1
|
Feng J, Wang F, Shao Y, Jin A, Lei L. Engineered protein-based materials for tissue repair: A review. Int J Biol Macromol 2025; 303:140674. [PMID: 39909268 DOI: 10.1016/j.ijbiomac.2025.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The human body may suffer multiple injuries and losses due to various external factors, such as tumors, diseases, traffic accidents, and war conflicts. Under such circumstances, engineered protein-based materials, as an innovative adjunctive material, can not only effectively promote the natural repair process of tissues, but also greatly circumvent the negative effects and complications that may be associated with conventional surgery. In this review, we first trace the definition and development of engineered protein-based materials and explain in detail their mechanism of action in promoting tissue repair. Subsequently, the advantages and disadvantages of various engineered protein-based materials in tissue repair are analyzed by comparison. In addition, the present review reveals in depth how material properties can be optimized by scientific means to meet different tissue repair needs. In addition, we present in detail specific application cases of engineered protein-based materials in the field of tissue repair. Finally, we summarize current challenges in engineered protein-based materials and provide an outlook for the future. This review not only provides theoretical support for the further exploration and development of engineered protein-based materials in the field of tissue repair, but also provides valuable references and inspiration for research in related fields.
Collapse
Affiliation(s)
- Jiayin Feng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Fangyan Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Prabhu A, Baliga V, Shenoy R, Dessai AD, Nayak UY. 3D printed microneedles: revamping transdermal drug delivery systems. Drug Deliv Transl Res 2025; 15:436-454. [PMID: 39103595 PMCID: PMC11683023 DOI: 10.1007/s13346-024-01679-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
One of the advancements of the transdermal drug delivery system (TDDS) is the development of microneedles (MNs). These micron-sized needles are used for delivering various types of drugs to address the disadvantage of other transdermal techniques as well as oral drug delivery systems. MNs have high patient acceptance due to self-administration with minimally invasive and pain compared to the parenteral drug delivery. Over the years, various methods have been adopted to evolve the MNs and make them more cost-effective, accurate, and suitable for multiple applications. One such method is the 3D printing of MNs. The development of MN platforms using 3D printing has been made possible by improved features like precision, printing resolution, and the feasibility of using low-cost raw materials. In this review, we have tried to explain various types of MNs, fabrication methods, materials used in the formulation of MNs, and the recent applications that utilize 3D-printed MNs.
Collapse
Affiliation(s)
- Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raghavendra Shenoy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Akanksha D Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Kumar D, Pandey S, Shiekmydeen J, Kumar M, Chopra S, Bhatia A. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. AAPS PharmSciTech 2025; 26:25. [PMID: 39779610 DOI: 10.1208/s12249-024-03017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure. Furthermore, MNs can be engineered to encapsulate essential bioactive compounds, including antimicrobial agents, growth factors, and stem cells, which are critical for modulating the wound healing cascade and mitigating infection risk. The biodegradable nature of these MNs obviates the need for device removal, rendering them particularly advantageous in the management of chronic wounds such as diabetic ulcers and pressure sores. The integration of nanotechnology within MNs further augments their drug-loading capacity, stability, and controlled-release kinetics, offering a sophisticated therapeutic modality. This cutting-edge approach has the potential to redefine wound care by optimizing therapeutic efficacy, reducing adverse effects, and enhancing patient adherence. As MN technology advances, its application in wound healing exemplifies a dynamic frontier within biomedical engineering and regenerative medicine.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Majumdar Marg, Timarpur, Delhi, 110054, India
- Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Jailani Shiekmydeen
- Jailani Shiekmydeen, Formulation R&D, Alpha Pharma Industries, KAEC, Rabigh, Saudi Arabia
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
4
|
Gao Y, Xu T, Wang Y, Hu Y, Yin S, Qin Z, Yu H. Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics 2025; 17:56. [PMID: 39861704 PMCID: PMC11769081 DOI: 10.3390/pharmaceutics17010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions. The administration of psoriasis medications, whether oral, injectable, or topical, is associated with a range of side effects and compliance issues. Topical medications, despite their advantages in patient compliance and reduced systemic side effects, are hindered by the altered skin barrier in psoriasis, which impedes effective drug penetration and retention. In recent years, the development of novel transdermal drug delivery systems represents a promising frontier in psoriasis management. Nanotechnology-, microneedle- and dressing-based systems have demonstrated the potential for improved skin penetration, enhanced bioavailability, or extended retention time. Here, we will focus on the latest insights into the etiology, diagnostic methodologies, and therapeutic approaches for psoriasis, with a particular emphasis on the evolution and challenges of novel transdermal drug delivery systems.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Tianqi Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yu Wang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yanjinhui Hu
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Zhiguo Qin
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| |
Collapse
|
5
|
Koenitz L, Crean A, Vucen S. Pharmacokinetic differences between subcutaneous injection and intradermal microneedle delivery of protein therapeutics. Eur J Pharm Biopharm 2024; 204:114517. [PMID: 39349073 DOI: 10.1016/j.ejpb.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Protein therapeutics are essential in the treatment of various diseases, but most of them require parenteral administration. Since intravenous and subcutaneous injections are associated with discomfort and pain, other routes have been investigated including intradermal microneedle delivery. Microneedles are shorter than hypodermic needles and therefore minimize contact with pain receptors in deeper skin layers. But the differences in anatomical and physiological characteristics of dermis and subcutis can potentially result in varying protein penetration through the skin, absorption, and metabolism. This review summarizes pharmacokinetic studies that compare the administration of protein therapeutics by subcutaneous injections and different types of microneedles intradermally including hollow, dissolvable, coated, and hydrogel-forming microneedles. Across animal and human studies, hollow microneedle delivery resulted in quicker and higher peak plasma levels of proteins and comparable bioavailability to subcutaneous injections potentially due to the extensive network of lymphatic and blood vessels in the dermis. In case of dissolvable and coated microneedles, drug release kinetics depend on component materials. The dissolution of polymer excipients can slow the release and permeation of protein therapeutics at the administration site and thereby delay absorption. The understanding of drug penetration through different skin layers, its absorption into blood capillaries or lymphatics, and dermal metabolism remains limited. Additionally, the effects of these processes on the differences in pharmacokinetic profiles of proteins following intradermal microneedle administration are not well understood. Greater insights are required for the development of the next generation of intradermal microneedle biotherapeutics.
