1
|
Panthi VK, Fairfull-Smith KE, Islam N. Ciprofloxacin-Loaded Inhalable Formulations against Lower Respiratory Tract Infections: Challenges, Recent Advances, and Future Perspectives. Pharmaceutics 2024; 16:648. [PMID: 38794310 PMCID: PMC11125790 DOI: 10.3390/pharmaceutics16050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Inhaled ciprofloxacin (CFX) has been investigated as a treatment for lower respiratory tract infections (LRTIs) associated with cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and bronchiectasis. The challenges in CFX effectiveness for LRTI treatment include poor aqueous solubility and therapy resistance. CFX dry powder for inhalation (DPI) formulations were well-tolerated, showing a remarkable decline in overall bacterial burden compared to a placebo in bronchiectasis patients. Recent research using an inhalable powder combining Pseudomonas phage PEV20 with CFX exhibited a substantial reduction in bacterial density in mouse lungs infected with clinical P. aeruginosa strains and reduced inflammation. Currently, studies suggest that elevated biosynthesis of fatty acids could serve as a potential biomarker for detecting CFX resistance in LRTIs. Furthermore, inhaled CFX has successfully addressed various challenges associated with traditional CFX, including the incapacity to eliminate the pathogen, the recurrence of colonization, and the development of resistance. However, further exploration is needed to address three key unresolved issues: identifying the right patient group, determining the optimal treatment duration, and accurately assessing the risk of antibiotic resistance, with additional multicenter randomized controlled trials suggested to tackle these challenges. Importantly, future investigations will focus on the effectiveness of CFX DPI in bronchiectasis and COPD, aiming to differentiate prognoses between these two conditions. This review underscores the importance of CFX inhalable formulations against LRTIs in preclinical and clinical sectors, their challenges, recent advancements, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| |
Collapse
|
2
|
Knap K, Reczyńska-Kolman K, Kwiecień K, Niewolik D, Płonka J, Ochońska D, Jeleń P, Mielczarek P, Kazek-Kęsik A, Jaszcz K, Brzychczy-Włoch M, Pamuła E. Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies. BIOMATERIALS ADVANCES 2023; 153:213540. [PMID: 37429048 DOI: 10.1016/j.bioadv.2023.213540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 μm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 μg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.
Collapse
Affiliation(s)
- Karolina Knap
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Reczyńska-Kolman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Daria Niewolik
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Dorota Ochońska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Piotr Jeleń
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Przemysław Mielczarek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Katarzyna Jaszcz
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
3
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
4
|
Chai Y, Zhang Y, Wang L, Du Y, Wang B, Li N, Chen M, Ou L. In situ one-pot construction of MOF/hydrogel composite beads with enhanced wastewater treatment performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Li W, Chen J, Zhao S, Huang T, Ying H, Trujillo C, Molinaro G, Zhou Z, Jiang T, Liu W, Li L, Bai Y, Quan P, Ding Y, Hirvonen J, Yin G, Santos HA, Fan J, Liu D. High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nat Commun 2022; 13:1262. [PMID: 35273148 PMCID: PMC8913677 DOI: 10.1038/s41467-022-28787-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Drug delivery systems with high content of drug can minimize excipients administration, reduce side effects, improve therapeutic efficacy and/or promote patient compliance. However, engineering such systems is extremely challenging, as their loading capacity is inherently limited by the compatibility between drug molecules and carrier materials. To mitigate the drug-carrier compatibility limitation towards therapeutics encapsulation, we developed a sequential solidification strategy. In this strategy, the precisely controlled diffusion of solvents from droplets ensures the fast in-droplet precipitation of drug molecules prior to the solidification of polymer materials. After polymer solidification, a mass of drug nanoparticles is embedded in the polymer matrix, forming a nano-in-micro structured microsphere. All the obtained microspheres exhibit long-term storage stability, controlled release of drug molecules, and most importantly, high mass fraction of therapeutics (21.8–63.1 wt%). Benefiting from their high drug loading degree, the nano-in-micro structured acetalated dextran microspheres deliver a high dose of methylprednisolone (400 μg) within the limited administration volume (10 μL) by one single intrathecal injection. The amount of acetalated dextran used was 1/433 of that of low drug-loaded microspheres. Moreover, the controlled release of methylprednisolone from high drug-loaded microspheres contributes to improved therapeutic efficacy and reduced side effects than low drug-loaded microspheres and free drug in spinal cord injury therapy. High drug loading improves therapeutic efficacy and reduces side effects in drug delivery. Here, the authors use controlled diffusion of solvents to precipitate drug nanoparticles in polymer particles while the polymer is solidifying and demonstrate the particles for drug delivery in a spinal cord injury model.
