1
|
Rzewińska A, Szlęk J, Dąbrowski D, Juszczyk E, Mróz K, Räikkönen H, Siven M, Wieczorek M, Dorożyński P. Development of a Formulation and In Vitro Evaluation of a Pulmonary Drug Delivery System for a Novel Janus Kinase (JAK) Inhibitor, CPL409116. Pharmaceutics 2024; 16:1157. [PMID: 39339194 PMCID: PMC11435004 DOI: 10.3390/pharmaceutics16091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of targeted therapies for cytokine-dependent diseases has led to the discovery of Janus kinase (JAK) inhibitors, a promising class of drugs. Among them, CPL409116, a selective dual JAK and rho-associated protein kinase inhibitor (ROCK), has demonstrated potential for treating conditions such as pulmonary fibrosis exacerbated by the COVID-19 pandemic. This study investigated the feasibility of delivering CPL409116 via inhalation, with the aim of minimizing the systemic adverse effects associated with oral administration. Two micronization methods, jet milling and spray drying, were assessed for CPL409116, with spray drying chosen for its ability to produce an amorphous form of the compound. Moreover, parameters such as the mixing energy, drug load, and force control agent significantly influenced the fine particle fraction (FPF), a critical parameter for pulmonary drug delivery. This study provides insights into optimizing the formulation parameters to enhance the delivery efficiency of CPL409116 to the lungs, offering potential for improved therapeutic outcomes in cytokine-dependent pulmonary diseases.
Collapse
Affiliation(s)
- Aleksandra Rzewińska
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
| | - Jakub Szlęk
- Chair and Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Damian Dąbrowski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
| | - Ewelina Juszczyk
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Katarzyna Mróz
- Finished Dosage Forms Department, Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Heikki Räikkönen
- Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00014 Helsinki, Finland
| | - Mia Siven
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00014 Helsinki, Finland
- Helsinki Institute of Sustainability Science HELSUS, University of Helsinki, 00014 Helsinki, Finland
| | - Maciej Wieczorek
- Research and Development Center, Celon Pharma S.A., Marymoncka 15, 05-052 Kazuń Nowy, Poland
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
2
|
Lin JT, Chiang YC, Li PH, Chiang PY. Structural and Release Properties of Combined Curcumin Controlled-Release Tablets Formulated with Chitosan/Sodium Alginate/HPMC. Foods 2024; 13:2022. [PMID: 38998528 PMCID: PMC11241607 DOI: 10.3390/foods13132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Controlled-release tablets offer several benefits, such as controlled release, odor masking, ease of use, stability, extended shelf life, and reduced production costs. This study developed combined curcumin controlled-release tablets (CCCTs) to increase the bioavailability of curcumin with hydroxypropyl methylcellulose (HPMC), chitosan, and sodium alginate. The hardness of the CCCTs was 5.63-1.98 kgf, friability was 0.00-1.22%, and disintegration time was 0.00-401.25 min. Differential scanning calorimetry and Fourier-transform infrared spectroscopy indicated a high compatibility between the excipients and curcumin. CCCTs with chitosan formed a gel structure, impeded disintegration, and reduced the release rate to 72.5% in simulated gastric fluid. In simulated intestinal fluid, CCCT with the HPMC-sodium alginate group formed a polyelectrolyte membrane hydrogel to prolong release from 6 to 12 h. This study developed various CCCT formulations that can be delivered through the gastric or intestinal tracts, using chitosan and HPMC-sodium alginate as excipients, respectively. CCCT can be used as a reference strategy for controlled-release curcumin delivery in the functional and healthcare supplement development.
Collapse
Affiliation(s)
- Jing-Ting Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Qin F, Wan C, Zhang Y. Computer-aided optimization of carbidopa/levodopa orally disintegrating tablets. Drug Dev Ind Pharm 2024; 50:331-340. [PMID: 38456721 DOI: 10.1080/03639045.2024.2327475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE This study aimed to optimize the formulation of carbidopa/levodopa orally disintegrating tablets (ODTs) in order to improve their disintegration performance, and facilitate easier medication intake for Parkinson's patients. METHOD The response surface methodology (RSM) was used to optimize the formulation, with the content of cross-linked polyvinylpyrrolidone (PVPP), microcrystalline cellulose (MCC), and mannitol (MNT) as independent variables, and disintegration time as the response parameter. Python was utilized to model Carr Indices and mixing time to determine the suitable mixing time. Direct compression (DC) was used for the preparation of ODTs. RESULT The optimization process resulted in the following values for the independent variables: 7.04% PVPP, 22.02% MCC, and 16.21% MNT. By optimizing the mixing time using Python, it was reduced to 14.19 min. The ODTs prepared using the optimized formulation and a mixing time of 14.19 min exhibited disintegration times of 16.74 s in vitro and 17.63 s in vivo. The content uniformity of levodopa and carbidopa was found to be 100.83% and 99.48%, respectively. CONCLUSION The ODTs optimized using RSM and Python demonstrated excellent disintegration performance, leading to a decrease in the time the drug exists in solid form in the oral cavity. This improvement in disintegration time reduced the difficulty of swallowing for patients and enhanced medication compliance, while still ensuring that ODTs prepared by DC had sufficient mechanical strength to meet storage and transportation requirements.
Collapse
Affiliation(s)
- Fucheng Qin
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Congcong Wan
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Lin Z, Cabello B, Davé RN. Impact of dry coating lactose as a brittle excipient on multi-component blend processability. Int J Pharm 2024; 653:123921. [PMID: 38382769 DOI: 10.1016/j.ijpharm.2024.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Previous work demonstrated the benefits of dry coating fine-grade microcrystalline cellulose (MCC) for enabling direct compression (DC), a favored tablet manufacturing method, due to enhanced flowability while retaining good compactability of placebo and binary blends of cohesive APIs. Here, fine brittle excipients, Pharmatose 450 (P450, 19 μm) and Pharmatose 350 (P350, 29 μm), having both poor flowability and compactability are dry coated with silica A200 or R972P to assess DC capability of multi-component cohesive API (coarse acetaminophen, 22 μm, and ibuprofen50, 47 μm) blends. Dry coated P450 and P350 not only attained excellent flowability and high bulk density but also heightened tensile strength hence processability, which contrasts with reported reduction for dry coated ductile MCC. Although hydrophobic R972P imparted better flowability, hydrophilic A200 better enhanced tensile strength, hence selected for dry coating P450 in multi-component blends that included fine Avicel PH-105. For coarse acetaminophen blends, substantial bulk density and flowability increase without any detrimental effect on tensile strength were observed; a lesser amount of dry coated P450 was better. Increased flowability, bulk density, and tensile strength, hence enhanced processability by reaching DC capability, were observed for 60 wt% ibuprofen50, using only 18 wt% of the dry coated P450, i.e. 0.18 wt% silica in the blend.
Collapse
Affiliation(s)
- Zhixing Lin
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Bian Cabello
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Rajesh N Davé
- New Jersey Center for Engineered Particulates, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
5
|
Martínez-Acevedo L, Job Galindo-Pérez M, Vidal-Romero G, Del Real A, de la Luz Zambrano-Zaragoza M, Quintanar-Guerrero D. Effect of magnesium stearate solid lipid nanoparticles as a lubricant on the properties of tablets by direct compression. Eur J Pharm Biopharm 2023; 193:262-273. [PMID: 37944711 DOI: 10.1016/j.ejpb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/15/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
This study discusses the lubricant properties of magnesium stearate solid lipid nanoparticles (MgSt-SLN) and their effect on the tabletability, mechanical properties, disintegration, and acetaminophen-model dissolution time of microcrystalline cellulose (MCC) tablets prepared by direct compression. The behavior of MgSt-SLN was compared to reference material (RM) to identify advantages and drawbacks. The nanoprecipitation/ion exchange method was employed to prepare the MgSt-SLN. Particle size, zeta potential, specific surface area, morphology, and true density were measured to characterize the nanosystem. The MgSt-SLN particle sizes obtained were 240 ± 5 nm with a specific surface area of 12.2 m2/g. The MCC tablets with MgSt-SLN presented a reduction greater than 20 % in their ejection force, good tabletability, higher tensile strength, lower disintegration delay, and marked differences in acetaminophen dissolution when compared to the RM. The reduced particle size of the magnesium stearate seems to offer a promising technological advantage as an efficient lubricant process that does not affect the properties of tablets.