Collapse
Affiliation(s)
- Laura Koenitz
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland.
| | - Abina Crean
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
6
|
Railic M, Crean AM, Vucen S. Unravelling Microarray Patch Performance: The Role of In Vitro Release Medium and Biorelevant Testing. Mol Pharm 2024; 21:5028-5040. [PMID: 39195905 PMCID: PMC11462508 DOI: 10.1021/acs.molpharmaceut.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Collapse
Affiliation(s)
- Maja Railic
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Abina M. Crean
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| | - Sonja Vucen
- SSPC, the SFI Research Centre
for Pharmaceuticals, School of Pharmacy, University College Cork, College
Road, Cork T12 K8AF, Ireland
| |
Collapse
|
7
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
10
|
Pollini M, Paladini F. The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems. Biomimetics (Basel) 2024; 9:295. [PMID: 38786505 PMCID: PMC11117513 DOI: 10.3390/biomimetics9050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
11
|
Chudzińska J, Wawrzyńczak A, Feliczak-Guzik A. Microneedles Based on a Biodegradable Polymer-Hyaluronic Acid. Polymers (Basel) 2024; 16:1396. [PMID: 38794589 PMCID: PMC11124840 DOI: 10.3390/polym16101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Transdermal transport can be challenging due to the difficulty in diffusing active substances through the outermost layer of the epidermis, as the primary function of the skin is to protect against the entry of exogenous compounds into the body. In addition, penetration of the epidermis for substances hydrophilic in nature and particles larger than 500 Da is highly limited due to the physiological properties and non-polar nature of its outermost layer, namely the stratum corneum. A solution to this problem can be the use of microneedles, which "bypass" the problematic epidermal layer by dispensing the active substance directly into the deeper layers of the skin. Microneedles can be obtained with various materials and come in different types. Of special interest are carriers based on biodegradable and biocompatible polymers, such as polysaccharides. Therefore, this paper reviews the latest literature on methods to obtain hyaluronic acid-based microneedles. It focuses on the current advancements in this field and consequently provides an opportunity to guide future research in this area.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (J.C.); (A.F.-G.)
| | | |
Collapse
|
12
|
Jadach B, Nowak A, Długaszewska J, Kordyl O, Budnik I, Osmałek T. Coated Microneedle System for Delivery of Clotrimazole in Deep-Skin Mycoses. Gels 2024; 10:264. [PMID: 38667683 PMCID: PMC11048890 DOI: 10.3390/gels10040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mycoses of the skin are infectious diseases caused by fungal microorganisms that are generally treated with topical agents. However, such therapy is often ineffective and has to be supported by oral use of active substances, which, in turn, can cause many side effects. A good alternative for the treatment of deep-skin mycoses seems to be microneedles (MNs). The aim of this research was to fabricate and evaluate the properties of innovative MNs coated with a hydrogel as potential carriers for clotrimazole (CLO) in the treatment of deep fungal skin infections. A 3D printing technique using a photo-curable resin was employed to produce MNs, which were coated with hydrogels using a dip-coating method. Hydrogels were prepared with carbopol EZ-3 Polymer (Lubrizol) in addition to glycerol and triisopropanolamine. Clotrimazole was introduced into the gel as the solution in ethanol or was suspended. In the first step of the investigation, a texture analysis of hydrogels was prepared with a texture analyzer, and the drug release studies were conducted with the use of automatic Franz diffusion cells. Next, the release profiles of CLO for coated MNs were checked. The last part of the investigation was the evaluation of the antifungal activity of the prepared systems, and the inhibition of the growth of Candida albicans was checked with the diffusion and suspended-plate methods. The texture profile analysis (TPA) for the tested hydrogels showed that the addition of ethanol significantly affects the following studied parameters: hardness, adhesiveness and gumminess, causing a decrease in their values. On the other hand, for the gels with suspended CLO, better spreadability was seen compared to gels with dissolved CLO. The presence of the active substance did not significantly affect the values of the tested parameters. In the dissolution study, the results showed that higher amounts of CLO were released for MNs coated with a hydrogel containing dissolved CLO. Also, microbiological tests proved its efficacy against fungal cultures. Qualitative tests carried out using the diffusion method showed that circular zones of inhibition of fungal growth on the plate were obtained, confirming the hypothesis of effectiveness. The suspension-plate technique confirmed the inhibitory effect of applied CLO on the growth of Candida albicans. From the analysis of the data, the MNs coated with CLO dissolved in hydrogel showed better antifungal activity. All received results seem to be helpful in developing further studies for MNs as carriers of antifungal substances.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland
| | - Agata Nowak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| | - Jolanta Długaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland;
| | - Oliwia Kordyl
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Irena Budnik
- Division of 3D Printing, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland; (O.K.); (I.B.)
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka, 60-806 Poznan, Poland (T.O.)
| |
Collapse
|
13
|
Li J, Ge R, Lin K, Wang J, He Y, Lu H, Dong H. Advances in the Application of Microneedles in the Treatment of Local Organ Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306222. [PMID: 37786290 DOI: 10.1002/smll.202306222] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
In recent years, microneedles (MNs) have attracted a lot of attention due to their microscale sizes and high surface area (500-1000 µm in length), allowing pain-free and efficient drug delivery through the skin. In addition to the great success of MNs based transdermal drug delivery, especially for skin diseases, increasing studies have indicated the expansion of MNs to diverse nontransdermal applications, including the delivery of therapeutics for hair loss, ocular diseases, and oral mucosal. Here, the current treatment of hair loss, eye diseases, and oral disease is discussed and an overview of recent advances in the application of MNs is provided for these three noncutaneous localized organ diseases. Particular emphasis is laid on the future trend of MNs technology development and future challenges of expanding the generalizability of MNs.
Collapse
Affiliation(s)
- Jinze Li
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Rujiao Ge
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518060, China
| | - Junren Wang
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| | - Yu He
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong, 518060, China
| |
Collapse
|
14
|
Guo P, Huang C, Yang Q, Zhong G, Zhang J, Qiu M, Zeng R, Gou K, Zhang C, Qu Y. Advances in Formulations of Microneedle System for Rheumatoid Arthritis Treatment. Int J Nanomedicine 2023; 18:7759-7784. [PMID: 38144510 PMCID: PMC10743780 DOI: 10.2147/ijn.s435251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation, eventually leading to severe disability and premature death. At present, the treatment of RA is mainly to reduce inflammation, swelling, and pain. Commonly used drugs are non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and disease-modifying anti-rheumatic drugs (DMARDs). These drugs lack specificity and require long-term, high-dose administration, which can cause serious adverse effects. In addition, the oral, intravenous, and intra-articular injections will reduce patient compliance, resulting in high cost and low bioavailability. Due to these limitations, microneedles (MNs) have emerged as a new strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. MNs can overcome the cuticle barrier of the skin without stimulating nerves and blood vessels. Which can increase patient compliance, improve bioavailability, and avoid systemic circulation. This review summarizes and evaluates the application of MNs in RA, especially dissolving MNs (DMNs). We encourage the use of MNs to treat RA, by describing the general properties of MNs, materials, preparation technology, drug release mechanism, and advantages. Furthermore, we discussed the biological safety, development prospects, and future challenges of MNs, hoping to provide a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Chi Huang
- Department of Pharmacy, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, 644200, People’s Republic of China
| | - Qin Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Guofeng Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Junbo Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Mengyu Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Rui Zeng
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Kaijun Gou
- Institute of Tibetan Plateau, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| |
Collapse
|
15
|
Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable Clinic: From Microneedle-Based Sensors to Next-Generation Healthcare Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207539. [PMID: 36950771 DOI: 10.1002/smll.202207539] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of wearable biosensing calls for next-generation devices that allow continuous, real-time, and painless monitoring of health status along with responsive medical treatment. Microneedles have exhibited great potential for the direct access of dermal interstitial fluid (ISF) in a minimally invasive manner. Recent studies of microneedle-based devices have evolved from conventional off-line detection to multiplexed, wireless, and integrated sensing. In this review, the classification and fabrication techniques of microneedles are first introduced, and then the representative examples of microneedles for transdermal monitoring with different sensing modalities are summarized. State-of-the-art advances in therapeutic and closed-loop systems are presented to formulate guidelines for the development of next-generation microneedle-based healthcare platforms. The potential challenges and prospects are discussed to pave a new avenue toward pragmatic applications in the real world.
