1
|
Landis GN, Baybutt B, Das S, Fan Y, Olsen K, Yan K, Tower J. Mifepristone and rapamycin have non-additive benefits for life span in mated female Drosophila. Fly (Austin) 2024; 18:2419151. [PMID: 39440794 PMCID: PMC11514543 DOI: 10.1080/19336934.2024.2419151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The drugs mifepristone and rapamycin were compared for their relative ability to increase the life span of mated female Drosophila melanogaster. Titration of rapamycin indicated an optimal concentration of approximately 50 μM, which increased median life span here by average +81%. Meta-analysis of previous mifepristone titrations indicated an optimal concentration of approximately 466 μM, which increased median life span here by average +114%. Combining mifepristone with various concentrations of rapamycin did not produce further increases in life span, and instead reduced life span relative to either drug alone. Assay of maximum midgut diameter indicated that rapamycin was equally efficacious as mifepristone in reducing mating-induced midgut hypertrophy. The mito-QC mitophagy reporter is a previously described green fluorescent protein (GFP)-mCherry fusion protein targeted to the outer mitochondrial membrane. Inhibition of GFP fluorescence by the acidic environment of the autophagolysosome yields an increased red/green fluorescence ratio indicative of increased mitophagy. Creation of a multi-copy mito-QC reporter strain facilitated assay in live adult flies, as well as in dissected midgut tissue. Mifepristone was equally efficacious as rapamycin in activating the mito-QC mitophagy reporter in the adult female fat-body and midgut. The data suggest that mifepristone and rapamycin act through a common pathway to increase mated female Drosophila life span, and implicate increased mitophagy and decreased midgut hypertrophy in that pathway.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Britta Baybutt
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shoham Das
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yijie Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kate Olsen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karissa Yan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Tsai SF, Hsu PL, Yeh MC, Hung HC, Shih MMC, Chung BC, Wang CY, Chang CJ, Kuo YM. High-fat diet-induced increase in glucocorticoids contributes to adipogenesis in obese mice. Biomed J 2024:100772. [PMID: 39048079 DOI: 10.1016/j.bj.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study was designed to examine how glucocorticoids (GCs) induced by a long-term ingestion of high-fat diet (HFD) mediate the HFD-induced adipose expansion and obesity. MATERIAL AND METHODS To address this goal, we used a unique L/L mouse model that fails to induce its corticosterone (CORT) level, a major type of GCs in rodents, after prolonged exposure to an HFD. RESULTS We found that, after receiving a 12-week HFD feeding, the L/L mice show less weight gain, milder adipose expansion, and higher plasma levels of triglycerides than the wild-type mice. These changes were reversed by replenishing CORT to L/L mice. When examining the expression levels of various molecules linked to lipid uptake and de novo lipogenesis in CORT-induced adipose expansion, we observed a reduction in the expression of adipose preadipocyte factor 1 (Pref-1), a key regulator in adipogenesis. In 3T3-L1 preadipocyte-like cells, dexamethasone, an agonist of the glucocorticoid receptor, also reduced expressions of Pref-1 and facilitated intracellular accumulation of lipids. CONCLUSIONS Our results suggest that fat ingestion-induced release of CORT contributes to adipose expansion and development of obesity and highlight the pathogenic role of CORT-mediated downregulation of adipose Pref-1 in diet-induced obesity.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Mei-Chen Yeh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chi Mei Medical Center, Tainan, 710402, Taiwan
| | - Monica Meng-Chun Shih
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan
| | - Bon-Chu Chung
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115021, Taiwan; Graduate Institute of Biomedical Sciences, Neuroscience and Brain Disease Center, China Medical University, Taichung, 404328, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600566, Taiwan.
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701401, Taiwan.