Collapse
Affiliation(s)
- Lizbeth Martínez-Acevedo
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico; Laboratorio de Desarrollo Galénico, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Cuidad de México C.P. 04960, Mexico
| | - Moises Job Galindo-Pérez
- Departamento de Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Campus II, Universidad Nacional Autónoma de México, Ciudad de México C.P. 09230, Mexico; Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México C.P. 05348, Mexico
| | - Gustavo Vidal-Romero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico; Departamento de Tecnología Farmacéutica, Facultad de Estudios Superiores Zaragoza, Campus II, Universidad Nacional Autónoma de México, Ciudad de México C.P. 09230, Mexico
| | - Alicia Del Real
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Querétaro C.P. 76230, México
| | - María de la Luz Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54714, México
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico.
| |
Collapse
|
6
|
Jones-Salkey O, Chu Z, Ingram A, Windows-Yule CRK. Reviewing the Impact of Powder Cohesion on Continuous Direct Compression (CDC) Performance. Pharmaceutics 2023; 15:1587. [PMID: 37376036 DOI: 10.3390/pharmaceutics15061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The pharmaceutical industry is undergoing a paradigm shift towards continuous processing from batch, where continuous direct compression (CDC) is considered to offer the most straightforward implementation amongst powder processes due to the relatively low number of unit operations or handling steps. Due to the nature of continuous processing, the bulk properties of the formulation will require sufficient flowability and tabletability in order to be processed and transported effectively to and from each unit operation. Powder cohesion presents one of the greatest obstacles to the CDC process as it inhibits powder flow. As a result, there have been many studies investigating potential manners in which to overcome the effects of cohesion with, to date, little consideration of how these controls may affect downstream unit operations. The aim of this literature review is to explore and consolidate this literature, considering the impact of powder cohesion and cohesion control measures on the three-unit operations of the CDC process (feeding, mixing, and tabletting). This review will also cover the consequences of implementing such control measures whilst highlighting subject matter which could be of value for future research to better understand how to manage cohesive powders for CDC manufacture.
Collapse
Affiliation(s)
- Owen Jones-Salkey
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Zoe Chu
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
7
|
Emami S, Ebrahimi M. Bioactive wound powders as wound healing dressings and drug delivery systems. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Kreiser MJ, Wabel C, Wagner KG. Direct Tableting on a Continuous Manufacturing Line-Impact of Mixing Parameters, Material Densities, and Drug Load on Subsequent Process Parameters and Tablet Quality. AAPS PharmSciTech 2023; 24:70. [PMID: 36805870 DOI: 10.1208/s12249-023-02525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
The continuous manufacturing (CM) of solid oral dosage forms has received increased attention in recent years and has become a leading technology in the pharmaceutical industry. A model has been developed based on process data from two design of experiments (DoEs), where the impact of the mixer process parameters, throughput (THR), hold up mass (HUM), impeller speed (IMP), and the input raw material bulk density (BDi), on the continuous process and the resulting drug product has been investigated. These statistical models revealed equations, describing process parameter interactions for optimization purposes. For the exit valve opening width (EV) at the bottom of the continuous mixer (CMT), the combination of high throughput (30 kg/h) and low impeller speed (300 rpm) resulted in optimal process conditions. Apparent bulk density of the blend (BD) within the process, fill depth (FD), and tensile strength (TS) were mainly impacted by input bulk density (BDi) of the tableting mixture, emphasizing the role of material attributes on the continuous manufacturing process. The apparent bulk density itself was, other than from the input bulk density, equally dependent from THR and IMP in opposite deflections. However, process parameters (THR and IMP) revealed a minor impact on the apparent BD compared to the input bulk density. FD was impacted mainly by THR ahead of IMP and the TS by IMP and THR to a similar extend, in opposite deflections. A simplified linear model to estimate the input bulk density revealed satisfactory prediction quality when included in the derived statistical model equations.
Collapse
Affiliation(s)
- Marius J Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany.,Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108, Freiburg, Germany
| | - Karl G Wagner
- Department of Pharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121, Bonn, Germany.
| |
Collapse
|
9
|
Blanco D, Pentikäinen H, Antikainen O, Juppo A. Behaviour of magnesium stearate at particle–particle interfaces: Microdynamic flowability to monitor distribution in powders. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Zimmermann M, Michel F, Bartsch J, Thommes M. A novel approach of external lubrication in a rotary tablet press using electrostatics. Drug Dev Ind Pharm 2022; 48:737-744. [PMID: 36620915 DOI: 10.1080/03639045.2023.2165662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE In powder compaction on rotary tablet presses, the addition of a lubricant is normally mandatory. However, the typical internal lubrication method tends toward overlubrication, resulting in an alteration of the critical quality attributes of the product. In this study, the feasibility of an external lubrication system only using electrostatics for the application was investigated. METHODS Three well-established lubricants were analyzed regarding their ability to accumulate and retain charge. In subsequent tableting experiments, the impact of different lubrication methods on critical quality attributes and process parameters was investigated. RESULTS Due to material characteristics, the charge on magnesium stearate particles was most stable over time. The application of this lubricant on the punches via external lubrication with electrostatic forces resulted in a significant reduction of the ejection forces. Furthermore, the tensile strength of the tablets produced in these trials was significantly higher compared to tablets that were produced with internal lubrication. CONCLUSION The external lubrication method with an electrostatically charged lubricant is a promising method for reducing both the necessary amount of lubricant and the impact of the lubricant on the product.
Collapse
Affiliation(s)
- Maren Zimmermann
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Felix Michel
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Jens Bartsch
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Markus Thommes
- Laboratory of Solids Process Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
11
|
Gunawardana CA, Kong A, Blackwood DO, Travis Powell C, Krzyzaniak JF, Thomas MC, Calvin Sun C. Magnesium stearate surface coverage on tablets and drug crystals: Insights from SEM-EDS elemental mapping. Int J Pharm 2022; 630:122422. [PMID: 36410668 DOI: 10.1016/j.ijpharm.2022.122422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Scanning electron microscopy-based energy dispersive X-ray spectroscopy (SEM-EDS) is proposed as a versatile tool for quantifying surface area coverage (SAC) by magnesium stearate (MgSt) on pharmaceutical tablets and particles. Our approach involved fast elemental mapping and subsequent SAC quantitation by image analysis. The study was conducted using a multi-component system, but the particle-level mapping was limited to active pharmaceutical ingredient (API) crystals. For both tablets and API particles, the calculated SAC against MgSt loading afforded a positive linear correlation over the range of MgSt levels examined in this work. On the tablet surface, MgSt was found to be preferentially concentrated at or in the close vicinity of grain boundaries, supporting the idea of compression-driven migration and relocation of MgSt within the tablet. On the particle surface, only discrete aggregates of MgSt were observed, as opposed to the widely accepted phenomenon of the formation of a thin lubricant film around host particles. The selection of proper SEM-EDS operating conditions and the challenges confronted in particle surface mapping are discussed in detail.
Collapse
Affiliation(s)
- Chamara A Gunawardana
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Angela Kong
- Pfizer Worldwide Research and Development, Groton, CT 06340, United States
| | - Daniel O Blackwood
- Pfizer Worldwide Research and Development, Groton, CT 06340, United States
| | - C Travis Powell
- Pfizer Worldwide Research and Development, Groton, CT 06340, United States
| | | | - Myles C Thomas
- Pfizer Worldwide Research and Development, Groton, CT 06340, United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
12
|
Kuck J, Breitkreutz J. Impact of Lubrication on Key Properties of Orodispersible Minitablets in Comparison to Conventionally Sized Orodispersible Tablets. Eur J Pharm Biopharm 2022; 180:71-80. [PMID: 36067955 DOI: 10.1016/j.ejpb.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Orodispersible minitablets (ODMTs) offer several benefits like easy swallowability, dose flexibility and simple manufacturing through direct compression. In this study, the effect of lubrication on five different co-processed excipients (Ludiflash®, Parteck® ODT, Prosolv® ODT G2, galenIQ™ 721 and SuperTab® 50 ODT) has been studied for orodispersible tablets (ODTs) with 11.28 and 2 mm in diameter. External lubrication was compared with internal lubrication using 0.5 %, 1 % or 2 % magnesium stearate or 1 %, 2 % or 4 % sodium stearyl fumarate. Mechanical strength and disintegration time of the ODTs were evaluated beside the lubrication efficiency. Especially mannitol-based co-processed excipients show strong dependency of the lubricant concentration whereas both ODTs and ODMTs and minitablets with isomalt showed comparable properties for both lubricants and their concentrations. Sodium stearyl fumarate is considered as the preferred lubricant for ODMTs as it showed a higher lubrication efficiency and less negative impact on disintegration time. External lubrication exhibited higher tensile strength for plastic materials, but increased the disintegration time, particularly for ODMTs due to the high specific surface where the lubricant is applied. In general, this study has demonstrated that minitablets require higher lubricant concentrations than conventionally sized tablets.
