1
|
Czajkowski M, Słaba A, Milanowski B, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Melt-extruded formulations of fenofibrate with various grades of hydrogenated phospholipid exhibit promising in-vitro biopharmaceutical behavior. Eur J Pharm Sci 2024; 203:106936. [PMID: 39414171 DOI: 10.1016/j.ejps.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In the current study, it was demonstrated that three commercially available grades of hydrogenated phospholipids (HPL) differing in their content of phosphatidylcholine may be used as components for hot melt-extruded binary (HPL as sole excipient) or ternary (in combination with copovidone) solid dispersions of fenofibrate (FEN) at mass fractions between 0.5 and 20% (ternary) or 80% (binary). X-ray powder diffraction indicated complete conversion of crystalline fenofibrate into the amorphous state by hot melt extrusion for all ternary blends. In contrast, both the binary blends (HPL- and copovidone-based) contained minor remaining crystallites. Irrespectively, all solid dispersions induced during dissolution studies a supersaturated state of FEN, where the ternary ASDs showed enhanced and more complete release of FEN as compared to the binary blends and, even more pronounced, in comparison to the marketed micronized and nano-milled formulations. In terms of the cumulated amount permeated, there were marginal differences between the various formulations when combined dissolution/permeation was done using FeSSIF as donor medium; with FaSSIF as donor medium, the binary HPL-ASD containing the grade with the highest phosphatidylcholine fraction performed best in terms of permeation, even significantly better than the marketed nano-crystal formulation. Otherwise, no significant differences were seen between the various grades of HPL when FEN dissolution and permeation were analyzed for ternary solid dispersions. In conclusion, the in-vitro biopharmaceutical behaviour of hydrogenated phospholipid-containing blends manufactured by hot melt extrusion appears promising. They can be a viable formulation option for poorly water-soluble and lipophilic drug compounds like FEN.
Collapse
Affiliation(s)
- Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Aleksandra Słaba
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kepie 3, Zbaszyn 64-360, Poland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| |
Collapse
|
2
|
Cornelis H, Derveaux E, Singh A, Smet M, Adriaensens P, Van den Mooter G. A Miscibility Study of p(MMA- co-HEMA)-Based Polymer Blends by Thermal Analysis and Solid-State NMR Relaxometry. Mol Pharm 2024; 21:5529-5538. [PMID: 39364799 DOI: 10.1021/acs.molpharmaceut.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Ternary amorphous solid dispersions (ASDs) consist of a multicomponent carrier with the aim of improving physical stability or dissolution performance. A polymer blend as a carrier that combines a water-insoluble and a water-soluble polymer may delay the drug release rate, minimizing the risk of precipitation from the supersaturated state. Different microstructures of the ternary ASD may result in different drug release performances; hence, understanding the phase morphology of the polymer blend is crucial prior to drug incorporation. The objective of this study is to investigate the miscibility of the water-insoluble p(MMA-co-HEMA) and water-soluble polymers such as HPC, HPMC, HPMC-AS, and Soluplus. To prepare the polymer blends, p(MMA-co-HEMA) was spray dried in 80/20 and 90/10 (w/w) ratios with one of the water-soluble polymers. Thermal analysis (mDSC and DMA) and solid-state (ss)NMR relaxometry were applied to study the miscibility of these blends. No conclusions regarding miscibility could be drawn from the Tg measurements by thermal analysis. However, phase-separation could be demonstrated in all blends by ssNMR relaxometry. Moreover, by measuring both the T1ρH and T1H relaxation times, domain sizes between 5 and 50 nm could be estimated. This work shows the importance of using complementary analytical techniques to investigate polymer miscibility.