| |
Collapse
|
3
|
Landis GN, Bell HS, Peng OK, Fan Y, Yan K, Baybutt B, Tower J. Conditional Inhibition of Eip75B Eliminates the Effects of Mating and Mifepristone on Lifespan in Female Drosophila. Cells 2024; 13:1123. [PMID: 38994975 PMCID: PMC11240670 DOI: 10.3390/cells13131123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
Mating in female Drosophila melanogaster causes midgut hypertrophy and reduced lifespan, and these effects are blocked by the drug mifepristone. Eip75B is a transcription factor previously reported to have pleiotropic effects on Drosophila lifespan. Because Eip75B null mutations are lethal, conditional systems and/or partial knock-down are needed to study Eip75B effects in adults. Previous studies showed that Eip75B is required for adult midgut cell proliferation in response to mating. To test the possible role of Eip75B in mediating the lifespan effects of mating and mifepristone, a tripartite FLP-recombinase-based conditional system was employed that provides controls for genetic background. Expression of a Hsp70-FLP transgene was induced in third instar larvae by a brief heat pulse. The FLP recombinase catalyzed the recombination and activation of an Actin5C-GAL4 transgene. The GAL4 transcription factor in turn activated expression of a UAS-Eip75B-RNAi transgene. Inhibition of Eip75B activity was confirmed by loss of midgut hypertrophy upon mating, and the lifespan effects of both mating and mifepristone were eliminated. In addition, the negative effects of mifepristone on egg production were eliminated. The data indicate that Eip75B mediates the effects of mating and mifepristone on female midgut hypertrophy, egg production, and lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
4
|
Contreras PH, Vigil P. Across-species benefits of adrenalectomy on congenital generalized lipoatrophic diabetes: a review. Front Endocrinol (Lausanne) 2024; 14:1151873. [PMID: 38260129 PMCID: PMC10801166 DOI: 10.3389/fendo.2023.1151873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024] Open
Abstract
Two adrenalectomies py -45erformed fourteen years apart notoriously alleviated insulin resistance in a female teenager with Congenital Generalized Lipoatrophy (CGL, 1988) and in a murine model of CGL (2002). Following a successful therapeutic trial with anti-glucocorticoids, we performed the first surgical procedure on an 18-year-old girl. Before surgery, the anti-glucocorticoid therapy produced a rapid and striking drop in fasting serum insulin levels (from over 400 to 7.0 mU/L) and a slower -but impressive- fall in fasting serum triglycerides from 7,400 to 220-230 mg/dL. In contrast, fasting serum glucose levels dropped more slowly, from 225-290 to 121-138 mg/dL. Two weeks following total adrenalectomy, the fasting serum glucose level was 98 mg/dL, with a corresponding serum insulin level of 10 mU/L. During an Oral Glucose Tolerance Test, the 2-hour serum glucose was 210 mg/dL, and serum insulin values during the test did not exceed 53 mU/L. In 2002, the A-ZIP/F1 hypoleptinemic mouse had its adrenal glands removed. Even though this CGL model does not respond well to leptin replacement, an infusion of recombinant leptin reduced the characteristic hypercorticosteronemia of this murine model of CGL. Adrenalectomy in this transgenic mouse improved insulin sensitivity in the liver and muscle. In summary, adrenalectomy -in both a human and a mouse case of CGL- limited adipose tissue exposure to corticosteroid action and led to a notorious metabolic improvement. On a broader scenario, given that leptin restrains the adrenal axis, the reduced leptin activity of the leptin resistance displayed by obese subjects should lead to adrenal axis overactivity. This overactivity should result in elevated serum levels of free cortisol, free fatty acids, and glycerol. In this manner, leptin resistance should lead to peripheral (adipose tissue, liver, and muscle) insulin resistance and islet beta-cell apoptosis, paving the way to Type 2 diabetes.
Collapse
Affiliation(s)
- Patricio H. Contreras
- Reproductive Endocrinology Unit, Reproductive Health Research Institute, Santiago, Chile
- Endocrine and Gynecology Units, Fundación Médica San Cristóbal, Santiago, Chile
| | - Pilar Vigil
- Reproductive Endocrinology Unit, Reproductive Health Research Institute, Santiago, Chile
- Endocrine and Gynecology Units, Fundación Médica San Cristóbal, Santiago, Chile
| |
Collapse
|
5
|
Landis GN, Bell HS, Peng O, Bognar B, Tong A, Manea TD, Bao H, Han X, Tower J. Dhr96[1] mutation and maternal tudor[1] mutation increase life span and reduce the beneficial effects of mifepristone in mated female Drosophila. PLoS One 2023; 18:e0292820. [PMID: 38127988 PMCID: PMC10735022 DOI: 10.1371/journal.pone.0292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
Mating and receipt of male Sex Peptide hormone cause increased egg laying, increased midgut size and decreased life span in female Drosophila. Feeding mated females with the synthetic steroid mifepristone decreases egg production, reduces midgut size, and increases life span. Here, several gene mutations were assayed to investigate possible mechanisms for mifepristone action. Drosophila Dhr96 is a hormone receptor, and a key positive regulator of midgut lipid uptake and metabolism. Dhr96[1] null mutation increased female life span, and reduced the effects of mifepristone on life span, suggesting that Dhr96[1] mutation and mifepristone may act in part through the same mechanism. Consistent with this idea, lipidomics analysis revealed that mating increases whole-body levels of triglycerides and fatty-acids in triglycerides, and these changes are reversed by mifepristone. Maternal tudor[1] mutation results in females that lack the germ-line and produce no eggs. Maternal tudor[1] mutation increased mated female life span, and reduced but did not eliminate the effects of mating and mifepristone on life span. This indicates that decreased egg production may be related to the life span benefits of mifepristone, but is not essential. Mifepristone increases life span in w[1118] mutant mated females, but did not increase life span in w[1118] mutant virgin females. Mifepristone decreased egg production in w[1118] mutant virgin females, indicating that decreased egg production is not sufficient for mifepristone to increase life span. Mifepristone increases life span in virgin females of some, but not all, white[+] and mini-white[+] strains. Backcrossing of mini-white[+] transgenes into the w[1118] background was not sufficient to confer a life span response to mifepristone in virgin females. Taken together, the data support the hypothesis that mechanisms for mifepristone life span increase involve reduced lipid uptake and/or metabolism, and suggest that mifepristone may increase life span in mated females and virgin females through partly different mechanisms.