Collapse
Affiliation(s)
- Jennifer Kuck
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
13
|
Clinical Evaluation of a Novel Tablet Formulation of Traditional Thai Polyherbal Medicine Named Nawametho in Comparison with Its Decoction in the Treatment of Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2530266. [PMID: 35966727 PMCID: PMC9365582 DOI: 10.1155/2022/2530266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
In the traditional medical system in Thailand, medicinal plants and polyherbal medicines have been prescribed as lipid-lowering agents, including Nawametho decoction. This polyherbal formulation is described in the Worayokasan scripture. It consists of nine medicinal plants (Aegle marmelos (L.), Carthamus tinctorius L., Hibiscus sabdariffa Linn., Phyllanthus emblica L., Piper longum L., Piper nigrum L., Terminalia bellirica (Gaertn.) Roxb., Terminalia chebula Retz., and Zingiber officinale Roscoe). Apart from its utilization in Thai traditional medicine, there is a lack of evidence supporting its use. This research work thereby aims to formulate and evaluate the tablet containing Nawametho decoction. The feasibility of Nawametho decoction and NawaTab for patients with borderline hyperlipidemia was additionally examined using a prospective, open-label, randomized, parallel-group design. The dry granulation technique was employed to formulate the polyherbal tablets. The tablets were developed using the spray-dried Nawametho decoction as the active ingredient in addition to other excipients. The chosen formulation, the FB (NawaTab), consisted of 385 milligrams of the extract, 12% w/w of a diluent (lactose), 8% w/w of a lubricant (magnesium stearate), 5% w/w of a disintegrant (microcrystalline cellulose), and 5% w/w of an anti-adherent (talcum). Their hardness, friability, and disintegration time were 4.4 ± 0.32 kg, 0.05 ± 0.02%, and 4.60 ± 0.05 min, respectively. Accelerated stability study results revealed that NawaTab was stable for six months at 40°C/75% RH and 25°C/60% RH. Even though taking NawaTabs (500 mg twice daily) for eight consecutive weeks was unable to improve the lipid profile of the patients, the administration of Nawametho decoction (30 mL twice daily) was associated with a significant decrease in serum triglycerides of the patients. The results show that the dry granulation technique is suitable for the formulation of NawaTab based on the tablet evaluation. Furthermore, the triglyceride-lowering effect of Nawametho decoction was reported for the first time.
Collapse
|
14
|
Flow of lubricated granular material on an inclined plane. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Yu D, Nie H. Evaluation of Alternative Metallic Stearates as Lubricants in Pharmaceutical Tablet Formulation. AAPS PharmSciTech 2022; 23:200. [PMID: 35882653 DOI: 10.1208/s12249-022-02338-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Magnesium stearate (MgSt) is perhaps one of the most frequently used lubricants in tablet formulation due to its superior lubrication capacity, yet it could also negatively affect the critical quality attributes of pharmaceutical products. Therefore, we provided a rather comprehensive evaluation of another two FDA-approved metallic stearates, sodium stearate (NaSt) and calcium stearate (CaSt), as alternative tablet lubricants. The primary objective of the present study is to comparatively evaluate the physicochemical properties and lubrication efficiency of the three metallic stearates. In addition, it was also aimed to specify the most influential factor for ranking and differentiating the lubricity of various lubricants using principal component analysis. Unit ejection force could be used herein as a simple and the most powerful parameter to evaluate the lubrication performance instead of the friction coefficient. The results suggested that CaSt, MgSt, and NaSt had similar impacts on the mechanical strength of tablets. However, CaSt exhibited insufficient lubrication effects as the formulations containing CaSt showed low pressure transmission ratios, high unit ejection forces, and high friction coefficients. In contrast, both MgSt and NaSt displayed satisfactory lubrication efficiency without negatively impacting tabletability. Notably, the lubrication performance of the formulation containing 0.5 wt% NaSt was almost identical to that of the formulation with 1 wt% MgSt, indicating that NaSt had a remarkable lubrication capability probably due to its high specific surface area. In summary, the findings of this investigation should provide practical information and feasible methodologies to readily determine the lubricity and to sensibly select alternative lubricants for pharmaceutical tablet formulations.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.,Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA. .,Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
16
|
Fayed MH, Alalaiwe A, Almalki ZS, Helal DA. Design Space Approach for the Optimization of Green Fluidized Bed Granulation Process in the Granulation of a Poorly Water-Soluble Fenofibrate Using Design of Experiment. Pharmaceutics 2022; 14:pharmaceutics14071471. [PMID: 35890366 PMCID: PMC9316798 DOI: 10.3390/pharmaceutics14071471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
In the pharmaceutical industry, the systematic optimization of process variables using a quality-by-design (QbD) approach is highly precise, economic and ensures product quality. The current research presents the implementation of a design-of-experiment (DoE) driven QbD approach for the optimization of key process variables of the green fluidized bed granulation (GFBG) process. A 32 full-factorial design was performed to explore the effect of water amount (X1; 1–6% w/w) and spray rate (X2; 2–8 g/min) as key process variables on critical quality attributes (CQAs) of granules and tablets. Regression analysis have demonstrated that changing the levels of X1 and X2 significantly affect (p ≤ 0.05) the CQAs of granules and tablets. Particularly, X1 was found to have the pronounced effect on the CQAs. The GFBG process was optimized, and a design space (DS) was built using numerical optimization. It was found that X1 and X2 at high (5.69% w/w) and low (2 g/min) levels, respectively, demonstrated the optimum operating conditions. By optimizing X1 and X2, GFBG could enhance the disintegration and dissolution of tablets containing a poorly water-soluble drug. The prediction error values of dependent responses were less than 5% that confirm validity, robustness and accuracy of the generated DS in optimization of GFBG.
Collapse
Affiliation(s)
- Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
- Correspondence:
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
17
|
Hadinoto K, Tran TT, Chua A, Cheow WS. Comparing environmental impacts of direct compaction versus wet granulation tableting methods for drugs with poor flowability by life cycle assessment. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Carruthers H, Clark D, Clarke FC, Faulds K, Graham D. Evaluation of laser direct infrared imaging for rapid analysis of pharmaceutical tablets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1862-1871. [PMID: 35502820 DOI: 10.1039/d2ay00471b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vibrational spectroscopic chemical imaging is an important tool in the pharmaceutical industry for characterising the spatial distribution of components within final drug products. The applicability of these techniques is currently limited by the long data acquisition times required to obtain high-definition chemical images of a sample surface. Advancements in quantum cascade laser (QCL) technology have provided an exciting new opportunity for infrared (IR) imaging. Instead of collecting a full IR spectrum at each point, it is possible to focus on distinct spectral bands to reduce imaging data collection time. This study explores a laser direct infrared (LDIR) chemical imaging approach that couples QCL technology with rapid scanning optics to provide high-definition chemical images at an order of magnitude faster than traditional imaging techniques. The capabilities of LDIR chemical imaging were evaluated for pharmaceutical formulations and compared with other established spectroscopic chemical imaging techniques including Raman, near-infrared (NIR) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectroscopy with regards to data acquisition time and image quality. The study showed that LDIR imaging provided high-definition component distribution maps comparable to Raman and SEM-EDX at orders of magnitude faster in terms of time. The ability to obtain high-definition chemical images of the whole tablet surface in relatively fast time frames indicates LDIR imaging could be a promising tool in the pharmaceutical industry to rapidly characterise the size and distribution of components within tablets and could help enhance drug product manufacturing understanding.