Collapse
Affiliation(s)
- Hannah Cornelis
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Elien Derveaux
- Analytical and Circular Chemistry (ACC), NMR group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Abhishek Singh
- Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Mario Smet
- Department of Chemistry, KU Leuven, Celestijnenlaan 200 F box 2404, 3001 Heverlee, Belgium
| | - Peter Adriaensens
- Analytical and Circular Chemistry (ACC), NMR group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Mucha I, Karolewicz B, Górniak A. Stability Studies of Amorphous Ibrutinib Prepared Using the Quench-Cooling Method and Its Dispersions with Soluplus ®. Polymers (Basel) 2024; 16:1961. [PMID: 39065278 PMCID: PMC11280989 DOI: 10.3390/polym16141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The successful development of an amorphous form of a drug demands the use of process conditions and materials that reduce their thermodynamic instability. For the first time, we have prepared amorphous ibrutinib using the quench-cooling method with very high process efficiency. In the presented study, different formulations of amorphous active pharmaceutical ingredient (API) with Soluplus (SOL) in various weight ratios 1:9, 3:7, and 1:1 were prepared. The obtained samples were stored under long-term (25 ± 2 °C/60%RH ± 5% RH, 12 months) and accelerated (40 ± 2 °C/75%RH ± 5% RH, 6 months) storage conditions. The physical stability of amorphous ibrutinib and ibrutinib-Soluplus formulations was analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction analysis (XRPD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The lack of significant interactions between the ingredients of the formulation was confirmed by FTIR analysis. An increase in moisture content with an increasing SOL weight ratio was observed under accelerated aging and long-term conditions. Additionally, a slight increase in the moisture content of the stored sample compared to that at the initial time was observed. The results revealed the physical strength of the polymeric systems in the presence of high humidity and temperature. The observed high thermal stability allows the use of various technological processes without the risk of thermal degradation.
Collapse
Affiliation(s)
- Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Agata Górniak
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
4
|
Enggi CK, Sulistiawati S, Himawan A, Raihan M, Iskandar IW, Saputra RR, Rahman L, Yulianty R, Manggau MA, Donelly RF, Aswad M, Permana AD. Application of Biomaterials in the Development of Hydrogel-Forming Microneedles Integrated with a Cyclodextrin Drug Reservoir for Improved Pharmacokinetic Profiles of Telmisartan. ACS Biomater Sci Eng 2024; 10:1554-1576. [PMID: 38407993 DOI: 10.1021/acsbiomaterials.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Telmisartan (TEL) is a promising antihypertensive agent among other angiotensin receptor blockers. However, its oral application is limited by its poor water solubility. This study presents the successful utilization of biomaterial-based hydrogel-forming microneedles integrated with a direct compressed tablet reservoir (HFMN-DCT) for the transdermal delivery of telmisartan in the treatment of hypertension. The combination of PVP, PVA, and tartaric acid was used in the HFMN formulation. A range of cross-linking temperatures and times were employed to optimize the characteristics of the HFMN. The HFMN exhibited excellent swelling capacity, mechanical strength, and insertion properties. Additionally, the poorly soluble characteristic of TEL was improved by the inclusion complex formulation with β-cyclodextrin (βCD). Phase solubility analysis showed an Ap-type diagram, indicating a higher-order complex between TEL and βCD, with respect to βCD. A ratio of TEL:βCD of 1:4 mM demonstrates the highest solubility enhancement of TEL. The inclusion complex formation was confirmed by FTIR, XRD, DSC, and molecular docking studies. A significantly higher release of TEL (up to 20-fold) from the inclusion complex was observed in the in vitro release study. Subsequently, a DCT reservoir was developed using various concentrations of sodium starch glycolate. Essentially, both the HFMN and DCT reservoir exhibit hemocompatibility and did not induce any skin irritation. The optimized combination of the HFMN-DCT reservoir showed an ex vivo permeation profile of 83.275 ± 2.405%. Notably, the proposed system showed superior pharmacokinetic profiles in the in vivo investigation using male Wistar rats. Overall, this study highlights the potential of HFMN-DCT reservoir systems as a versatile platform for transdermal drug delivery applications.
