applied in the medical field for the development of custom bone prostheses and scaffolds. However, successful industry transformation to this new design and manufacturing approach requires technology integration, concurrent multi-disciplinary collaboration, and a robust quality management framework. This latter change enabler is the focus of this study. While a number of comprehensive quality frameworks have been developed in recent decades to ensure that the manufacturing of medical devices produces reliable products, they are centred on the traditional context of standardised manufacturing techniques. The advent of 3D printing technologies and the prospects for mass customisation provides significant market opportunities, but also presents a serious challenge to regulatory bodies tasked with managing and assuring product quality and safety. Before 3D printing bone prostheses and scaffolds can gain traction, industry stakeholders, such as regulators, clients, medical practitioners, insurers, lawyers, and manufacturers, would all require a high degree of confidence that customised manufacturing can achieve the same quality outcomes as standardised manufacturing. A Quality by Design (QbD) approach to custom 3D printed prostheses can help to ensure that products are designed and manufactured correctly from the beginning without errors. This paper reports on the adaptation of the QbD approach for the development process of 3D printed custom bone prosthesis and scaffolds. This was achieved through the identification of the Critical Quality Attributes of such products, and an extensive review of different design and fabrication methods for 3D printed bone prostheses. Research outcomes include the development of a comprehensive design and fabrication process flow diagram, and categorised risks associated with the design and fabrication processes of such products. An extensive systematic literature review and post-hoc evaluation survey with experts was completed to evaluate the likely effectiveness of the herein suggested QbD framework.
Collapse
Affiliation(s)
| | - Ali Mirnajafizadeh
- Molecular Cell Biomechanics Laboratory, University of California, Berkeley, California, United States of America
| | - Christopher P. Carty
- School of Allied Health Sciences and Innovations in Health Technology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Centre for Musculoskeletal Research, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Queensland Children's Gait Laboratory, Queensland Paediatric Rehabilitation Service, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia
| | - Rodney A. Stewart
- School of Engineering, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
47
|
Beg S, Saini S, Bandopadhyay S, Katare OP, Singh B. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm 2017; 44:407-420. [PMID: 29048242 DOI: 10.1080/03639045.2017.1395459] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE This research work entails quality by design (QbD)-based systematic development of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil (OLM) with improved biopharmaceutical attributes. METHODS Quality target product profile (QTPP) was defined and critical quality attributes (CQAs) were earmarked. Solubility of drug was performed in various lipids for screening of them. NLCs were prepared by hot-microemulsion method using solid lipids, liquid lipids and surfactants with maximal solubility. Failure mode and effect analysis (FMEA) was carried out for identifying high risk formulation and process parameters. Further, principal component analysis (PCA) was applied on high risk parameters for evaluating the effect of type and concentration of lipids and surfactants on CQAs. Further, systematic optimization of critical material attributes (CMAs) was carried out using face centered cubic design and optimized formulation was identified in the design space. RESULTS FMEA and PCA suggested suitability of stearic acid, oleic acid and Tween 80 as the CMAs for NLCs. Response surface optimization helped in identifying the optimized NLC formulation with particle size ∼250 nm, zeta potential <25 mV, entrapment efficiency >75%, in vitro drug release >80% within 6 h. Release kinetic modeling indicated drug release through Fickian-diffusion mechanism. CONCLUSIONS Overall, these studies indicated successful development of NLCs using multivariate statistical approaches for improved product and process understanding.