Collapse
Affiliation(s)
- Hannah Carruthers
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
- Pfizer Ltd., Ramsgate Road, Sandwich, CT19 9NJ, UK
| | - Don Clark
- Pfizer Ltd., Ramsgate Road, Sandwich, CT19 9NJ, UK
| | | | - Karen Faulds
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- University of Strathclyde, Department of Pure and Applied Chemistry, George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
19
|
Mursalat M, Skura A, Schoenitz M, Dreizin EL. Potential one-pot synthesis of spherical magnesium silicate powder by mechanical milling. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Moravkar KK, Shah DS, Magar AG, Bhairav BA, Korde SD, Ranch KM, Chalikwar SS. Assessment of pharmaceutical powders flowability and comparative evaluation of lubricants on development of gastro retentive tablets: An application of powder flow tester. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Comparative Study of Powder Carriers Physical and Structural Properties. Pharmaceutics 2022; 14:pharmaceutics14040818. [PMID: 35456652 PMCID: PMC9032780 DOI: 10.3390/pharmaceutics14040818] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
High specific surface area (SSA), porous structure, and suitable technological characteristics (flow, compressibility) predetermine powder carriers to be used in pharmaceutical technology, especially in the formulation of liquisolid systems (LSS) and solid self-emulsifying delivery systems (s-SEDDS). Besides widely used microcrystalline cellulose, other promising materials include magnesium aluminometasilicates, mesoporous silicates, and silica aerogels. Clay minerals with laminar or fibrous internal structures also provide suitable properties for liquid drug incorporation. This work aimed at a comparison of 14 carriers’ main properties. Cellulose derivatives, silica, silicates, and clay minerals were evaluated for flow properties, shear cell experiments, SSA, hygroscopicity, pH, particle size, and SEM. The most promising materials were magnesium aluminometasilicates, specifically Neusilin® US2, due to its proper flow, large SSA, etc. Innovative materials such as FujiSil® or Syloid® XDP 3050 were for their properties evaluated as suitable. The obtained data can help choose a suitable carrier for formulations where the liquid phase is incorporated into the solid dosage form. All measurements were conducted by the same methodology and under the same conditions, allowing a seamless comparison of property evaluation between carriers, for which available company or scientific sources do not qualify due to different measurements, conditions, instrumentation, etc.
Collapse
|
22
|
Spahn JE, Zhang F, Smyth HDC. Mixing of dry powders for inhalation: A review. Int J Pharm 2022; 619:121736. [PMID: 35405281 DOI: 10.1016/j.ijpharm.2022.121736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The process of solids mixing is applied across a considerable range of industries. Pharmaceutical science is one of those industries that utilizes solids mixing extensively. Specifically, solids mixing as a key factor in the preparation of dry powder inhalers using the ordered mixing process will be discussed here. This review opens with a history of dry powder mixing theory, continues to ordered mixing in the preparation for dry powder inhalers, details key interparticulate interactions, explains formulation components for dry powder blends, and finally discusses different types of mixers used in the production of dry powder blends for inhalation. Lastly, the authors offer some suggestions for future work on this topic.
Collapse
Affiliation(s)
- Jamie E Spahn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| |
Collapse
|
23
|
Kreiser MJ, Wabel C, Wagner KG. Impact of Vertical Blender Unit Parameters on Subsequent Process Parameters and Tablet Properties in a Continuous Direct Compression Line. Pharmaceutics 2022; 14:pharmaceutics14020278. [PMID: 35214014 PMCID: PMC8879867 DOI: 10.3390/pharmaceutics14020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
The continuous manufacturing of solid oral-dosage forms represents an emerging technology among the pharmaceutical industry, where several process steps are combined in one production line. As all mixture components, including the lubricant (magnesium stearate), are passing simultaneously through one blender, an impact on the subsequent process steps and critical product properties, such as content uniformity and tablet tensile strength, is to be expected. A design of experiment (DoE) was performed to investigate the impact of the blender variables hold-up mass (HUM), impeller speed (IMP) and throughput (THR) on the mixing step and the subsequent continuous manufacturing process steps. Significant impacts on the mixing parameters (exit valve opening width (EV), exit valve opening width standard deviation (EV SD), torque of lower impeller (TL), torque of lower impeller SD (TL SD), HUM SD and blend potency SD), material attributes of the blend (conditioned bulk density (CBD), flow rate index (FRI) and particle size (d10 values)), tableting parameters (fill depth (FD), bottom main compression height (BCH) and ejection force (EF)) and tablet properties (tablet thickness (TT), tablet weight (TW) and tensile strength (TS)) could be found. Furthermore, relations between these process parameters were evaluated to define which process states were caused by which input variables. For example, the mixing parameters were mainly impacted by impeller speed, and material attributes, FD and TS were mainly influenced by variations in total blade passes (TBP). The current work presents a rational methodology to minimize process variability based on the main blender variables hold-up mass, impeller speed and throughput. Moreover, the results facilitated a knowledge-based optimization of the process parameters for optimum product properties.
Collapse
Affiliation(s)
- Marius J. Kreiser
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
| | - Christoph Wabel
- Product and Process Development, Pfizer Manufacturing Deutschland GmbH, 79108 Freiburg, Germany; (M.J.K.); (C.W.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany
- Correspondence:
| |
Collapse
|
24
|
Kumar V, Sethi B, Yanez E, Leung DH, Ghanwatkar YY, Cheong J, Tso J, Narang AS, Nagapudi K, Mahato RI. Effect of magnesium stearate surface coating method on the aerosol performance and permeability of micronized fluticasone propionate. Int J Pharm 2022; 615:121470. [PMID: 35041913 DOI: 10.1016/j.ijpharm.2022.121470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 01/19/2023]
Abstract
In this study, we evaluated the aerodynamic performance, dissolution, and permeation behavior of micronized fluticasone propionate (FP) and magnesium stearate (MgSt) binary mixtures. Micronized FP was dry mixed with 2% w/w MgSt using a tumble mixer and a resonant acoustic mixer (RAM) with and without heating. The mixing efficacy was determined by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) analysis. Additional techniques were used to determine powder properties such as the dynamic vapor sorption (DVS), particle size distribution (PSD) by laser diffraction light scattering, and particle surface properties by scanning electron microscope (SEM). The aerodynamic performance was studied by the next-generation impactor (NGI) using drug-loaded capsules in a PlastiApi® device. Physiochemical properties such as porosity, particle size distribution, and surface area of the formulations were studied with adsorption and desorption curves fitted to several well-known models including Brunauer-Emmett-Teller (BET), Barret Joyner Halenda (BJH), and the density functional theory (DFT). The dissolution behavior of the formulations collected on the transwell inserts incorporated into stages 3, 5, and 7 of the NGI with a membrane providing an air interface was evaluated. Drug permeability of formulations was assessed by directly depositing particles on Calu-3 cells at the air-liquid interface (ALI). Drug concentration was determined by LC-MS/MS. A better MgSt mixing on micronized FP particles was achieved by mixing with a RAM with and without heating than with a tumble mixer. A significant concomitant increase in the % of emitted dose and powder aerosol performance was observed after MgSt mixing. Formulation 4 (RAM mixing at room temperature) showed the highest rate of permeability and correlation with dissolution profile. The results show that the surface enrichment of hydrophobic MgSt improved aerosolization properties and the dissolution and permeability rate of micronized FP by reducing powder agglomerations. A simple low-shear acoustic dry powder mixing method was found to be efficient and substantially improved the powder aerosolization properties and enhanced dissolution and permeability rate.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evelyn Yanez
- Small Molecule Pharmaceutical Sciences Department, Genentech, Inc, South San Francisco, CA, USA
| | - Dennis H Leung
- Small Molecule Pharmaceutical Sciences Department, Genentech, Inc, South San Francisco, CA, USA
| | | | - Jonathan Cheong
- Drug Metabolism and Pharmacokinetics Department, Genentech, Inc, South San Francisco, CA, USA
| | - Jerry Tso
- Small Molecule Pharmaceutical Sciences Department, Genentech, Inc, South San Francisco, CA, USA
| | - Ajit S Narang
- Small Molecule Pharmaceutical Sciences Department, Genentech, Inc, South San Francisco, CA, USA; Department of Pharmaceutical Sciences, ORIC Pharmaceuticals, Inc, South San Francisco, CA, USA.