Collapse
Affiliation(s)
- Hongyi Sun
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
16
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
17
|
Arshad MS, Hussain S, Zafar S, Rana SJ, Ahmad N, Jalil NA, Ahmad Z. Improved Transdermal Delivery of Rabies Vaccine using Iontophoresis Coupled Microneedle Approach. Pharm Res 2023; 40:2039-2049. [PMID: 37186072 DOI: 10.1007/s11095-023-03521-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
AIM This study was aimed to develop rabies vaccine incorporated microneedle (MN) patches and evaluate the immunogenicity of prepared formulations in combination with iontophoresis. METHODS Patches comprising of polyvinyl pyrrolidone, hyaluronic acid and polyethylene glycol 400 were engineered by vacuum micromolding technique. Physical evaluation of patches included determination of folding endurance, % swelling and morphological features. In vitro release study was performed in skin simulant agarose gel using model drug (methylene blue) loaded patches. In vitro insertion ability was assessed using stratum corneum simulant parafilm. In vivo insertion study was performed in rats. Immunogenicity was evaluated in dogs by determining immunoglobulin G (IgG) and rabies virus neutralizing antibodies (RVNA) titer. RESULTS Patches displayed uniformly distributed microprojections with pointed tips and smooth surface, ~ 70% swelling, remained intact for ~ 200 foldings and successfully penetrated the parafilm. The area covered by model drug across agarose gel was almost double following treatment with MN-iontophoresis combination (MNdi) compared to MN alone (MNdo). Histological examination of rat skin treated with vaccine laden MN (MNvo) and MN-iontophoresis combination (MNvi) confirmed the formation of grooves in epidermis without any damage to the deep vasculature. A ~ 73% and ~ 206% increase (compared to untreated counterpart) was observed in the IgG titer of MNvo and MNvi treated dogs, respectively. The RVNA titer was increased by ~ 1.2 and ~ 2.2 times (compared to threshold value) after MNvo and MNvi treatment, respectively. CONCLUSION MN-iontophoresis combination provided relatively potent immunogenic response over the conventional intramuscular injection, hence, can be used for administering vaccines transcutaneously.
Collapse
Affiliation(s)
| | - Saad Hussain
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nadia Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
18
|
Tarar C, Aydın E, Yetisen AK, Tasoglu S. Machine Learning-Enabled Optimization of Interstitial Fluid Collection via a Sweeping Microneedle Design. ACS OMEGA 2023; 8:20968-20978. [PMID: 37332784 PMCID: PMC10268608 DOI: 10.1021/acsomega.3c01744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Microneedles (MNs) allow for biological fluid sampling and drug delivery toward the development of minimally invasive diagnostics and treatment in medicine. MNs have been fabricated based on empirical data such as mechanical testing, and their physical parameters have been optimized through the trial-and-error method. While these methods showed adequate results, the performance of MNs can be enhanced by analyzing a large data set of parameters and their respective performance using artificial intelligence. In this study, finite element methods (FEMs) and machine learning (ML) models were integrated to determine the optimal physical parameters for a MN design in order to maximize the amount of collected fluid. The fluid behavior in a MN patch is simulated with several different physical and geometrical parameters using FEM, and the resulting data set is used as the input for ML algorithms including multiple linear regression, random forest regression, support vector regression, and neural networks. Decision tree regression (DTR) yielded the best prediction of optimal parameters. ML modeling methods can be utilized to optimize the geometrical design parameters of MNs in wearable devices for application in point-of-care diagnostics and targeted drug delivery.
Collapse
Affiliation(s)
- Ceren Tarar
- Department
of Biomedical Sciences and Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Erdal Aydın
- Department
of Chemical and Biological Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- TUPRAS
Energy Center (KUTEM), Koç University, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Savas Tasoglu
- Koc
University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
- Koç
University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi
Institute of Biomedical Engineering, Boğaziçi
University, Çengelköy, Istanbul 34684, Turkey
- Department
of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç
University Arçelik Research Center for Creative Industries
(KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Physical
Intelligence Department, Max Planck Institute
for Intelligent Systems, 70569 Stuttgart, Germany
| |
Collapse
|
19
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
20
|
Zafar S, Sohail Arshad M, Jafar Rana S, Patel M, Yousef B, Ahmad Z. Engineering of clarithromycin loaded stimulus responsive dissolving microneedle patches for the treatment of biofilms. Int J Pharm 2023; 640:123003. [PMID: 37146953 DOI: 10.1016/j.ijpharm.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to fabricate clarithromycin laden Eudragit S-100-based microfibers (MF), microfibers coated film (MB), clarithromycin loaded polyvinyl pyrollidone, hyaluronic acid and sorbitol-based dissolving microneedle patches (CP) and microfibers coated microneedle patches (MP). Morphological and phase analysis of formulations were carried out by scanning electron microscopy and differential scanning calorimetry, X-ray diffraction, respectively. Substrate liquefaction test, in vitro drug release, antimicrobial assay and in vivo antibiofilm studies were performed. MF exhibited a uniform surface and interconnected network. Morphological analysis of CP revealed sharp-tipped and uniform-surfaced microstructures. Clarithromycin was incorporated within MF and CP as amorphous solid. Liquefaction test indicated hyaluronate lyase enzyme responsiveness of hyaluronic acid. Fibers-based formulations (MF, MB and MP) provided an alkaline pH (7.4) responsive drug release; ∼79 %, ∼78 % and ∼81 %, respectively within 2 hours. CP showed a drug release of ∼82 % within 2 hours. MP showed ∼13 % larger inhibitory zone against Staphylococcus aureus (S. aureus) as compared to MB and CP. A relatively rapid eradication of S. aureus in infected wounds and subsequent skin regeneration was observed following MP application as compared to MB and CP indicating its usefulness for the management of microbial biofilms.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
21
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
22
|
Huang X, Chang Q, Gao JH, Lu F. Sustained Release Microneedles: Materials and Applications in Facial Rejuvenation. TISSUE ENGINEERING. PART B, REVIEWS 2023. [PMID: 36200631 DOI: 10.1089/ten.teb.2022.0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wrinkled and loose skin resulting from collagen degradation along with fibers decreasing reflects the youth diminishing. Microneedles (MNs) have opened up new avenues for the development of painless and noninvasive transdermal drug delivery systems for facial rejuvenation. Encapsulated drugs or molecules are transmitted to targeted tissues via percutaneous microchannels, which eliminate potential gastric stimulation or first-pass metabolic effects, as well as boost patient compliance. Although MNs are considered effective and feasible therapeutic alternatives to metals, silicon, and polymers, traditional procedures with reduction processes continue to encounter methodological limitations. In recent years, promising additive manufacturing processes such as three-dimensional printing and two-photon polymerization manufacturing have been developed with the aim of overcoming the limitations by traditional processes to facilitate an efficient and economic production mode. This review summarizes the design, material selection, and manufacturing method for recently advanced MN systems. Furthermore, we also highlight specific polymeric or natural microneedle products, like hyaluronan, plant derivates, and vitamins, for esthetic applications in this review. Impact Statement In this review, the materials and manufactural routes of microneedles (MNs) are detailed. Moreover, similar to the diagnostic or therapeutic MNs, the feature of dispensation with training and ready-to-use is perfect for beautification and anti-aging, which necessitate repeated and long-term usage. Furthermore, the specific polymeric or natural products for esthetic applications of MNs are highlighted in this review.