Collapse
Affiliation(s)
- Sarwar Beg
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Sumant Saini
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Shantanu Bandopadhyay
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - O P Katare
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India
| | - Bhupinder Singh
- a UGC Centre of Advanced Studies , University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh , India.,b UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University , Chandigarh , India
| |
Collapse
|
48
|
Ha JM, Seo JW, Kim SH, Kim JY, Park CW, Rhee YS, Park ES. Implementation of Quality by Design for Formulation of Rebamipide Gastro-retentive Tablet. AAPS PharmSciTech 2017; 18:3129-3139. [PMID: 28526986 DOI: 10.1208/s12249-017-0797-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 11/30/2022] Open
Abstract
The purpose of the present study was to develop a rebamipide (RBM) gastro-retentive (GR) tablet by implementing quality by design (QbD). RBM GR tablets were prepared using a sublimation method. Quality target product profile (QTPP) and critical quality attributes (CQAs) of the RBM GR tablets were defined according to the preliminary studies. Factors affecting the CQAs were prioritized using failure mode and effects analysis (FMEA). Design space and optimum formulation were established through a mixture design. The validity of the design space was confirmed using runs within the area. The QTPP of the RBM GR tablets was the orally administered GR tablet containing 300 mg of RBM taken once daily. Based on the QTPP, dissolution rate, tablet friability, and floating property were chosen as CQAs. According to the risk assessment, the amount of sustained-release agent, sublimating material, and diluent showed high-risk priority number (RPN) values above 40. Based on the RPN, these factors were further investigated using mixture design methodology. Design space of formulations was depicted as an overlaid contour plot and the optimum formulation to satisfy the desired responses was obtained by determining the expected value of each response. The similarity factor (f2) of the release profile between predicted response and experimental response was 89.463, suggesting that two release profiles are similar. The validity of the design space was also confirmed. Consequently, we were able to develop the RBM GR tablets by implementing the QbD concept. These results provide useful information for development of tablet formulations using the QbD.
Collapse
|
49
|
Desai N, Purohit R. Development of Novel High Density Gastroretentive Multiparticulate Pulsatile Tablet of Clopidogrel Bisulfate Using Quality by Design Approach. AAPS PharmSciTech 2017; 18:3208-3218. [PMID: 28550603 DOI: 10.1208/s12249-017-0805-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/05/2017] [Indexed: 01/30/2023] Open
Abstract
Myocardial infarction, i.e., heart attack, is a fatal condition which is on the increase all over the world. It is reported that a large number of heart attack occur in morning hours which are attributable to platelet aggregation. Chronotherapy at this stage can be crucial. Clopidogrel bisulfate (CLB) is an antiplatelet agent and has become a drug of choice for prevention of heart attack. It is soluble in acidic pH and has a narrow absorption window. So, its long residence time in stomach is desirable. Therefore, a novel high density tablet was developed comprising multiparticulate pellets with pulsatile release necessary to maintain chronotherapy of heart attack. The pellets were prepared by extrusion-spheronization and coated in fluidized bed processor with different coating material to achieve pulsatile release. The size, shape of pellets, and drug release were evaluated. High density tablet containing coated pellets was formulated and evaluated for retention in stomach. Quality by design tools was used to design and optimize the processes. Timed release observed by dissolution study showed lag time of 6 h followed by burst release of drug up to 94% in 1 h. Density of tablets was found to be 2.2 g cm-3 which is more than gastric fluid. In vivo x-ray studies in rabbit revealed 8 h of gastric retention of tablet at the bottom of the stomach. Thus, CLB high density pulsatile system looks to open up a window of opportunity for developing formulations with drugs that are stable in gastric region and needed chronotheraupetic activity.
Collapse
|
50
|
Dey P, Rangarajan V. Improved fed-batch production of high-purity PHB (poly-3 hydroxy butyrate) by Cupriavidus necator (MTCC 1472) from sucrose-based cheap substrates under response surface-optimized conditions. 3 Biotech 2017; 7:310. [PMID: 28955607 PMCID: PMC5595726 DOI: 10.1007/s13205-017-0948-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
Experimental investigations were carried out for Cupriavidus necator (MTCC 1472)-based improved production of poly-3 hydroxy butyrate (PHB) through induced nitrogen limiting fed-batch cultivation strategies. Initially Plackett-Burman design and response surface methodology were implemented to optimize most influencing process parameters. With optimized process parameter values, continuous feeding strategies ware applied in a 5-l fermenter with table sugar concentration of 100 g/l, nitrogen concentration of 0.12 g/l for fed-batch fermentation with varying dilution rates of 0.02 and 0.046 1/h. To get enriched production of PHB, concentration of the sugar was further increased to 150 and 200 g/l in feeding. Maximum concentrations of PHB achieved were 22.35 and 23.07 g/l at those dilution rates when sugar concentration maintains at 200 g/l in feeding. At maximum concentration of PHB (23.07 g/l), productivity of 0.58 g/l h was achieved with maximum PHB accumulation efficiency up to 64% of the dry weight of biomass. High purity of PHB, close to medical grade was achieved after surfactant hypochlorite extraction method, and it was further confirmed by SEM, EDX, and XRD studies.
Collapse
Affiliation(s)
- Pinaki Dey
- Department of Biosciences and Technology, Karunya University, Coimbatore, 641114 India
| | | |
Collapse
|