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences Department, Genentech, Inc, South San Francisco, CA, USA.
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
25
|
Mojtabavi S, Khoshayand MR, Torshabi M, Gilani K, Fazeli MR, Faramarzi MA, Samadi N. Formulation, characterization, and bioactivity assessments of a laccase-based mouthwash. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Beaunac E, Leturia M, Robisson AC, Ablitzer C, Saleh K. Comparison of two powder conditioning methods to improve UO2 powder flowability for press die filling. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Ajayi OM, Amin S. Flow and performance effects of talc alternatives on powder cosmetic formulations. Int J Cosmet Sci 2021; 43:588-600. [PMID: 34411305 DOI: 10.1111/ics.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the performance effects of fumed silica and cornstarch as alternatives to talc in cosmetic powder formulations. METHODS FT4 Powder Rheometer from Freeman Technology was used to test the flowability and compressibility of compact powder formulation samples containing talc, fumed silica and cornstarch at varying concentrations. The colour of the samples is evaluated by physical observation. RESULTS The results show that the concentration of these additives influences the performance of cosmetic powder formulations. Improved compressibility is assessed as an increase in the compressibility percentage, while improved flowability is assessed by reduction in the flow energy of each sample. Talc shows improved compressibility at a minimum of 10% but would require more than 20% to impart improved flow performance. Fumed Silica shows improved compressibility from as low as 5% and this performance increases as the concentration is increased up to 20%. For the flow effects, fumed silica shows a reduction in the flow energy from as little as 5% and this effect is more drastic as the concentration is increased up to 20%. Cornstarch, however, shows a reverse effect for both compressibility and flowability with increasing flow energy and decreasing compressibility with increasing cornstarch concentration. It shows improved compressibility up to a maximum of 10% and improved flow only at concentrations lower than 5%. For a mixture of cornstarch and fumed silica at a total of 5%, both compressibility and flowability are increased as the concentration of cornstarch is reduced and that of fumed silica increased. CONCLUSION Fumed silica and cornstarch are suitable as alternatives to talc in cosmetic powder formulations. Of the two, Fumed silica showed better compressibility and flow effects. However, a mix of both powders had suitable effects on the compressibility, flow and colour of the formulation.
Collapse
Affiliation(s)
- Omolade M Ajayi
- Chemical Engineering Department, Manhattan College, Bronx, NY, USA
| | - Samiul Amin
- Chemical Engineering Department, Manhattan College, Bronx, NY, USA
| |
Collapse
|
28
|
Hazlett R, Schmidmeier C, O'Mahony J. Approaches for improving the flowability of high-protein dairy powders post spray drying – A review. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Wang LG, Omar C, Litster JD, Li J, Mitchell N, Bellinghausen S, Barrasso D, Salman A, Slade D. Tableting model assessment of porosity and tensile strength using a continuous wet granulation route. Int J Pharm 2021; 607:120934. [PMID: 34310957 DOI: 10.1016/j.ijpharm.2021.120934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
This paper presents a comprehensive assessment of the most widely used tablet compaction models in a continuous wet granulation tableting process. The porosity models, tensile strength models and lubricant models are reviewed from the literature and classified based on their formulations i.e. empirical or theoretical and applications, i.e. batch or continuous. The majority of these models are empirical and were initially developed for batch tabletting process. To ascertain their effectiveness and serviceability in the continuous tableting process, a continuous powder processing line of Diamond Pilot Plant (DiPP) installed at The University of Sheffield was used to provide the quantitative data for tablet model assessment. Magnesium stearate (MgSt) is used as a lubricant to investigate its influence on the tensile strength. Whilst satisfactory predictions from the tablet models can be produced, a compromise between the model fidelity and model simplicity needs to be made for a suitable model selection. The Sonnergaard model outperforms amongst the porosity models whilst the Reynolds model produces the best goodness of fitting for two parameters fitting porosity models. An improved tensile strength model is proposed to consider the influence of powder size and porosity in the continuous tableting process.
Collapse
Affiliation(s)
- Li Ge Wang
- Department of Chemical and Biological Engineering, University of Sheffield, UK; Siemens Process Systems Engineering, Hammersmith, London, UK
| | - Chalak Omar
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - James D Litster
- Department of Chemical and Biological Engineering, University of Sheffield, UK.
| | - Jianfeng Li
- Siemens Process Systems Engineering, Parsippany, NJ Office, USA
| | - Niall Mitchell
- Siemens Process Systems Engineering, Hammersmith, London, UK
| | | | - Dana Barrasso
- Siemens Process Systems Engineering, Parsippany, NJ Office, USA
| | - Agba Salman
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - David Slade
- Siemens Process Systems Engineering, Hammersmith, London, UK
| |
Collapse
|
30
|
Kaushal A, Arora S, Sharma N, Singh S. Development of Bilayer Tablet Containing Saxagliptin Immediate Release and Metformin Sustained Release Using Quality by Design Approach. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885516666210315100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Adequate glycemic control in diabetes patients requires oral combination therapy.
Saxagliptin is a dipeptidyl peptidase-4 inhibitor having fewer adverse effects, and metformin
is the first-line medicine for diabetes treatment. The aim of this research work is to develop a bilayer
tablet of saxagliptin and metformin in fixed-dose combination (FDC) using quality by design
(QbD) to acquire the immediate release of saxagliptin and sustained release of metformin from bilayer
tablet to ultimately achieve superior patient compliance.
Methods:
The development of the bilayer tablet was done in four stages using QbD. In the first
step, quality target product profile (QTPP) of bilayer tablet was defined, and critical quality attributes
(CQAs) were identified by risk estimation matrix and taguchi design; an immediate release
saxagliptin layer was optimized in the second step, optimization of sustained-release metformin layer
was carried out in the third step, and in the final step, bilayer tablet was prepared and characterized.
The effect of independent parameters, i.e., magnesium stearate level (X1), kneading time (X2)
and lubrication time (X3) on Carr’s Index (Y1), percentage relative standard deviation of content
uniformity (Y2) and drug release at 30 minutes (Y3), were estimated for optimization of immediate
release saxagliptin layer using Box-Behnken design (BBD). The effect of independent parameters,
i.e., hydroxypropyl methylcellulose level (X4), compritol level (X5) and magnesium stearate level
(X6) on Carr’s Index (Y4), drug release at 2 h (Y5), drug release at 5 h (Y6) and drug release at 10 h
(Y7) were estimated for optimization of sustained-release metformin layer using BBD.
Results:
The optimized composition of immediate release saxagliptin layer estimated using numerical
optimization by Design expert was 0.88% (X1), 15 minutes (X2) and 3.85 minutes (X3) with predicted
variables, i.e., 10.59% (Y1), 3.16% (Y2) and 85% (Y3). The optimized composition of sustained-
release saxagliptin layer predicted through numerical optimization was 30% (X4), 3.36%
(X5) and 0.9% (X6) having 10.89% (Y4), 43.44% (Y5), 60% (Y6) and 85.14% (Y7). In-vitro dissolution
study of bilayer tablet showed immediate release of Saxagliptin (approximately 85% in 30 minutes)
and sustained release of metformin illustrating 43.21±1.21, 60.86±2.96 and 86.26±1.38%
drug release at 2, 5 and 10 h, respectively. The release exponent for the Korsmeyer-Peppas model
for Saxagliptin and metformin was 0.237 (<0.45) and 1.536 (n>0.85), indicating Fickian and super
case II transport drug release behavior, respectively.
Conclusion:
By QbD approach, bilayer tablet containing saxagliptin and metformin was successfully
developed, and influence of various formulation parameters on CQAs of drug products was understood
with fewer experiments. This leads to the conclusion that cost can be reduced using QbD
in the development of FDC for improving patient compliance.