Collapse
Affiliation(s)
- Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shujie Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Huiyan Ying
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Claudia Trujillo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Linwei Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Quan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaping Ding
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland. .,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland. .,Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland. .,State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing, 210009, China. .,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, 00014, Finland.
| |
Collapse
|
6
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
7
|
The rough inhalable ciprofloxacin hydrochloride microparticles based on silk fibroin for non-cystic fibrosis bronchiectasis therapy with good biocompatibility. Int J Pharm 2021; 607:120974. [PMID: 34358540 DOI: 10.1016/j.ijpharm.2021.120974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 01/03/2023]
Abstract
Non-cystic fibrosis bronchiectasis (NCFB) is a chronic respiratory disease, and the thick and viscous mucus covering on respiratory epithelia can entrap the inhaled drugs, resulting in compromised therapeutic efficiency. In order to solve this problem, the inhalable ciprofloxacin hydrochloride microparticles (CMs) based on silk fibroin (SF) and mannitol (MAN) were designed and developed. SF was applied to increase the loading efficiency of ciprofloxacin hydrochloride by strong electrostatic interactions. MAN could facilitate the penetration of drugs through mucus, which ensured the drugs could reach their targets before clearance. Furthermore, the aerodynamic performance of the inhalable microparticles could be tuned by changing the surface roughness to achieve a high fine particle fraction value (45.04%). The antibacterial effects of CMs were also confirmed by measuring the minimum inhibitory concentration against four different bacteria strains. Moreover, a series of experiments both in vitro and in vivo showed that CMs would not affect the lung function and induce the secretion of inflammatory cytokines in lungs, demonstrating their excellent biocompatibility and biosafety. Therefore, CMs might be a promising pulmonary drug delivery system for the treatment of NCFB.
Collapse
|
8
|
Bahrainian S, Rouini M, Gilani K. Preparation and evaluation of vancomycin spray-dried powders for pulmonary delivery. Pharm Dev Technol 2021; 26:647-660. [PMID: 33896355 DOI: 10.1080/10837450.2021.1915331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the current study was to achieve a dry powder formulation of vancomycin by spray drying whilst evaluating the effect of pH and excipient type and percentage used in formulation on particle characteristics and aerosolization performance. A D-optimal design was applied to optimize the formulation comprising vancomycin and two main excipient groups; a carbohydrate bulking agent (lactose, mannitol or trehalose) and a second excipient (hydroxypropyl beta-cyclodextrin or L-leucine) at pH 4 and 7. The physicochemical properties of particles (size, morphology, crystallinity state, residual moisture content), stability, and aerosolization characteristics were investigated. Using the combination of two excipients increased the fine particle fraction of powder emitted from an Aerolizer® device at a flow rate of 60 L/min. Hydroxypropyl beta-cyclodextrin showed more potential than L-leucine in aerosolization capabilities. Stability studies over 3 months of storage in 40 °C and 75% relative humidity suggested a good physical stability of the optimized formulation containing 17.39% hydroxypropyl beta-cyclodextrin along with 29.61% trehalose relative to the amount of drug at pH 4. Use of two excipients including trehalose and hydroxypropyl beta-cyclodextrin with a total weight ratio of 47% relative to the amount of drug is appropriate for the preparation of vancomycin dry powder formulation for inhalation.
Collapse
Affiliation(s)
- Sara Bahrainian
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Aerosol Research Laboratory, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Almurshedi AS, Aljunaidel HA, Alquadeib B, Aldosari BN, Alfagih IM, Almarshidy SS, Eltahir EKD, Mohamoud AZ. Development of Inhalable Nanostructured Lipid Carriers for Ciprofloxacin for Noncystic Fibrosis Bronchiectasis Treatment. Int J Nanomedicine 2021; 16:2405-2417. [PMID: 33814907 PMCID: PMC8012696 DOI: 10.2147/ijn.s286896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Ciprofloxacin (CIP) has poor lung targeting after oral inhalation. This study developed optimized inhalable nanostructured lipid carriers (NLCs) for CIP to enhance deposition and accumulation in deeper parts of the lungs for treatment of noncystic fibrosis bronchiectasis (NCFB). METHODS NLC formulations based on stearic acid and oleic acid were successfully prepared by hot homogenization and in vitro-characterized. CIP-NLCs were formulated into nanocomposite micro particles (NCMPs) for administration in dry powder inhalation (DPI) formulations by spray-drying (SD) using different ratios of chitosan (CH) as a carrier. DPI formulations were evaluated for drug content and in vitro deposition, and their mass median aerodynamic diameter (MMAD), fine particle fraction (FPF), fine particle dose (FPD), and emitted dose (ED) were determined. RESULTS The CIP-NLCs were in the nanometric size range (102.3 ± 4.6 nm), had a low polydispersity index (0.267 ± 0.12), and efficient CIP encapsulation (98.75% ± 0.048%), in addition to a spherical and smooth shape with superior antibacterial activity. The in vitro drug release profile of CIP from CIP-NLCs showed 80% release in 10 h. SD of CIP-NLCs with different ratios of CH generated NCMPs with good yield (>65%). The NCMPs had a corrugated surface, but with increasing lipid:CH ratios, more spherical, smooth, and homogenous NCMPs were obtained. In addition, there was a significant change in the FPF with increasing lipid:CH ratios (P ˂ 0.05). NCMP-1 (lipid:CH = 1:0.5) had the highest FPD (45.0 µg) and FPF (49.2%), while NCMP-3 (lipid:CH = 1:1.5) had the lowest FPF (37.4%). All NCMP powders had an MMAD in the optimum size range of 3.9-5.1 μm. CONCLUSION Novel inhalable CIP NCMP powders are a potential new approach to improved target ability and delivery of CIP for NCFB treatment.