Collapse
Affiliation(s)
- Gary N. Landis
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hans S. Bell
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Oscar Peng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Brett Bognar
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andy Tong
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Tomás D. Manea
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John Tower
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Halloun R, Galderisi A, Caprio S, Weiss R. Adipose Tissue Insulin Resistance Is Not Associated With Changes in the Degree of Obesity in Children and Adolescents. J Clin Endocrinol Metab 2023; 108:1053-1060. [PMID: 36469736 PMCID: PMC10306082 DOI: 10.1210/clinem/dgac700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
CONTEXT The "carbohydrate-insulin model" claims that adipose tissue insulin sensitivity explains development of obesity via adipocyte energy storage and/or low postprandial metabolic fuel levels. OBJECTIVE We tested whether adipose tissue insulin sensitivity predicts changes in the degree of obesity over time. METHODS This secondary analysis of an observational study of youth with obesity included 213 youths at a pediatric weight management clinic. Adipose tissue insulin sensitivity/resistance and whole-body insulin sensitivity were evaluated using oral glucose tolerance test (OGTT)-derived surrogates in the face of changes in the degree of obesity over time. The main outcome measure was change in body mass index (BMI) z score. RESULTS Mean BMI z change was 0.05 ± 0.28 (range, -1.15 to 1.19), representing a broad distribution of changes in the degree of obesity over a follow-up period of 1.88 ± 1.27 years. Adipose tissue insulin resistance was not associated with changes in the degree of obesity in univariate or multivariate analyses (adjusted for baseline age, BMI z score, sex, ethnicity, and time of follow-up). Low postprandial free fatty acid concentrations or their suppression during the OGTT were not associated with changes in the degree of obesity in univariate or multivariate analyses. Whole-body insulin sensitivity was not associated with changes in the degree of obesity in univariate or multivariate analyses. CONCLUSION In this secondary analysis, in youth with obesity, adipose tissue insulin resistance is not protective from increases of the degree of obesity and skeletal muscle insulin resistance is not associated with increases of the degree of obesity.The analysis was performed using data derived from NCT00000112 and NCT00536250.
Collapse
Affiliation(s)
- Rana Halloun
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center, Haifa 3109601, Israel
| | - Alfonso Galderisi
- Department of Women and Child Health, University of Padova, Via Giustiniani, 3, 35128 Padova, Italy
| | - Sonia Caprio
- Department of Pediatrics, Yale University, Yale school of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | - Ram Weiss
- Department of Pediatrics, Ruth Children's Hospital, Rambam Medical Center, Haifa 3109601, Israel
| |
Collapse
|
7
|
N. Landis G, Ko S, Peng O, Bognar B, Khmelkov M, S. Bell H, Tower J. A screen of small molecule and genetic modulators of life span in female Drosophila identifies etomoxir, RH5849 and unanticipated temperature effects. Fly (Austin) 2022; 16:397-413. [PMID: 36412257 PMCID: PMC9683069 DOI: 10.1080/19336934.2022.2149209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Mifepristone increases life span in female Drosophila melanogaster, and its molecular target(s) remain unclear. Here small molecule and genetic interventions were tested for ability to mimic mifepristone, or to decrease life span in a way that can be rescued by mifepristone. Etomoxir inhibits lipid metabolism, and significantly increased life span in virgin and mated females, but not males, at 50 µM concentration. Pioglitazone is reported to activate both mammalian PPARγ and its Drosophila homolog Eip75B. Pioglitazone produced minor and inconsistent benefits for female Drosophila life span, and only at the lowest concentrations tested. Ecdysone is a Drosophila steroid hormone reported to regulate responses to mating, and RH5849 is a potent mimic of ecdysone. RH5849 reduced virgin female life span, and this was partly rescued by mifepristone. Mifepristone did not compete with RH5849 for activation of an ecdysone receptor (EcR)-responsive transgenic reporter, indicating that the relevant target for mifepristone is not EcR. The conditional GAL4/GAL80ts system was used in attempt to test the effect of an Eip75B RNAi construct on female life span. However, the 29°C temperature used for induction reduced or eliminated mating-induced midgut hypertrophy, the negative life span effects of mating, and the positive life span effects of mifepristone. Even when applied after mating was complete, a shift to 29°C temperature reduced mating-induced midgut hypertrophy by half, and the life span effects of mating by 4.8-fold. Taken together, these results identify promising small molecules for further analysis, and inform the design of experiments involving the GAL4/GAL80ts system.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Ko