Collapse
Affiliation(s)
- Amit Kaushal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
31
|
Magalhães APDSPA, Toma HK, do Carmo FA, Mansur CRE. Development of purified cashew gum mucoadhesive buccal tablets containing nystatin for treatment of oral candidiasis. Drug Dev Ind Pharm 2021; 47:825-837. [PMID: 34033502 DOI: 10.1080/03639045.2021.1934868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The objective of this work was to prepare mucoadhesive buccal tablets containing nystatin and purified cashew gum for the treatment of oral candidiasis. SIGNIFICANCE Mucoadhesive buccal tablets containing the drug nystatin are an alternative to oral suspensions, which cause low therapeutic adherence to the treatment of oral candidiasis. Purified cashew gum has been studied as a diluent and mucoadhesive agent in tablets. METHODS Two batches of mucoadhesive tablets were produced, MT1 and MT 2, containing purified cashew gum, nystatin (500,000 IU), flavoring agent and with or without the presence of lubricant agent. The average weight, mechanical properties, dose uniformity, drug release profile, mucoadhesive properties and antimicrobial activity against Candida albicans were evaluated. RESULTS Tablets presented average weight of 329.1 ± 3.1 mg (MT1) and 334.6 ± 1.5 mg (MT2), hardness of 9.8 ± 0.8 KgF (MT1) and 8.3 ± 0.4 KgF (MT2), friability of 0.2% (MT1 and MT2), and dose uniformity of 102.20 ± 1.17% (MT1) and 99.06 ± 7.40% (MT2). MT1 and MT2 were able to swell, erode, release the drug and remain adhered to the pig's cheek up to 3 h for batch MT1 and 4 h for batch MT2, and the amount of nystatin released since the beginning of the test in both batches was sufficient to inhibit the growth of the fungus. CONCLUSIONS Therefore, the proposed formulation proved to be very promising and met all the studied criteria, showing to be ideal for the treatment of oral candidiasis.
Collapse
Affiliation(s)
| | - Helena Keiko Toma
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Program of Materials Engineering and Metallurgy, Technology Center, Alberto Luiz Institute of Coimbra, Post-Graduation and Engineering Research - COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations. Pharmaceutics 2021; 13:pharmaceutics13060831. [PMID: 34204941 PMCID: PMC8227311 DOI: 10.3390/pharmaceutics13060831] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022] Open
Abstract
Owing to considerable differences observed in anatomy and physiology between paediatric subsets, it has been well established that children respond to drugs differently compared to adults. Furthermore, from a formulation perspective, there is a distinct challenge to develop a dosage form that is capable of safely, accurately, and reliably delivering the dose across the whole paediatric population. Orally disintegrating mini-tablets (ODMT) have widely been considered as an age-appropriate formulation option that possess the ability for adequate dose flexibility, avoids swallowing difficulties, and exhibits superior stability due to its solid state. Within this study, two strengths (0.5 mg and 2 mg) of carvedilol ODMT formulations were developed using an excipient composition and load that is appropriate for paediatric use. The formulations demonstrated adequate mechanical strength (>20 N) and fast disintegration times (<30 s). Dissolution profiles observed were robust and comparable to the marketed conventional tablet formulation across various parts of the gastrointestinal (GI) tract in both the fed and fasted state, signifying appropriate efficacy, quality, and performance. As such, the formulations developed in this study show potential to address the need of an 'age-appropriate' formulation of carvedilol, as highlighted by the European Medicines Agency (EMA) Inventory of the Needs for Paediatric Medicine.
Collapse
|
33
|
Pinto JT, Zellnitz S, Guidi T, Schiaretti F, Schroettner H, Paudel A. Spray-Congealing and Wet-Sieving as Alternative Processes for Engineering of Inhalation Carrier Particles: Comparison of Surface Properties, Blending and In Vitro Performance. Pharm Res 2021; 38:1107-1123. [PMID: 34114162 PMCID: PMC8217042 DOI: 10.1007/s11095-021-03061-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Traditionally, α-lactose monohydrate is the carrier of choice in dry powder inhaler (DPI) formulations. Nonetheless, other sugars, such as D-mannitol, have emerged as potential alternatives. Herein, we explored different particle engineering processes to produce D-mannitol carriers for inhaled delivery. METHODS Wet-sieving and spray-congealing were employed as innovative techniques to evaluate the impact of engineering on the particle properties of D-mannitol. To that end, the resulting powders were characterized concerning their solid-state, micromeritics and flowability. Afterwards, the engineered carrier particles were blended with inhalable size beclomethasone dipropionate to form low dose (1 wt%) DPI formulations. The in vitro aerosolization performance was evaluated using the NEXThaler®, a reservoir multi-dose device. RESULTS Wet-sieving generated D-mannitol particles with a narrow particle size distribution and spray-congealing free-flowing spherical particles. The more uniform pumice particles with deep voids and clefts of wet-sieved D-mannitol (Pearl300_WS) were beneficial to drug aerosolization, only when used in combination with a ternary agent (10 wt% of 'Preblend'). When compared to the starting material, the spray-congealed D-mannitol has shown to be promising in terms of the relative increase of the fine particle fraction of the drug (around 100%), when used without the addition of ternary agents. CONCLUSIONS The wet-sieving process and the related aerosolization performance are strongly dependent on the topography and structure of the starting material. Spray-congealing, has shown to be a potential process for generating smooth spherical particles of D-mannitol that enhance the in vitro aerosolization performance in binary blends of the carrier with a low drug dose.
Collapse
Affiliation(s)
- Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Sarah Zellnitz
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Tomaso Guidi
- Chiesi Farmaceutici S.p.A., R&D Department, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Francesca Schiaretti
- Chiesi Farmaceutici S.p.A., R&D Department, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Hartmuth Schroettner
- Austrian Centre for Electron Microscopy and Nanoanalysis, TU Graz, Steyrergasse 17/III, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria.
| |
Collapse
|
34
|
Ensuring Homogeneity in Powder Mixtures for Pharmaceuticals and Dietary Supplements: Evaluation of a 3-Axis Mixing Equipment. Pharmaceutics 2021; 13:pharmaceutics13040563. [PMID: 33923432 PMCID: PMC8073799 DOI: 10.3390/pharmaceutics13040563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
The mixing process plays a pivotal role in the quality of pharmaceuticals and food/dietary supplements, as it can impact the homogeneity of the substances in their dosage form and affect characteristics such as dissolution and stability. Thus, the choice of the right mixing device is paramount for compounding pharmacies. In this paper, we evaluated the mixing efficacy of a new 3-axis mixer device and determined its optimal working conditions. Three different formulations were compounded with the device and a total of 540 individual assays were performed by HPLC or ICP-MS to validate its use, in addition to a direct comparison among it and two alternative mixing methods. The 3-axis mixer device was able to provide homogeneous mixtures and finished capsules with adequate content uniformity with a broad range of conditions of use (mixing times from 2 to 8 min, and speed of rotation from 10 to 100 rpm). In addition, the device was superior to classical mixing methods (such as the use of manually shaken plastic bags) and at least equivalent to well-established ones (Y-shaped mixer). Finally, we proposed a cleaning procedure that was also adequate to prevent cross-contamination among products compounded with the same device.
Collapse
|
35
|
A Razak NF, Abd Karim RH, Jamal JA, Said MM. Rapid Discrimination of Halal and Non-halal Pharmaceutical Excipients by Fourier Transform Infrared Spectroscopy and Chemometrics. J Pharm Bioallied Sci 2021; 12:S752-S757. [PMID: 33828373 PMCID: PMC8021044 DOI: 10.4103/jpbs.jpbs_364_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 11/06/2022] Open
Abstract
Introduction: The appendage of “halal” to a product is not just a guarantee that the product is permitted for Muslims, but it has also become favorable lifestyle choice globally. However, the expansion of halal pharmaceutical market was hindered by lack of global halal standards for pharmaceutical ingredients and product integrity analytical methodology. Objective: This work aimed to explore the possibility of using Fourier-transform infrared (FTIR) spectroscopy and chemometrics to develop multivariate models to authenticate the “halal-ity” of pharmaceutical excipients with controversial halal status (e.g., magnesium stearate). Materials and Methods: The FTIR spectral fingerprints of the substance were used to build principal component analysis (PCA) models. The effects of different spectral pretreatment processes such as auto-scaling, baseline correction, standard normal variate (SNV), first, and second derivatives were evaluated. The optimization of the model performance was established to ensure the sensitivity, specificity, and accuracy of the predicted models. Results: Significant peaks corresponding to the properties of the compound were identified. For both bovine and plant-derived magnesium stearate, the peaks associated can be seen within the regions 2900cm-1 (C–H), 2800cm-1 (CH3), 1700cm-1 (C=O), and 1000–1300cm-1 (C–O). There was not much difference observed in the FTIR raw spectra of the samples from both sources. The quality and accuracy of the classification models by PCA and soft independent modeling classification analogy (SIMCA) have shown to improve using spectra optimized by first derivative followed by SNV smoothing. Conclusion: This rapid and cost-effective technique has the potential to be expanded as an authentication strategy for halal pharmaceuticals.