Collapse
Affiliation(s)
- Alanood S Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Bushra Alquadeib
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iman M Alfagih
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Salma S Almarshidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eram K D Eltahir
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amany Z Mohamoud
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Silva DM, Dos Reis LG, Tobin MJ, Vongsvivut J, Traini D, Sencadas V. Co-delivery of inhalable therapies: Controlling active ingredients spatial distribution and temporal release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111831. [PMID: 33641884 DOI: 10.1016/j.msec.2020.111831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
The management of respiratory diseases relies on the daily administration of multiple active pharmaceutical ingredients (APIs), leading to a lack of patient compliance and impaired quality of life. The frequency and dosage of the APIs result in increased side effects that further worsens the overall patient condition. Here, the manufacture of polymer-polymer core-shell microparticles for the sequential delivery of multiple APIs by inhalation delivery is reported. The microparticles, composed of biodegradable polymers silk fibroin (shell) and poly(L-lactic acid) (core), incorporating ciprofloxacin in the silk layer and ibuprofen (PLLA core) as the antibiotic and anti-inflammatory model APIs, respectively. The polymer-polymer core-shell structure and the spatial distribution of the APIs have been characterized using cutting-edge synchrotron macro ATR-FTIR technique, which was correlated with the respective API sequential release profiles. The APIs microparticles had a suitable size and aerosol properties for inhalation therapies (≤4.94 ± 0.21μm), with low cytotoxicity and immunogenicity in healthy lung epithelial cells. The APIs compartmentalization obtained by the microparticles not only could inhibit potential actives interactions but can provide modulation of the APIs release profiles via an inhalable single administration.
Collapse
Affiliation(s)
- Dina M Silva
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Larissa Gomes Dos Reis
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Vitor Sencadas
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
11
|
Mehta P, Bothiraja C, Kadam S, Pawar A. Effect of USP Induction Ports, Glass Sampling Apparatus, and Inhaler Device Resistance on Aerodynamic Patterns of Fluticasone Propionate-Loaded Engineered Mannitol Microparticles. AAPS PharmSciTech 2019; 20:197. [PMID: 31123855 DOI: 10.1208/s12249-019-1409-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022] Open
Abstract
The present investigation is to study the effect of two different induction ports (IP), i.e., USP IP and USP-modified IP equipped with andersen cascade impactor on in vitro aerodynamic performance along with the impact of USP-modified glass sampling apparatus on delivered dose uniformity of fluticasone propionate (FP) dry powder inhaler (DPI). FP DPI was fabricated by spray drying technique using engineered mannitol microparticles (EMP) with different force controlling agents, i.e., leucine and magnesium stearate. Additionally, commercially available two DPI inhaler devices namely Handihaler® and Breezhaler® were used to aerosolize the FP blends. Spherical smooth surface of EMP showed good powder flow properties and acceptable percentage content uniformity (> 95%). Amounts of FP deposited in cascade assembly using USP-modified IP with the Breezhaler® device was significantly higher (1.32-fold) as compared with the Handihaler® device. Moreover, USP-modified IP showed better deposition as compared with USP IP. Additionally, both inhaler devices showed a satisfactory delivered dose (> 105%) for FP using modified glass sampling apparatus at a flow rate of 60 L/min for 2 s. It was interesting to note that not only formulation properties but also IP geometry and device resistance have significant impact on DPI deposition pattern. This study is a first detailed account of aerodynamic performance of FP using USP-modified IP and USP-modified glass sampling apparatus. Thus, it can be of potential importance for both the academic and industry perspective.
Collapse
|