Collapse
Affiliation(s)
| | | | - Achmad Himawan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Raihan
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Rizki Rachmad Saputra
- Faculty of Mathematics and Natural Sciences, University of Palangka Raya, Palangkaraya, Central Kalimantan 73111, Indonesia
| | - Latifah Rahman
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Ryan F Donelly
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Muhammad Aswad
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
5
|
Alkathiri FA, Bukhari SI, Imam SS, Alshehri S, Mahdi WA. Formulation of silymarin binary and ternary solid dispersions: Characterization, simulation study and cell viability assessment against lung cancer cell line. Heliyon 2024; 10:e23221. [PMID: 38163135 PMCID: PMC10756988 DOI: 10.1016/j.heliyon.2023.e23221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Silymarin (SL) is a water-insoluble flavonoid used in the treatment of different diseases, but its therapeutic activity is limited due to its low solubility. So, in the present study, SL solid dispersions (SDs) were developed using different carriers like Kollidone VA64 (KL), Soluplus (SP), and Poloxamer 188 (PL) by solvent evaporation (SE), microwave irradiation (MI), and freeze-drying (FD) methods. The phase solubility and saturation solubility studies were assessed to estimate the stability constant as well as the carrier effect. The dissolution studies were performed for prepared SL-SDs (binary and ternary) to select the optimum SL-SDs. The selected SL-SDs (F5, F9) were further characterized for infrared spectroscopy (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM), and X-ray diffraction (XRD). Finally, the comparative cell viability assay (lung cancer cell line) was performed to evaluate the change in activity after the formulation of SDs. The phase solubility and solubility study results displayed marked enhancements in solubility. The dissolution study findings showed significant enhancement in drug release from ternary solid dispersions (F7-F9) > ternary physical mixture (PM3) > binary solid dispersions (F1-F6) > binary physical mixture (PM1, PM2) in comparison to free SL. A greater release was observed from ternary SDs due to the addition of PL in the formulation, which had a synergistic effect on increasing the solubility. IR and NMR spectra revealed no chemical interaction between SL, KL, and PL. DSC, XRD, and SEM all confirmed the transformation of crystalline SL into amorphous SL. The cell viability assay demonstrated significantly enhanced results from ternary solid dispersion (F9) compared to free SL. Based on the study results, it can be said that SL-SDs are an alternative way to deliver drugs orally that can improve solubility and have anti-cancer activity.
Collapse
Affiliation(s)
- Fai A. Alkathiri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Saha SK, Joshi A, Singh R, Dubey K. Review of industrially recognized polymers and manufacturing processes for amorphous solid dispersion based formulations. Pharm Dev Technol 2023; 28:678-696. [PMID: 37427544 DOI: 10.1080/10837450.2023.2233595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Evolving therapeutic landscape through combinatorial chemistry and high throughput screening have resulted in an increased number of poorly soluble drugs. Drug delivery strategies quickly adapted to convert these drugs into successful therapies. Amorphous solid dispersion (ASD) technology is widely employed as a drug delivery strategy by pharmaceutical industries to overcome the challenges associated with these poorly soluble drugs. The development of ASD formulation requires an understanding of polymers and manufacturing techniques. A review of US FDA-approved ASD-based products revealed that only a limited number of polymers and manufacturing technologies are employed by pharmaceutical industries. This review provides a comprehensive guide for the selection and overview of polymers and manufacturing technologies adopted by pharmaceutical industries for ASD formulation. The various employed polymers with their underlying mechanisms for solution-state and solid-state stability are discussed. ASD manufacturing techniques, primarily implemented by pharmaceutical industries for commercialization, are presented in Quality by Design (QbD) format. An overview of novel excipients and progress in manufacturing technologies are also discussed. This review provides insights to the researchers on the industrially accepted polymers and manufacturing technology for ASD formulation that has translated these challenging drugs into successful therapies.