Collapse
Affiliation(s)
- Xiaoqi Huang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian-Hua Gao
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Arshad MS, Gulfam S, Zafar S, Jalil NA, Ahmad N, Qutachi O, Chang MW, Singh N, Ahmad Z. Engineering of tetanus toxoid-loaded polymeric microneedle patches. Drug Deliv Transl Res 2023; 13:852-861. [PMID: 36253518 PMCID: PMC9576317 DOI: 10.1007/s13346-022-01249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/08/2023]
Abstract
This study is aimed to fabricate tetanus toxoid laden microneedle patches by using a polymeric blend comprising of polyvinyl pyrrolidone and sodium carboxymethyl cellulose as base materials and sorbitol as a plasticizer. The tetanus toxoid was mixed with polymeric blend and patches were prepared by using vacuum micromolding technique. Microneedle patches were evaluated for physical attributes such as uniformity of thickness, folding endurance, and swelling profile. Morphological features were assessed by optical and scanning electron microscopy. In vitro performance of fabricated patches was studied by using bicinchoninic acid assay (BCA). Insertion ability of microstructures was studied in vitro on model skin parafilm and in vivo in albino rat. In vivo immunogenic activity of the formulation was assessed by recording immunoglobulin G (IgG) levels, interferon gamma (IFN-γ) levels, and T-cell (CD4+ and CD8+) count following the application of dosage forms. Prepared patches, displaying sharp-tipped and smooth-surfaced microstructures, remained intact after 350 ± 36 foldings. Optimized microneedle patch formulation showed ~ 74% swelling and ~ 85.6% vaccine release within an hour. The microneedles successfully pierced parafilm. Histological examination of microneedle-treated rat skin confirmed disruption of epidermis without damaging the underneath vasculature. A significant increase in IgG levels (~ 21%), IFN-γ levels (~ 30%), CD4+ (~ 41.5%), and CD8+ (~ 48.5%) cell count was observed in tetanus vaccine-loaded microneedle patches treated albino rats with respect to control (untreated) group at 42nd day of immunization. In conclusion, tetanus toxoid-loaded microneedle patches can be considered as an efficient choice for transdermal delivery of vaccine without inducing pain commonly experienced with hypodermic needles.
Collapse
Affiliation(s)
| | - Shafaq Gulfam
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Nadia Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Omar Qutachi
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Northern Ireland, UK
| | - Neenu Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
24
|
Ikram M, Mahmud MAP. Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies. Drug Deliv Transl Res 2023; 13:54-78. [PMID: 35713781 DOI: 10.1007/s13346-022-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
In the current decade, remarkable efforts have been made to develop a self-regulated, on-demand and controlled release drug delivery system driven by triboelectric nanogenerators (TENGs). TENGs have great potential to convert biomechanical energy into electricity and are suitable candidates for self-powered drug delivery systems (DDSs) with exciting features such as small size, easy fabrication, biocompatible, high power output and economical. This review exclusively explains the development and implementation process of TENG-mediated, self-regulated, on-demand and targeted DDSs. It also highlights the recently used TENG-driven DDSs for cancer therapy, infected wounds healing, tissue regeneration and many other chronic disorders. Moreover, it summarises the crucial challenges that are needed to be addressed for their universal applications. Finally, a roadmap to advance the TENG-based drug delivery system developments is depicted for the targeted therapies and personalised healthcare.
Collapse
Affiliation(s)
- Muhammad Ikram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
25
|
Zhou Y, Jia L, Zhou D, Chen G, Fu Q, Li N. Advances in microneedles research based on promoting hair regrowth. J Control Release 2023; 353:965-974. [PMID: 36549392 DOI: 10.1016/j.jconrel.2022.12.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Alopecia is the most common and difficult-to-treat hair disorder. It usually brings a significant psychological burden to the patients. With the growing popularity of alopecia, the study of alopecia has gained more attention. Currently, only minoxidil and finasteride have been approved by the FDA for the treatment of alopecia, but the efficacy has always been unsatisfactory. As a new form of transdermal drug delivery, microneedles have been widely used in the treatment of alopecia and have proven to be effective. Microneedles delivery can improve the efficiency of local drug delivery and patients' compliance, which can achieve better therapeutic effects on hair-related diseases. Therefore, microneedles have gained much attention in the field of alopecia and hair regrowth promotion in recent years. This review summarizes the last decade of research on the microneedles delivery design for the treatment of alopecia or promotion of hair regrowth and provides a comprehensive evaluation of this field.
Collapse
Affiliation(s)
- Yanjun Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Luan Jia
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
26
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Olowe M, Parupelli SK, Desai S. A Review of 3D-Printing of Microneedles. Pharmaceutics 2022; 14:2693. [PMID: 36559187 PMCID: PMC9786808 DOI: 10.3390/pharmaceutics14122693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Microneedles are micron-sized devices that are used for the transdermal administration of a wide range of active pharmaceutics substances with minimally invasive pain. In the past decade, various additive manufacturing technologies have been used for the fabrication of microneedles; however, they have limitations due to material compatibility and bioavailability and are time-consuming and expensive processes. Additive manufacturing (AM), which is popularly known as 3D-printing, is an innovative technology that builds three-dimensional solid objects (3D). This article provides a comprehensive review of the different 3D-printing technologies that have the potential to revolutionize the manufacturing of microneedles. The application of 3D-printed microneedles in various fields, such as drug delivery, vaccine delivery, cosmetics, therapy, tissue engineering, and diagnostics, are presented. This review also enumerates the challenges that are posed by the 3D-printing technologies, including the manufacturing cost, which limits its viability for large-scale production, the compatibility of the microneedle-based materials with human cells, and concerns around the efficient administration of large dosages of loaded microneedles. Furthermore, the optimization of microneedle design parameters and features for the best printing outcomes is of paramount interest. The Food and Drug Administration (FDA) regulatory guidelines relating to the safe use of microneedle devices are outlined. Finally, this review delineates the implementation of futuristic technologies, such as artificial intelligence algorithms, for 3D-printed microneedles and 4D-printing capabilities.