Collapse
Affiliation(s)
- Nurul F A Razak
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Jamia A Jamal
- Drug and Herbal Research Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mazlina M Said
- Drug and Herbal Research Center, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Blanco D, Antikainen O, Räikkönen H, Yliruusi J, Juppo AM. Effect of colloidal silicon dioxide and moisture on powder flow properties: Predicting in-process performance using image-based analysis. Int J Pharm 2021; 597:120344. [PMID: 33545294 DOI: 10.1016/j.ijpharm.2021.120344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022]
Abstract
The effect of colloidal silicon dioxide (CSD) on powder flow properties of poor-flowing excipient lactose 200 M was investigated. Binary mixtures of different ratios of CSD as glidant were examined using a modern image-based flow measuring technique. Special attention was placed to subtle variations in powder flow from small changes in glidant concentration (0.025% w/w). Understanding the modes of interaction of particles and their effects on flowability using the method predicted the die filling performance during tablet manufacture. In addition, the importance of moisture content on powder flow properties was empirically underlined. A more efficient range of CSD was detected from 0.10 to 0.50% w/w in most of the tested conditions, which revealed a significant improvement in powder flow performance compared to higher amounts typically handled in the pharmaceutical industry.
Collapse
Affiliation(s)
- David Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland.
| | - Osmo Antikainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Heikki Räikkönen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Jouko Yliruusi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| | - Anne Mari Juppo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, (Viikinkaari 5E), FIN-00014, Finland
| |
Collapse
|
37
|
Srikakulapu NG, Cheela SS, Bari VK, Mukherjee AK, Bhatnagar AK. Effect of polymer flow aids on LD iron ore flowability. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Profound tabletability deterioration of microcrystalline cellulose by magnesium stearate. Int J Pharm 2020; 590:119927. [PMID: 33010396 DOI: 10.1016/j.ijpharm.2020.119927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022]
Abstract
Magnesium stearate (MgSt) is a common lubricant used in tablet formulations to facilitate tablet manufacturing by reducing ejection force. The use of MgSt in tablet formulation is known to potentially deteriorate tabletability of plastic powders and slow down drug dissolution. Here, we report surprisingly profound deterioration in tabletability of microcrystalline cellulose by hand-mixing. We also show that the hand mixing process is highly variable. To ensure the reproducibility of tabletability assessment of powders, hand-mixing should be used with caution. For research that employs hand mixing, mixing procedure should be carefully controlled and reported.
Collapse
|
39
|
Investigation into powder tribo-charging of pharmaceuticals. Part I: Process-induced charge via twin-screw feeding. Int J Pharm 2020; 591:120014. [PMID: 33122114 DOI: 10.1016/j.ijpharm.2020.120014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022]
Abstract
Powder feeding is a crucial unit operation in continuous manufacturing (CM) of pharmaceutical products. Twin-screw feeders are typically employed to ensure the accurate mass flow of pharmaceutical materials throughout the production process. Here, contact and separation of particles can give rise to electrostatic charges, affecting feeder performance and final product quality. The knowledge of the material charging tendency would therefore be beneficial for both formulation and process design. At the early stage of product development, only a limited amount of material is available and the propensity of the powders to charge needs to be assessed on lab test equipment, which not necessarily represent the material state during processing. In this study, the tribo-charging behaviour of a set of common pharmaceutical materials (i.e., microcrystalline cellulose, D-mannitol, paracetamol and magnesium stearate) was experimentally evaluated. To this end, powder materials were let to flow over the stainless-steel pipes of the GranuCharge™ instrument. The resulting charge was compared to the one acquired during twin-screw feeding. In both cases, paracetamol exhibited the highest charging tendency followed by D-mannitol and microcrystalline cellulose and last by magnesium stearate. A good correlation was found for charge values obtained for both methods, despite the different tribo-charging mechanisms involved in the two set-ups. However, these differences in experimental set-ups led to diverse magnitudes and, in one case, polarity of charge. Additionally, an extensive material characterization was performed on the selected powders and results were statistically analyzed to identify critical material attributes (CMAs) affecting powder tribo-charging. A strong correlation was obtained between the measured charge and inter-particle friction. This indicated the latter as one of the most influencing material characteristic impacting the powder tribo-charging phenomenon of the selected materials.
Collapse
|
40
|
Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M. Compaction and tableting properties of composite particles of microcrystalline cellulose and crospovidone engineered for direct compression. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00055-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Excipients with improved functionality have continued to be developed by the particle engineering strategy of co-processing. The aim of this study was to evaluate the compaction and tableting properties of composite particles of microcrystalline cellulose (MCC) and crospovidone (CPV) engineered by co-processing.
Results
Heckel analysis of the compaction behavior revealed a decrease in plasticity of co-processed excipient (CPE) when compared to MCC due to an increase in Heckel yield pressure from 144 to 172 MPa. The compressibility-tabletability-compactibility (CTC) profile revealed a decrease in individual parameters for CPE when compared to MCC. CPE was found to be more sensitive to the lubricant effect of sodium stearyl fumarate (SSF) when compared to MCC and less sensitive to magnesium stearate (MST) when compared to MCC. A higher dilution potential was obtained for MCC (60%) compared to 44% for CPE when metronidazole was used as model drug. Tableting properties revealed that metronidazole tablets generated with CPE by direct compression disintegrated within 15 min and gave a rapid drug release when compared to MCC as a direct compression (DC) excipient.
Conclusion
The compaction and tableting properties of CPE were characterized and yielded tablets with better disintegration and drug release profile when compared to MCC. This study, therefore, confirms the suitability of co-processing as a proven strategy in engineering the performance of excipients.
Collapse
|
41
|
Wilkins CA, du Plessis LH, Viljoen JM. Characterization of solid lipid dispersions prepared by hot fusion containing a double-fixed dose combination of artemether and lumefantrine. Drug Dev Ind Pharm 2020; 46:1289-1297. [PMID: 32594776 DOI: 10.1080/03639045.2020.1788065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The World Health Organization has called for the development of novel drug delivery systems to combat malaria - the fourth most prevalent cause of death globally. The plausibility of utilizing hot fusion to prepare solid lipid dispersions containing the prescribed first-line, double-fixed dose combination (artemether and lumefantrine), proposed for inclusion in directly compressed lipid matrix tablets, was investigated. Significance: Currently, no anti-malarial product is commercially available that employs lipid technology in a solid oral dosage form that contains this double-fixed dose combination. Through developing lipid matrix tablets, the stability, solubility and subsequent bioavailability of these drugs could be significantly enhanced in the presence of lipids or oils. METHODS Hot fusion encompasses encompassed melt mixing of a selected lipid base and the dispersion of the active ingredient(s) therein below their glass transition temperatures. Solid-state characterization, particle size analysis and pharmacotechnical properties were evaluated, with particular focus given to powder flowability. RESULTS Stearic acid in a 0.5:1 lipid:drug ratio demonstrated the best powder flow properties of the investigated solid lipid dispersion for inclusion into prospective lipid-matrix tablets duly based on an increase in overall particle size, a more spherical particle shape and improved powder flow properties compared to the individual active ingredients. CONCLUSION Good powder flow is critical for powders destined for inclusion into tablets - especially when employing direct compression as method of manufacture - in this case, lipid matrix tablets, which have demonstrated huge promise as a prospective dosage form for future use in malarial treatment.