Collapse
Affiliation(s)
- Sumit Kumar Saha
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | | | - Romi Singh
- Formulation Research and Development - Orals, Sun Pharmaceuticals Industries Limited, Gurugram, India
| | - Kiran Dubey
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Budiman A, Lailasari E, Nurani NV, Yunita EN, Anastasya G, Aulia RN, Lestari IN, Subra L, Aulifa DL. Ternary Solid Dispersions: A Review of the Preparation, Characterization, Mechanism of Drug Release, and Physical Stability. Pharmaceutics 2023; 15:2116. [PMID: 37631330 PMCID: PMC10459848 DOI: 10.3390/pharmaceutics15082116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The prevalence of active pharmaceutical ingredients (APIs) with low water solubility has experienced a significant increase in recent years. These APIs present challenges in formulation, particularly for oral dosage forms, despite their considerable therapeutic potential. Therefore, the improvement of solubility has become a major concern for pharmaceutical enterprises to increase the bioavailability of APIs. A promising formulation approach that can effectively improve the dissolution profile and the bioavailability of poorly water-soluble drugs is the utilization of amorphous systems. Numerous formulation methods have been developed to enhance poorly water-soluble drugs through amorphization systems, including co-amorphous formulations, amorphous solid dispersions (ASDs), and the use of mesoporous silica as a carrier. Furthermore, the successful enhancement of certain drugs with poor aqueous solubility through amorphization has led to their incorporation into various commercially available preparations, such as ASDs, where the crystalline structure of APIs is transformed into an amorphous state within a hydrophilic matrix. A novel approach, known as ternary solid dispersions (TSDs), has emerged to address the solubility and bioavailability challenges associated with amorphous drugs. Meanwhile, the introduction of a third component in the ASD and co-amorphous systems has demonstrated the potential to improve performance in terms of solubility, physical stability, and processability. This comprehensive review discusses the preparation and characterization of poorly water-soluble drugs in ternary solid dispersions and their mechanisms of drug release and physical stability.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Eli Lailasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ellen Nathania Yunita
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Gracia Anastasya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Rizqa Nurul Aulia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (E.L.); (N.V.N.); (E.N.Y.); (G.A.); (R.N.A.)
| | - Ira Novianty Lestari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| | - Laila Subra
- Faculty of Bioeconomic and Health Sciences, Geomatika University College, Kuala Lumpur 54200, Malaysia;
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (I.N.L.); (D.L.A.)
| |
Collapse
|
8
|
Choi MJ, Woo MR, Baek K, Park JH, Joung S, Choi YS, Choi HG, Jin SG. Enhanced Oral Bioavailability of Rivaroxaban-Loaded Microspheres by Optimizing the Polymer and Surfactant Based on Molecular Interaction Mechanisms. Mol Pharm 2023; 20:4153-4164. [PMID: 37433746 DOI: 10.1021/acs.molpharmaceut.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.
Collapse
Affiliation(s)
- Min-Jong Choi
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, South Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| |
Collapse
|
9
|
Gao D, Zhu D, Zhou X, Dong S, Chen Y. Inhomogeneous Phase Significantly Reduces Oral Bioavailability of Felodipine/PVPVA Amorphous Solid Dispersion. Mol Pharm 2023; 20:409-418. [PMID: 36529939 DOI: 10.1021/acs.molpharmaceut.2c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inhomogeneity is a key factor that significantly influences the dissolution behavior of amorphous solid dispersion (ASD). However, the underlying mechanisms of the effects of inhomogeneous phase on the dissolution characteristics as well as the bioavailability of ASDs are still unclear. In this study, two types of felodipine/PVPVA based ASDs with 30 wt % drug loading but different homogeneity were prepared: homogeneous "30 wt % ASD" prepared by spray drying, as well as inhomogeneous "30 wt % PM" prepared by physically mixing the sprayed dried 70 wt % ASD with PVPVA. We aimed to investigate (1) drug-polymer interaction mechanism and "apparent" interaction strength within the two ASDs and (2) dissolution mechanism as well as in vivo performance of the two ASDs. DSC thermogram revealing a single Tg in 30 wt % ASD confirmed its homogeneous phase. 