Collapse
Affiliation(s)
- Michael Olowe
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
28
|
Liu C, Zhao Z, Lv H, Yu J, Zhang P. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma. Colloids Surf B Biointerfaces 2022; 219:112818. [PMID: 36084509 DOI: 10.1016/j.colsurfb.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
As an emerging novel drug delivery system, microneedles (MNs) have a wide range of applications in the medical field. They can overcome the physiological barriers of the skin, penetrate the outermost skin of the human body, and form hundreds of reversible microchannels to enhance the penetration of drugs and deliver drugs to the diseased sites. So they have great applications in the diagnosis and treatment of melanoma. Melanoma is a kind of malignant tumor, the survival rate of patients with metastases is extremely low. The traditional methods of surgery and drug treatment for melanoma are often accompanied by large adverse reactions in the whole body, and the drug concentration is low. The use of MNs for transdermal administration can increase the drug concentration, reduce adverse reactions in the treatment process, and have good therapeutic effect on melanoma. This paper introduced various types of MNs and their preparation methods, summarized the diagnosis and various treatment options for melanoma with MNs, focused on the treatment of melanoma with dissolved MNs, and made prospect of MNs-mediated transdermal drug delivery in the treatment of melanoma.
Collapse
Affiliation(s)
- Cheng Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongqian Lv
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
29
|
Transdermal Maltose-Based Microneedle Patch as Adjunct to Enhance Topical Anesthetic before Intravenous Cannulation of Pediatric Thalassemic Patients Receiving Blood Transfusion: A Randomized Controlled Trial Protocol. J Clin Med 2022; 11:jcm11185291. [PMID: 36142938 PMCID: PMC9501834 DOI: 10.3390/jcm11185291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Intravenous cannulation is experientially traumatic to children. To minimize this, EMLA® is applied on the would-be-cannulated area before IV cannula insertion. However, the time to achieve its maximum efficacy may be affected due to incomplete cutaneous absorption and the duration of application. The latter may be a limiting factor in a busy healthcare facility. The usage of dissolvable maltose microneedles may circumvent this problem by introducing micropores that will facilitate EMLA® absorption. A randomized phase II cross-over trial will be conducted to compare the Visual Analogue Scale (VAS) pain scores and skin conductance algesimeter index between 4 different interventions (1 fingertip unit (FTU) of EMLA® with microneedle patch for 30 min before cannulation; 0.5 FTU of EMLA® with microneedle patch for 30 min; 1 FTU of EMLA® with microneedle for 15 min; 1 FTU of EMLA® with sham patch for 30 min). A total of 26 pediatric patients with thalassemia aged between 6 and 18 years old and requiring blood transfusion will be recruited in this trial. During the visits, the VAS scores and skin conductance algesimeter index at venous cannulation will be obtained using the VAS rulers and PainMonitor™ machine, respectively. The trial will commence in August 2021 and is anticipated to end by August 2022.
Collapse
|
30
|
The Finite Element Analysis Research on Microneedle Design Strategy and Transdermal Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14081625. [PMID: 36015251 PMCID: PMC9413279 DOI: 10.3390/pharmaceutics14081625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Microneedles (MNs) as a novel transdermal drug delivery system have shown great potential for therapeutic and disease diagnosis applications by continually providing minimally invasive, portable, cost-effective, high bioavailability, and easy-to-use tools compared to traditional parenteral administrations. However, microneedle transdermal drug delivery is still in its infancy. Many research studies need further in-depth exploration, such as safety, structural characteristics, and drug loading performance evaluation. Finite element analysis (FEA) uses mathematical approximations to simulate real physical systems (geometry and load conditions). It can simplify complex engineering problems to guide the precise preparation and potential industrialization of microneedles, which has attracted extensive attention. This article introduces FEA research for microneedle transdermal drug delivery systems, focusing on microneedle design strategy, skin mechanics models, skin permeability, and the FEA research on drug delivery by MNs.
Collapse
|
31
|
Recent advances in microneedle designs and their applications in drug and cosmeceutical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
An update on microneedle in insulin delivery: Quality attributes, clinical status and challenges for clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Ali M, Namjoshi S, Benson HAE, Mohammed Y, Kumeria T. Dissolvable polymer microneedles for drug delivery and diagnostics. J Control Release 2022; 347:561-589. [PMID: 35525331 DOI: 10.1016/j.jconrel.2022.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Dissolvable transdermal microneedles (μND) are promising micro-devices used to transport a wide selection of active compounds into the skin. To provide an effective therapeutic outcome, μNDs must pierce the human stratum corneum (~10 to 20 μm), without rupturing or bending during penetration, then release their cargo at the predetermined area and time. The ability of dissolvable μND arrays/patches to sufficiently pierce the skin is a crucial requirement, which depends on the material composition, μND geometry and fabrication techniques. This comprehensive review not only provides contemporary knowledge on the μND design approaches, but also the materials science facilitating these delivery systems and the opportunities these advanced materials can provide to enhance clinical outcomes.
Collapse
Affiliation(s)
- Masood Ali
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia
| | - Sarika Namjoshi
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia; Vaxxas Pty Ltd, Brisbane, Woolloongabba, QLD 4102, Australia
| | - Heather A E Benson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; Basil Hetzel institute for Translational Health Research, Adelaide, SA 5001, Australia.
| | - Yousuf Mohammed
- Therapeutics Research Group, The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney. NSW 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
34
|
Tariq N, Ashraf MW, Tayyaba S. Simulation, analysis and characterization of solid microneedles for biomedical applications. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-219308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The uniformly smooth and sharp microneedles have great significance in contact spectroscopy, 3D printing, biomedical and nanotechnology. The stability, bio-stability, conductivity and mechanical properties of the gold (Au) make it effective rather than the other metals such as tungsten, copper, platinum and graphite. The surface quality, proper dimension such as the tip, cone angle is the matter of the trial and practice matter. It was the main issue to develop a controlled optimized methodology to obtain the gold needles of specific dimensions in regular and systematic way. The Ansys simulation of solid microneedle has been done to check on what stress the deflection occurs on microneedles. Then fuzzy optimization has performed to optimize the parameter of the etching set up such as the voltage, current and time of etching as an input parameter and the tip size and the conical section length as the output parameters. After the simulation and optimization the experiment of the etching has performed with the 3M solution of NaCl in deionized water and small amount of hydropercaloric acid. The fabricated needles have been then characterized by Scanning electron microscopy (SEM) to observe the morphology and the dimensions. The fuzzy analysis has been performed for optimization of the inputs voltage of range 1–10volt, current of range 1–100 mA and etching times from 1–15minutes. These optimized values are calculated by the fuzzy analysis such as the voltage is 58.6 mA, etching time 15 minutes and the voltages found to be 10 volt. Fuzzy analysis gives the simulated size of the tip 10.6μm and Mamdani models gives the 10.7μm which have the 0.01% error and the cone length for the Mamdani was found to be 500μm and the simulated values 497 having the 0.03% error which have very close approximation with the experimental values from the SEM micrographs that which also gives the values of the cone length from 400–500μm and the tip size from 10-20μm for the time 10-15minute whose values was optimized by the fuzzy analysis.