Collapse
Affiliation(s)
- Christi A Wilkins
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Lissinda H du Plessis
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| | - Joe M Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom, South Africa
| |
Collapse
|
42
|
Modification of a scale-up model to improve prediction of the effect of lubrication on tablet tensile strength. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Trisopon K, Kittipongpatana N, Kittipongpatana OS. A Spray-Dried, Co-Processed Rice Starch as a Multifunctional Excipient for Direct Compression. Pharmaceutics 2020; 12:pharmaceutics12060518. [PMID: 32517241 PMCID: PMC7355677 DOI: 10.3390/pharmaceutics12060518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022] Open
Abstract
A new co-processed, rice starch-based excipient (CS) was developed via a spray-drying technique. Native rice starch (RS) was suspended in aqueous solutions of 10%–15% cross-linked carboxymethyl rice starch (CCMS) and 0.5%–6.75% silicon dioxide (in the form of sodium silicate), before spray drying. The resulting CSs were obtained as spherical agglomerates, with improved flowability. The compressibility study revealed an improved plastic deformation profile of RS, leading to better compaction and tensile strength. The presence of CCMS also ensured a rapid disintegration of the compressed tablets. CS-CCMS:SiO2 (10:2.7), prepared with 10% CCMS, 2.7% silicon dioxide, and 40% solid content, was found to exhibit the best characteristics. Compared to the two commercial DC excipients, Prosolv® and Tablettose®, the flow property of CS-CCMS:SiO2 (10:2.7) was not significantly different, while the tensile strength was 23%: lower than that of Prosolv® but 4 times higher than that of Tablettose® at 196 MPa compression force. The disintegration time of CS-CCMS:SiO2 (10:2.7) tablet (28 s) was practically identical to that of Tablettose® tablet (26 s) and far superior to that of Prosolv® tablet (>30 min). These results show that CSs could potentially be employed as a multifunctional excipient for the manufacturing of commercial tablets by DC.
Collapse
Affiliation(s)
- Karnkamol Trisopon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
| | - Nisit Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ornanong Suwannapakul Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (K.T.); (N.K.)
- Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-87-301-0978
| |
Collapse
|
44
|
Zarmpi P, Flanagan T, Meehan E, Mann J, Fotaki N. Impact of Magnesium Stearate Presence and Variability on Drug Apparent Solubility Based on Drug Physicochemical Properties. AAPS JOURNAL 2020; 22:75. [PMID: 32440810 PMCID: PMC7242257 DOI: 10.1208/s12248-020-00449-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/20/2020] [Indexed: 11/30/2022]
Abstract
Excipients are major components of oral solid dosage forms, and changes in their critical material attributes (excipient variability) and/or amount (excipient variation) in pharmaceutical formulations may present a challenge for product performance. Understanding the biopharmaceutical factors affecting excipient performance is recommended for the successful implementation of excipient variability on Quality by Design (QbD) approaches. The current study investigated the impact of magnesium stearate (MgSt) variability on the apparent solubility of drugs with a wide range of physicochemical properties (drug ionization, drug lipophilicity, drug aqueous solubility). Compendial and biorelevant media were used to assess the role of gastrointestinal (GI) conditions on the excipient effects on drug apparent solubility. The lipophilic nature of MgSt decreased the apparent solubility of most compounds. The reduction in drug apparent solubility was more pronounced for highly soluble and/or highly ionized drugs and in presence of more highly crystalline or smaller particle size MgSt. The use of multivariate data analysis revealed the critical physicochemical and biopharmaceutical factors and the complex nature of excipient variability on the reduction in drug apparent solubility. The construction of a roadmap combining drug, excipient and medium characteristics allowed the identification of the cases where the presence of excipient or excipient variability may present risks for oral drug performance.
Collapse
Affiliation(s)
- P Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - T Flanagan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK.,UCB Pharma, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium
| | - E Meehan
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - J Mann
- Pharmaceutical Technology & Development, AstraZeneca, Macclesfield, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
45
|
Gulsun T, Akdag Y, Izat N, Cetin M, Oner L, Sahin S. Development and characterization of metformin hydrochloride- and glyburide-containing orally disintegrating tablets. Pharm Dev Technol 2020; 25:999-1009. [PMID: 32431206 DOI: 10.1080/10837450.2020.1772290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetes is characterized by chronic hyperglycemia. Although metformin hydrochloride (MHCl)- and glyburide (GLB)-containing conventional tablets are available in the market and used to treat diabetes, orally disintegrating tablets (ODTs) containing the combination of these drugs are not commercially available. Therefore, the aim of this study was to prepare ODTs containing MHCl and GLB by direct-compression (DC-ODTs) and freeze-drying (FD-ODTs) methods. Physical properties of the powder mixture of DC-ODT formulation were determined (Angle of repose: 37.18 ± 1.27°; compressibility index: 20.31 ± 1.06%; Hausner ratio: 1.25 ± 0.03). Its moisture content was 0.3 ± 0.09%. The hardness values and the disintegration times for DC-ODTs and FD-ODTs were 221.60 ± 40.82 and 66.54 ± 2.68 N, and 80 and 30 s, respectively. Friability values were 0.24% for DC-ODTs and 0.38% for FD-ODTs. In uniformity-of-mass for single-dose-preparations test, the average weight was 684.38 ± 1.97 mg for DC-ODTs and 342.93 ± 2.4 mg for FD-ODTs, with less than 5% deviation for all 20 tablets. Water-absorption ratio for DC-ODTs was 1.30 ± 0.05. More than 90% of MHCl and GLB were dissolved within 5 min in both DC-ODTs and FD-ODTs. Although Caco-2 permeability of MHCl was influenced by the ODTs, GLB permeability was not. These results indicated that MHCl- and GLB-containing ODTs may be used as promising formulations for the treatment of diabetes.
Collapse
Affiliation(s)
- Tugba Gulsun
- Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Yagmur Akdag
- Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Nihan Izat
- Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Meltem Cetin
- Department of Pharmaceutical Technology, Ataturk University, Erzurum, Turkey
| | - Levent Oner
- Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
46
|
Ann S. Ng J. Evaluation of Microcrystalline Cellulose Derived from Saccharum officinarum L. (Sugarcane) Leaves as a Disintegrant in Tablet Formulations. Adv Pharm Bull 2020; 10:418-422. [PMID: 32665900 PMCID: PMC7335985 DOI: 10.34172/apb.2020.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
Purpose: Complete recycling of the crop residues of sugarcane in the Philippines remains to be achieved. This study purposed to derive microcrystalline cellulose (MCC) from sugarcane leaves and test its disintegrating properties in tablet formulation. Methods:Saccharum officinarum L. (sugarcane) leaves were used to prepare MCC powder. According to the conventional method, the preparation of cellulose powder requires heating the raw material with acid and alkali followed by washing, bleaching, and sieving. Hydrolysis of the bleached product was carried out using hydrochloric acid to obtain MCC powder, and the physicochemical properties of the produced MCC powder were studied including its organoleptic properties, pH value, %loss on drying, %water soluble substances and Fouriertransform infrared (FTIR) spectrum. Results: The resulting powder was evaluated for its disintegrating property in the preparation of blank tablets, which were compared to tablets prepared using commercially available MCC. MCC powder derived from sugarcane leaves had properties at par with commercially available MCC and was in conformance with National Formulary (NF) specifications. Conclusion: Disintegrating properties were also significantly better than the commercially available MCC.
Collapse
Affiliation(s)
- Julie Ann S. Ng
- College of Pharmacy, Riverside College, Inc., BS Aquino Dr, Bacolod, 6100 Negros Occidental, the Philippines
| |
Collapse
|
47
|
Monitoring lubricant addition in pharmaceutical tablet manufacturing through passive vibration measurements in a V-blender. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Cabiscol R, Shi H, Wünsch I, Magnanimo V, Finke JH, Luding S, Kwade A. Effect of particle size on powder compaction and tablet strength using limestone. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Multistage release matrices for potential antiplatelet therapy: Assessing the impact of polymers and Sorb-Cel M® on floating, swelling, and release behavior. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Calton A, Ma H, Nordlund E, Poutanen K, Sozer N. Instant properties of ingredients used for point of consumption production of high-moisture food structures selectively fortified with protein and dietary fibre. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|