1H NMR, FT-IR, and DVS studies collectively proved that strong hydrogen bonding interactions formed between felodipine and PVPVA in ASDs. Moreover, homogeneous "30 wt % ASD" has more numbers of interacting drug-polymer pairs, and thus exhibits stronger "apparent" interaction strength comparing with that of inhomogeneous "30 wt % PM". Unexpectedly,in the in vitro dissolution studies, inhomogeneous "30 wt % PM" showed much faster dissolution and also generated drug concentration ∼4.4 times higher than that of homogeneous "30 wt % ASD". However, drug precipitate recrystallized much slower in homogeneous "30 wt % ASD", presumably because much more polymer coprecipitated with amorphous drug in this system, which helps inhibiting drug crystallization. Surprisingly, homogeneous "30 wt % ASD" showed a significantly higher bioavailability in the in vivo pharmacokinetic studies, with the maximum plasma concentrations (Cmax) and the area under the curve (AUC) values of about 2.7 and 2.3 times higher than those of inhomogeneous "30 wt % PM". The above findings indicated that the amorphous state of drug precipitate contributes significantly to increase bioavailability of ASDs, while traditional in vitro dissolution studies, for instance, if we only compare the dissolved drug in solution or the capability of an ASD to generate supersaturation, are inadequate to predict in vivo performance of ASDs. In conclusion, the phase behavior of ASDs directly impact the formation of drug-polymer interaction, which controls not only drug supersaturation in solution but also drug crystallization in precipitate, and ultimately affect the in vivo performance of ASDs.
Collapse
Affiliation(s)
- Di Gao
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Dan Zhu
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Xue Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610000 Chengdu, China
| | - Shuai Dong
- School of Pharmacy, Minzu University of China, 100081 Beijing, China
| | - Yuejie Chen
- School of Pharmacy, Minzu University of China, 100081 Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, 100081 Beijing, China
| |
Collapse
|
10
|
Pöstges F, Kayser K, Stoyanov E, Wagner KG. Boost of solubility and supersaturation of celecoxib via synergistic interactions of methacrylic acid-ethyl acrylate copolymer (1:1) and hydroxypropyl cellulose in ternary amorphous solid dispersions. Int J Pharm X 2022; 4:100115. [PMID: 35368508 PMCID: PMC8968008 DOI: 10.1016/j.ijpx.2022.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
A current trend in the development of amorphous solid dispersions (ASDs) is the combination of two polymers for synergistic enhancement in supersaturation of poorly soluble drugs. We investigated the supersaturation potential of celecoxib (CXB) using combinations of methacrylic acid-ethyl acrylate copolymer (1:1) (EL 100–55) and hydroxypropyl cellulose (HPC) SSL. Initially, the supersaturation potential of single polymers and combinations in various ratios was assessed. While EL 100–55 and HPC SSL alone showed limited potential in solubility enhancement of CXB the combination of both polymers led to a boost of CXB solubility, whereby most promising results were obtained using a 50:50 polymer ratio. Binary and ternary CXB ASDs (10% drug load) were prepared via vacuum compressing molding (VCM) and hot melt extrusion (HME). ASDs were studied by exploring the miscibility and intermolecular interactions and tested for their dissolution performance. HPC SSL was identified to be a suitable precipitation inhibitor when added to a fast dissolving CXB: EL 100–55 ASD. Ternary ASDs showed even further dissolution improvement, when processed by HME. The combination of heat and shear stress led to a homogeneous and intimate mixture of EL 100–55 and HPC SSL, resulting in formation of synergistic interactions with pronounced impact on CXB supersaturation. Ternary ASDs showed superior supersaturation compared to binary ASDs. Shear forces of HME required for synergistic polymer-polymer interactions. Interactions of polymers responsible for maximum solubility enhancement of celecoxib.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Kevin Kayser
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
- Corresponding author.