Collapse
Affiliation(s)
- Nimra Tariq
- Department of Physics (Electronics), GC University, Lahore, Pakistan
| | | | - Shahzadi Tayyaba
- Deparment of Computer Engineering, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
35
|
Lu H, Zada S, Yang L, Dong H. Microneedle-Based Device for Biological Analysis. Front Bioeng Biotechnol 2022; 10:851134. [PMID: 35528208 PMCID: PMC9068878 DOI: 10.3389/fbioe.2022.851134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The collection and analysis of biological samples are an effective means of disease diagnosis and treatment. Blood sampling is a traditional approach in biological analysis. However, the blood sampling approach inevitably relies on invasive techniques and is usually performed by a professional. The microneedle (MN)-based devices have gained increasing attention due to their noninvasive manner compared to the traditional blood-based analysis method. In the present review, we introduce the materials for fabrication of MNs. We categorize MN-based devices based on four classes: MNs for transdermal sampling, biomarker capture, detecting or monitoring analytes, and bio-signal recording. Their design strategies and corresponding application are highlighted and discussed in detail. Finally, future perspectives of MN-based devices are discussed.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
| | - Shah Zada
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lingzhi Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haifeng Dong
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
36
|
Kim MJ, Seong KY, Kim DS, Jeong JS, Kim SY, Lee S, Yang SY, An BS. Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomater 2022; 143:189-202. [PMID: 35202857 DOI: 10.1016/j.actbio.2022.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022]
Abstract
Alopecia is defined as hair loss in a part of the head due to various causes, such as drugs, stress and autoimmune disorders. Various therapeutic agents have been suggested depending on the cause of the condition and patient sex, and age. Minoxidil (MXD) is commonly used topically to treat alopecia, but its low absorption rate limits widespread use. To overcome the low absorption, we suggest microneedles (MNs) as controlled drug delivery systems that release MXD. We used hyaluronic acid (HA) to construct MN, as it is biocompatible and safe. We examined the effect of HA on the hair dermal papilla (HDP) cells that control the development of hair follicles. HA enhanced proliferation, migration, and aggregation of HDP cell by increasing cell-cell adhesion and decreasing cell substratum. These effects were mediated by the cluster of differentiation (CD)-44 and phosphorylation of serine‑threonine kinase (Akt). In chemotherapy-induced alopecia mice, topical application of HA tended to decrease chemotherapy-induced hair loss. Although the amount of MXD administered by HA-MNs was 10% of topical treatment, the MXD-containing HA-MNs (MXD-HA-MNs) showed better effects on the growth of hair than topical application of MXD. In summary, our results demonstrated that HA reduces hair loss in alopecia mice, and that delivery of MXD and HA using MXD-HA-MNs maximizes therapeutic effects and minimize the side effects of MXD for the treatment of alopecia. STATEMENT OF SIGNIFICANCE: (1) Significance, This work reports a new approach for treatment of alopecia using a dissolving microneedle (MN) prepared with hyaluronic acid (HA). The HA provided a better environment for cellular functions in the hair dermal papilla cells. The HA-MNs containing minoxidil (MXD) exhibited a significant reduction of hair loss, although amount of MXD contained in them was only 10% of topically applied MXD., (2) Scientific impact, This is the first report demonstrating the direct anti-alopecia effects of HA administrated in a transdermal route and the feasibility of novel therapeutics using MXD-containing HA-MNs. We believe that our work will excite interdisciplinary readers of Acta Biomaterialia, those who are interested in the natural polymers, drug delivery, and alopecia.
Collapse
|
37
|
Rajput A, Kulkarni M, Deshmukh P, Pingale P, Garkal A, Gandhi S, Butani S. A Key Role by Polymers in Microneedle Technology: A New Era. Drug Dev Ind Pharm 2022; 47:1713-1732. [PMID: 35332822 DOI: 10.1080/03639045.2022.2058531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The skin serves as the major organ in the targeted transdermal drug delivery system for many compounds. The microneedle acts as a novel technique to deliver drugs across the different layers of the skin, including the major barrier stratum corneum, in an effective manner. A microneedle array patch comprises dozens to hundreds of micron-sized needles with numerous structures and advantages resulting from their special and smart designs. Microneedle approach is much more advanced than conventional transdermal delivery pathways due to several benefits like minimally invasive, painless, self-administrable, and enhanced patient compliance. The microneedles are classified into hollow, solid, coated, dissolving, and hydrogel. Several polymers are used to fabricate microneedle, such as natural, semi-synthetic, synthetic, biodegradable, and swellable polymers. Researchers in the preparation of microneedles also explored the combinations of polymers. The safety of the polymer used in microneedle is a crucial aspect to prevent toxicity in vivo. Thus, this review aims to provide a detailed review of microneedles and mainly focus on the various polymers used in the fabrication of microneedles.
Collapse
Affiliation(s)
- Amarjitsing Rajput
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to Be University, Paud Road, Erandwane, Pune-411038, Maharashtra, India.,Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade-411033, Pune, Maharashtra, India
| | - Prashant Deshmukh
- Dr. Rajendra Gode College of Pharmacy, Malkapur, Buldana- 443101, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik-422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| | - Sahil Gandhi
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Shital Butani
- Department of Pharmaceutics and Pharmaceutical Technology, Institute Pharmacy, Nirma University, S.G. Highway, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
38
|
Micro/nanofluidic devices for drug delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:9-39. [PMID: 35094782 DOI: 10.1016/bs.pmbts.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Micro/nanofluidic drug delivery systems have attracted significant attention as they offer unique advantages in targeted and controlled drug delivery. Based on the desired application, these systems can be categorized into three different groups: in vitro, in situ and in vivo microfluidic drug delivery platforms. In vitro microfluidic drug delivery platforms are closely linked with the emerging concept of lab-on-a-chip for cell culture studies. These systems can be used to administer drugs or therapeutic agents, mostly at the cellular or tissue level, to find the therapeutic index and can potentially be used for personalized medicine. In situ and in vivo microfluidic drug delivery platforms are still at the developmental stage and can be used for drug delivery at tissue or organ levels. A famous example of these systems are microneedles that can be used for painless and controllable delivery of drugs or vaccines through human skin. This chapter presents the cutting edge advances in the design and fabrication of in vitro microfluidic drug delivery systems that can be used for both cellular and tissue drug delivery. It also briefly discusses the in situ drug delivery platforms using microneedles.