| |
Collapse
|
11
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
12
|
Shi X, Zhou X, Shen S, Chen Q, Song S, Gu C, Wang C. Improved in vitro and in vivo properties of telmisartan in the co-amorphous system with hydrochlorothiazide: A potential drug-drug interaction mechanism prediction. Eur J Pharm Sci 2021; 161:105773. [PMID: 33640500 DOI: 10.1016/j.ejps.2021.105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study is to improve in vitro and in vivo properties of an antihypertensive poorly soluble drug Telmisartan (TEL) by co-amorphization with a pharmacologically relevant drug Hydrochlorothiazide (HCT), and to improve the stability of single amorphous drugs. Herein, TEL-HCT co-amorphous systems (CAMs) (1:1, 2:3, 1:2, 1:3) were prepared by solvent evaporation. The apparent solubility and the dissolution of TEL in the TEL-HCT CAM (1:3) were increased by 79 times and 10 times compared to crystalline TEL, which showed the optimal properties. Cmax and AUC0-48h value of TEL-HCT CAM (1:3) were 10-fold and 3-fold as the crystalline state. Moreover, TEL-HCT CAM (1:3) remained stable in 60 °C, 0 % RH (30 days), 40 °C, 75 % RH (90 days) and 25 °C, 0 % RH (180 days). Positive ΔTgs were observed in all CAMs, suggesting the existence of potential intermolecular force. Fourier Transform-Infrared and Raman spectra were used to further prove the drug-drug interaction and predict potential mechanisms. Therefore, in the strategy of combined medication, CAM provides a promising way to transfer drugs with poor properties into systems with enhanced dissolution, greater bioavailability, and stabilized amorphous state, which has been proven in this study.
Collapse
Affiliation(s)
- Xiangjun Shi
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China.
| | - Xiyue Zhou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shuimei Shen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Qifeng Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Shengjie Song
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chenru Gu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| | - Chao Wang
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
13
|
Pardhi VP, Jain K. Impact of binary/ternary solid dispersion utilizing poloxamer 188 and TPGS to improve pharmaceutical attributes of bedaquiline fumarate. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Hot-Melt Extruded Amorphous Solid Dispersion for Solubility, Stability, and Bioavailability Enhancement of Telmisartan. Pharmaceuticals (Basel) 2021; 14:ph14010073. [PMID: 33477557 PMCID: PMC7831136 DOI: 10.3390/ph14010073] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Telmisartan (TEL, an antihypertensive drug) belongs to Class II of the Biopharmaceutical Classification System (BCS) because of its poor aqueous solubility. In this study, we enhanced the solubility, bioavailability, and stability of TEL through the fabrication of TEL-loaded pH-modulated solid dispersion (TEL pHM-SD) using hot-melt extrusion (HME) technology. We prepared different TEL pHM-SD formulations by varying the ratio of the drug (TEL, 10-60% w/w), the hydrophilic polymer (Soluplus®, 30-90% w/w), and pH-modifier (sodium carbonate, 0-10% w/w). More so, the tablets prepared from an optimized formulation (F8) showed a strikingly improved in vitro dissolution profile (~30-fold) compared to the free drug tablets. The conversion of crystalline TEL to its amorphous state is observed through solid-state characterizations. During the stability study, F8 tablets had a better stability profile compared to the commercial product with F8, showing higher drug content, low moisture content, and negligible physical changes. Moreover, compared to the TEL powder, in vivo pharmacokinetic studies in rats showed superior pharmacokinetic parameters, with maximum serum concentration (Cmax) and area under the drug concentration-time curve (AUC0-∞) of the TEL pHM-SD formulation increasing by 6.61- and 5.37-fold, respectively. Collectively, the results from the current study showed that the inclusion of a hydrophilic polymer, pH modulator, and the amorphization of crystalline drugs in solid dispersion prepared by HME can be an effective strategy to improve the solubility and bioavailability of hydrophobic drugs without compromising the drug's physical stability.