Collapse
|
39
|
Zhao J, Xu G, Yao X, Zhou H, Lyu B, Pei S, Wen P. Microneedle-based insulin transdermal delivery system: current status and translation challenges. Drug Deliv Transl Res 2021; 12:2403-2427. [PMID: 34671948 PMCID: PMC8528479 DOI: 10.1007/s13346-021-01077-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/27/2023]
Abstract
Diabetes mellitus is a metabolic disease manifested by hyperglycemia. For patients with type 1 and advanced type 2 diabetes mellitus, insulin therapy is essential. Subcutaneous injection remains the most common administration method. Non-invasive insulin delivery technologies are pursued because of their benefits of decreasing patients' pain, anxiety, and stress. Transdermal delivery systems have gained extensive attention due to the ease of administration and absence of hepatic first-pass metabolism. Microneedle (MN) technology is one of the most promising tactics, which can effectively deliver insulin through skin stratum corneum in a minimally invasive and painless way. This article will review the research progress of MNs in insulin transdermal delivery, including hollow MNs, dissolving MNs, hydrogel MNs, and glucose-responsive MN patches, in which insulin dosage can be strictly controlled. The clinical studies about insulin delivery with MN devices have also been summarized and grouped based on the study phase. There are still several challenges to achieve successful translation of MNs-based insulin therapy. In this review, we also discussed these challenges including safety, efficacy, patient/prescriber acceptability, manufacturing and scale-up, and regulatory authority acceptability.
Collapse
Affiliation(s)
- Jing Zhao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Genying Xu
- Department of Pharmacy, Zhongshan Hospital Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
| | - Xin Yao
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Huirui Zhou
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Boyang Lyu
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Shuangshuang Pei
- Prinbury Biopharm Co, 538 Cailun Road Zhangjiang Hi-Tech Park Shanghai, Ltd, 200120 No China
| | - Ping Wen
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road Zhangjiang Hi-Tech Park , Shanghai, 200120 China
| |
Collapse
|
40
|
Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control Release 2021; 338:341-357. [PMID: 34428480 DOI: 10.1016/j.jconrel.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Microneedle arrays have recently received much attention as cancer detection and treatment platforms, because invasive injections and detection of the biopsy are not needed, and drug metabolism by the liver, as well as adverse effects of systemic drug administration, are diminished. Microneedles have been used for diagnosis, vaccination, and in targeted drug delivery of breast cancer. In this review, we summarize the recent progress in diagnosis and targeted drug delivery for breast cancer treatment, using microneedle arrays to deliver active molecules through the skin. The results not only suggest that health and well-being of patients are improved, but also that microneedle arrays can deliver anticancer compounds in a relatively noninvasive manner, based on body weight, breast tumor size, and circulation time of the drug. Moreover, microneedles could allow simultaneous loading of multiple drugs and enable controlled release, thus effectively optimizing or preventing drug-drug interactions. This review is designed to encourage the use of microneedles for diagnosis and treatment of breast cancer, by describing general properties of microneedles, materials used for construction, mechanism of action, and principal benefits. Ongoing challenges and future perspectives for the application of microneedle array systems in breast cancer detection and treatment are highlighted.
Collapse
|
41
|
Aich K, Singh T, Dang S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Deliv Transl Res 2021; 12:1556-1568. [PMID: 34564827 DOI: 10.1007/s13346-021-01056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Transdermal drug delivery is a viable and clinically proven route of administration. This route specifically requires overcoming the mechanical barrier provided by the Stratum Corneum of epidermis and vascular and nervous networks within the dermis. First-generation Transdermal patches and second-generation iontophoretic patches have been translated into commercial clinical products successfully. The current review reports different studies that aim to enhance the transdermal delivery of biopharmaceutical using microneedles and their effect on drug delivery. Microneedles (MN) are the micron-scale hybrid between transdermal patches and hypodermic syringes. Microneedles are tested and proven to show better delivery of the drugs, overcoming the drawbacks of hypodermic syringes. Multiple microneedles designs have been fabricated i.e. solid, coated, hollow, and polymer microneedles. Hollow microneedles are shorter in length but similar to hypodermic needles and have pore for infusion of liquid formulation of the drug. Solid microneedles a patch is applied after creating a hole in the skin; Drugs are coated on the surface of Coated microneedles; Polymer microneedles can be of different types like dissolving, non-dissolving or hydrogel-forming made up of polymers. Various advantages and limitations associated with the use of these techniques are discussed. Delivery of peptide and protein molecules with microneedles represents a significant opportunity for a better clinical outcome and hence value creation compared to standard injectable routes of administration. The advancement in various formulation and microfabrication techniques are currently being focused to aid the delivery of protein drugs via microneedles. The most recent advances and limitations in Microneedles -mediated protein and peptide delivery were discussed.
Collapse
Affiliation(s)
- Krishanu Aich
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Tanya Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
42
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
43
|
Ozyilmaz ED, Turan A, Comoglu T. An overview on the advantages and limitations of 3D printing of microneedles. Pharm Dev Technol 2021; 26:923-933. [PMID: 34369288 DOI: 10.1080/10837450.2021.1965163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of 3D printing (3DP) technology, which has been continuously evolving since the 1980s, has recently become common in healthcare services. The introduction of 3DP into the pharmaceutical industry particularly aims at the development of patient-centered dosage forms based on structure design. It is still a new research direction with potential to create the targeted release of drug delivery systems in freeform geometries. Although the use of 3DP technology for solid oral dosage forms is more preferable, studies on transdermal applications of the technology are also increasing. Microneedle sequences are one of the transdermal drug delivery (TDD) methods which are used to bypass the minimally invasive stratum corneum with novel delivery methods for small molecule drugs and vaccines. Microneedle arrays have advantages over many traditional methods. It is attractive with features such as ease of application, controlled release of active substances and patient compliance. Recently, 3D printers have been used for the production of microneedle patches. After giving a brief overview of 3DP technology, this article includes the materials necessary for the preparation of microneedles and microneedle patches specifically for penetration enhancement, preparation methods, quality parameters, and their application to TDD. In addition, the applicability of 3D microneedles in the pharmaceutical industry has been evaluated.
Collapse
Affiliation(s)
- Emine Dilek Ozyilmaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Aybuke Turan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
44
|
Kang NW, Kim S, Lee JY, Kim KT, Choi Y, Oh Y, Kim J, Kim DD, Park JH. Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin Drug Deliv 2021; 18:929-947. [PMID: 32975144 DOI: 10.1080/17425247.2021.1828860] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A microneedle array patch (MAP) has been studied as a means for delivering drugs or vaccines and has shown superior delivery efficiency compared to the conventional transdermal drug delivery system (TDD). This paper reviews recent advancements in the development of MAPs, with a focus on their size, shapes, and materials in preclinical and clinical studies for pharmaceutics. AREA COVERED We classified MAPs for drug delivery into four types: coated, dissolving, separable, and swellable. We covered their recent developments in materials and geometry in preclinical and clinical studies. EXPERT OPINION The design of MAPs needs to be determined based on what properties would be effective for the target diseases and purposes. In addition, in preclinical studies, it is necessary to consider not only the novelty of the formulations but also the feasibility of clinical application. Currently, clinical studies of microneedles loaded with various drugs and vaccines are in progress. When the regulation of pharmaceutical microneedles is established and more clinical studies are published, more drugs will be developed as microneedle products and clinical research will proceed. With these considerations, the microneedle array patch will be a better option for drug delivery.