Collapse
|
15
|
Wang B, Liu F, Xiang J, He Y, Zhang Z, Cheng Z, Liu W, Tan S. A critical review of spray-dried amorphous pharmaceuticals: Synthesis, analysis and application. Int J Pharm 2020; 594:120165. [PMID: 33309835 DOI: 10.1016/j.ijpharm.2020.120165] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
New drugs are frequently found with poor water-solubility in recent pharmaceutical projects, which brings difficulties of bioavailability for the clinical development of new drugs. When these drug compounds in a crystalline state are absorbed by gastrointestinal tract, their dissolution rates and absorption rates are very limited. Nowadays, various methods have been developed to improve the solubility, dissolution and bioavailability of drugs. According to the characteristics of drugs, this work suggests the use of spray drying technology to amorphize APIs (active pharmaceutical ingredients) to improve their bioavailability. This work reviews the properties of the spray-dried amorphous drugs, the progress made in drug synthesis and application, and the existing problems.
Collapse
Affiliation(s)
- Bo Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Fenglin Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jia Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Zhibin Zhang
- Research and Development Department, Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu 213162, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
16
|
Tian R, Wang H, Xiao Y, Hu P, Du R, Shi X, Wang Z, Xie Y. Fabrication of Nanosuspensions to Improve the Oral Bioavailability of Total Flavones from Hippophae rhamnoides L. and their Comparison with an Inclusion Complex. AAPS PharmSciTech 2020; 21:249. [PMID: 32875458 DOI: 10.1208/s12249-020-01788-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 01/27/2023] Open
Abstract
The aim of this work was to increase the solubility and oral bioavailability of isorhamnetin, kaempferol, and quercetin in the total flavones of Hippophae rhamnoides L. (TFH) by preparing their nanosuspensions (NSs) and an inclusion complex. Based on the particle size and zeta potential, P407, Soluplus, SDS, PEG-6000, and HP-β-CD were selected as stabilizers. TFH NSs and a TFH/HP-β-CD inclusion complex were prepared, and their morphology, crystallinity, molecular interactions, and cytotoxicity were investigated. Furthermore, the saturation solubility, dissolution, and pharmacokinetics of the three flavonoids in the TFH, TFH NSs, and TFH/HP-β-CD inclusion complex were compared. The five obtained TFH NSs were physically stable, and their particle sizes were all below 200 nm. The solubility and dissolution of the three active components were obviously enhanced by the formation of the TFH NSs and TFH/HP-β-CD inclusion complex. Correspondingly, the oral bioavailability of isorhamnetin, kaempferol, and quercetin increased up to 4.11-, 3.85-, and 6.73-fold, respectively, in the TFH NSs and 2.89-, 3.71-, and 9.51-fold, respectively, in the TFH/HP-β-CD inclusion complexes compared to those in the raw TFH. In brief, both NSs and inclusion complexes can improve the oral bioavailability of the three flavonoids in TFH. Taking the drug loading and the stable ratio of the multiple components into consideration, the NSs is a more promising strategy than the inclusion complex for increasing the oral bioavailability of multiple water-insoluble components in herbal extracts. Graphical abstract.
Collapse
|
17
|
Liu P, Zhou JY, Chang JH, Liu XG, Xue HF, Wang RX, Li ZS, Li CS, Wang J, Liu CZ. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2959-2975. [PMID: 32801637 PMCID: PMC7396739 DOI: 10.2147/dddt.s253405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Background and Purpose The traditional Chinese medicine, diosgenin (Dio), has attracted increasing attention because it possesses various therapeutic effects, including anti-tumor, anti-infective and anti-allergic properties. However, the commercial application of Dio is limited by its extremely low aqueous solubility and inferior bioavailability in vivo. Soluplus, a novel excipient, has great solubilization and capacity of crystallization inhibition. The purpose of this study was to prepare Soluplus-mediated Dio amorphous solid dispersions (ASDs) to improve its solubility, bioavailability and stability. Methods The crystallization inhibition studies were firstly carried out to select excipients using a solvent shift method. According to solubility and dissolution results, the preparation methods and the ratios of drug to excipient were further optimized. The interaction between Dio and Soluplus was characterized by differential scanning calorimetry (DSC), fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and molecular docking. The pharmacokinetic study was conducted to explore the potential of Dio ASDs for oral administration. Furthermore, the long-term stability of Dio ASDs was also investigated. Results Soluplus was preliminarily selected from various excipients because of its potential to improve solubility and stability. The optimized ASDs significantly improved the aqueous solubility of Dio due to its amorphization and the molecular interactions between Dio and Soluplus, as evidenced by dissolution test in vitro, DSC, FT-IR spectroscopy, SEM, PXRD and molecular docking technique. Furthermore, pharmacokinetic studies in rats revealed that the bioavailability of Dio from ASDs was improved about 5 times. In addition, Dio ASDs were stable when stored at 40°C and 75% humidity for 6 months. Conclusion These results indicated that Dio ASDs, with its high solubility, high bioavailability and high stability, would open a promising way in pharmaceutical applications.