Collapse
Affiliation(s)
- Nae-Won Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ki-Taek Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Yuji Choi
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Yujeong Oh
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Jongchan Kim
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology and Gachon BioNano Research Institute, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
45
|
Dalvi M, Kharat P, Thakor P, Bhavana V, Singh SB, Mehra NK. Panorama of dissolving microneedles for transdermal drug delivery. Life Sci 2021; 284:119877. [PMID: 34384832 DOI: 10.1016/j.lfs.2021.119877] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/25/2021] [Accepted: 07/31/2021] [Indexed: 11/16/2022]
Abstract
Recently, microfabrication technology has been developed to increase the permeability of drugs for transdermal delivery. Microneedles are ultra-small needles usually in the micron size range (different dimensions in micron), generate pores, and allow for delivery of local medication in the systemic circulation via skin. The microneedles have been available in dissolving, solid, coated, hollow, and hydrogel-based microneedles. Dissolving microneedles have been fabricated using micro-molding, photo-polymerization, drawing lithography and droplet blowing techniques. Dissolving microneedles could be a valuable option for the delivery of low molecular weight drugs, peptides, enzymes, vaccines and bio-therapeutics. It consists of water-soluble materials including maltose, polyvinyl pyrrolidone, chondroitin sulfate, dextran, hyaluronic acid, and albumin. The microneedles have almost dissolved after patch removal, leaving only blunt stubs behind, which are easily removable. In this review, we summarize the major building blocks, classification, fabrication techniques, characterization, diffusion models and application of microneedles in diverse area. We also reviewed the regulatory aspects, computational studies, patents, clinical data, and market trends of microneedles.
Collapse
Affiliation(s)
- Mayuri Dalvi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pratik Kharat
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
46
|
Grammatikopoulou MG, Gkiouras K, Dardiotis E, Zafiriou E, Tsigalou C, Bogdanos DP. Peeking into the future: Transdermal patches for the delivery of micronutrient supplements. Metabol Open 2021; 11:100109. [PMID: 34337377 PMCID: PMC8318979 DOI: 10.1016/j.metop.2021.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Adhesive transdermal delivery devices (patches) are the latest advancement in the delivery of micronutrients. A common challenge in this mode of delivery includes surpassing the physical barrier of the skin, while the use of microneedle (MN) arrays, or pretreatment of the skin with MNs can be used for a more successful outcome. Limited evidence from human non-randomized trials point to a sub-optimal delivery of iron through skin patches, although no MNs were used in those trials. Moreover, the use of patches proved inefficient in reducing the prevalence of micronutrient deficiencies in post-bariatric surgery patients. The delivery of minerals was tested in animals using reservoir-type patches, gel/foam patches, MNs and iontophoresis. Results from these studies indicate a possible interplay between the dietary manipulation of mineral intake and the trandermal delivery through patches, as reduced, or regular dietary intake seems to increase absorption of the delivered mineral. Moreover, intervention duration could be an additional factor affecting absorption. Possible adverse events from animal studies include redness or decolorization of skin. In vitro and ex vivo studies revealed an increase in vitamin K, vitamin D and iron delivery, however a variety of methodological discrepancies are apparent in these studies, including the models used, the length of the MNs, the duration of application, temperature control and total micronutrient load in the patches. Data indicate that pre-treating the skin with MNs might enhance delivery; however, a source of variability in the observed effectiveness might include the different molecular weights of the nutrients used, skin factors, the ideal tip radius and MN wall thickness. Non-human studies indicate a potential benefit in combining MN with iontophoresis. Presently, the transdermal delivery seems promising with regard to nutritional supplementation, however limited evidence exists for its efficacy in humans. Future research should aim to control for both intervention duration, possible deficiency status and for the dietary intake of participants.
Collapse
Affiliation(s)
- Maria G Grammatikopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Department of Nutritional Sciences & Dietetics, Faculty of Health Sciences, International Hellenic University, Alexander Campus, Thessaloniki, Greece
| | - Konstantinos Gkiouras
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Tsigalou
- Department of Microbiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
47
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
48
|
Friedman N, Dagan A, Elia J, Merims S, Benny O. Physical properties of gold nanoparticles affect skin penetration via hair follicles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102414. [PMID: 34171468 DOI: 10.1016/j.nano.2021.102414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Drug penetration through the skin is significant for both transdermal and dermal delivery. One mechanism that has attracted attention over the last two decades is the transport pathway of nanoparticles via hair follicle, through the epidermis, directly to the pilosebaceous unit and blood vessels. Studies demonstrate that particle size is an important factor for drug penetration. However, in order to gain more information for the purpose of improving this mode of drug delivery, a thorough understanding of the optimal physical particle properties is needed. In this study, we fabricated fluorescently labeled gold nanoparticles (GNP) with a tight control over the size and shape. The effect of the particles' physical parameters on follicular penetration was evaluated histologically. We used horizontal human skin sections and found that the optimal size for polymeric particles is 0.25 μm. In addition, shape penetration experiments revealed gold nanostars' superiority over spherical particles. Our findings suggest the importance of the particles' physical properties in the design of nanocarriers delivered to the pilosebaceous unit.
Collapse
Affiliation(s)
- Nethanel Friedman
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Dagan
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jhonathan Elia
- Department of Plastic and Aesthetic Surgery, Hadassah Ein-Karem hospital, Jerusalem, Israel
| | - Sharon Merims
- Sharet Institute of Oncology, Hadassah Ein-Karem hospital, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
49
|
Sirbubalo M, Tucak A, Muhamedagic K, Hindija L, Rahić O, Hadžiabdić J, Cekic A, Begic-Hajdarevic D, Cohodar Husic M, Dervišević A, Vranić E. 3D Printing-A "Touch-Button" Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics 2021; 13:924. [PMID: 34206285 PMCID: PMC8308681 DOI: 10.3390/pharmaceutics13070924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.
Collapse
Affiliation(s)
- Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| | - Ahmet Cekic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Derzija Begic-Hajdarevic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Maida Cohodar Husic
- Department of Mechanical Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo Setaliste 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (D.B.-H.); (M.C.H.)
| | - Almir Dervišević
- Head and Neck Surgery, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (A.T.); (L.H.); (O.R.); (J.H.)
| |
Collapse
|
50
|
Abstract
The application of microneedles (MNs) for minimally invasive biological fluid sampling is rapidly emerging, offering a user-friendly approach with decreased insertion pain and less harm to the tissues compared to conventional needles. Here, a finger-powered microneedle array (MNA) integrated with a microfluidic chip was conceptualized to extract body fluid samples. Actuated by finger pressure, the microfluidic device enables an efficient approach for the user to collect their own body fluids in a simple and fast manner without the requirement for a healthcare worker. The processes for extracting human blood and interstitial fluid (ISF) from the body and the flow across the device, estimating the amount of the extracted fluid, were simulated. The design in this work can be utilized for the minimally invasive personalized medical equipment offering a simple usage procedure.
Collapse
|