Collapse
Affiliation(s)
- Pei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Xi-Gang Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - He-Fei Xue
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Zhong-Si Li
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Chun-Shi Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cui-Zhe Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| |
Collapse
|
18
|
Tian B, Ju X, Yang D, Kong Y, Tang X. Effect of the third component on the aging and crystallization of cinnarizine-soluplus® binary solid dispersion. Int J Pharm 2020; 580:119240. [DOI: 10.1016/j.ijpharm.2020.119240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
|
19
|
Bookwala M, DeBoyace K, Buckner IS, Wildfong PLD. Predicting Density of Amorphous Solid Materials Using Molecular Dynamics Simulation. AAPS PharmSciTech 2020; 21:96. [PMID: 32103355 DOI: 10.1208/s12249-020-1632-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/29/2020] [Indexed: 11/30/2022] Open
Abstract
The true density of an amorphous solid is an important parameter for studying and modeling materials behavior. Experimental measurements of density using helium pycnometry are standard but may be prevented if the material is prone to rapid recrystallization, or preparation of gram quantities of reproducible pure component amorphous materials proves impossible. The density of an amorphous solid can be approximated by assuming it to be 95% of its respective crystallographic density; however, this can be inaccurate or impossible if the crystal structure is unknown. Molecular dynamic simulations were used to predict the density of 20 amorphous solid materials. The calculated density values for 10 amorphous solids were compared with densities that were experimentally determined using helium pycnometry. In these cases, the amorphous densities calculated using molecular dynamics had an average percent error of - 0.7% relative to the measured values, with a maximum error of - 3.48%. In contrast, comparisons of amorphous density approximated from crystallographic structures with pycnometrically measured values resulted in an average percent error of + 3.7%, with a maximum error of + 9.42%. These data suggest that the density of an amorphous solid can be accurately predicted using molecular dynamic simulations and allowed reliable calculation of density for the remaining 10 materials for which pycnometry could not be done.
Collapse
|
20
|
Preformulation Studies and Enabling Formulation Selection for an Insoluble Compound at Preclinical Stage-From In Vitro, In Silico to In Vivo. J Pharm Sci 2019; 109:950-958. [PMID: 31647952 DOI: 10.1016/j.xphs.2019.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/19/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023]
Abstract
The objective of this work was to identify an enabling formulation for an insoluble compound ZL006 with potency of boosting leukocytes after chemotherapy. The low oral bioavailability (<1%) of its conventional suspension was the hurdle for the preclinical evaluation via oral administration. Preformulation studies including physical form screening and physicochemical properties determination were performed. Polymorphism was observed, and the more thermodynamically stable form was selected for further studies. ZL006 showed certain supersaturation solubility, although the thermodynamic solubility in FaSSIF was low, which indicated the supersaturating formulation might work. Parameter sensitivity analysis by in silico simulation predicted that in vivo exposure was sensitive to solubility, while particle size reduction would have limited impact on exposure. Based on in silico prediction and the understanding of the molecule from preformulation studies, solid dispersion approach was selected. A preliminary dose escalation pharmacokinetic study in rats demonstrated that in vivo exposure increased in dose-proportional manner from 12.5 mg/kg to 50 mg/kg with around 50% oral bioavailability after oral dosing of the solid dispersion. This work showed that combination of preformulation studies and in silico simulation could efficiently guide the selection of enabling formulation, which could save resources at preclinical stage.
Collapse
|