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oscar Peng
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brett Bognar
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael Khmelkov
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Ortiz R, Kluwe B, Lazarus S, Teruel MN, Joseph JJ. Cortisol and cardiometabolic disease: a target for advancing health equity. Trends Endocrinol Metab 2022; 33:786-797. [PMID: 36266164 PMCID: PMC9676046 DOI: 10.1016/j.tem.2022.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
Stress, in both intrinsic psychosocial and extrinsic physical environmental forms, can impact the development of, and outcomes in, cardiovascular disease (CVD) through allostatic load. Cortisol is a core hormonal mediator of allostatic load produced in response to various stresses. Alterations in morning serum cortisol and daily diurnal cortisol have been associated with adiposity, dyslipidemia, incident diabetes, and CVDs such as hypertension. The review examines the role of cortisol as a key mechanistic link between stress physiology and cardiometabolic disease. Importantly, we discuss the role of targeting cortisol through pharmacological, behavioral, and environmental interventions to advance health equity in cardiometabolic disease.
Collapse
Affiliation(s)
- Robin Ortiz
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA; Institute for Excellence of Health Equity, NYU Langone Health, New York, NY, USA
| | - Bjorn Kluwe
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sophie Lazarus
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Mary N Teruel
- Department of Biochemistry and the Drukier Institute for Children's Health, Weill Cornell Medicine, New York, NY, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
9
|
Karena ZV, Shah H, Vaghela H, Chauhan K, Desai PK, Chitalwala AR. Clinical Utility of Mifepristone: Apprising the Expanding Horizons. Cureus 2022; 14:e28318. [PMID: 36158399 PMCID: PMC9499832 DOI: 10.7759/cureus.28318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Mifepristone is a progesterone and glucocorticoid receptor antagonist. Medical abortion with mifepristone and prostaglandin has revolutionized the abortion process extending abortion care to the doors of females. From as low as 2 mg/day to doses extending to 600 mg, from daily dosing to single dosage treatment, mifepristone has a wide perspective in the treatment of various pathologies. Cervical dilatation and myometrial contractility have made the utility of mifepristone feasible for second-trimester termination of pregnancy and induction of labor awaiting Food and Drug Administration approvals. Its anti-progesterone action on the menstrual cycle has a new dimension of use as a contraceptive, as well as use as a menstruation inductive agent. Its role in endometriosis, ectopic pregnancy, and adenomyosis requires more intensive research. Apoptotic action of mifepristone, interference of heterotypic cell adhesion to the basement membrane, cell migration, growth inhibition of various cancer cell lines, decreased epidermal growth factor expression, suppression of invasive and metastatic cancer potential, increase in tumor necrosis factor, downregulation of cyclin-dependent kinase 2, B-cell lymphoma 2, and Nuclear factor kappa B have opened its potential to be explored as anti-cancer treatment and its effects on leiomyoma. The drug needs to be studied more for the prospectus of its anti-glucocorticoid actions in a wider dimension beyond its acquiescence for the treatment of Cushing syndrome.
Collapse
|
10
|
Landis GN, Riggan L, Bell HS, Vu W, Wang T, Wang I, Tejawinata FI, Ko S, Tower J. Mifepristone Increases Life Span in Female Drosophila Without Detectable Antibacterial Activity. FRONTIERS IN AGING 2022; 3:924957. [PMID: 35935727 PMCID: PMC9354577 DOI: 10.3389/fragi.2022.924957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Parker JC, Moraitis AG, Belanoff JK. Biochemical and Radiological Changes in Liver Steatosis Following Mifepristone Treatment in Patients With Hypercortisolism. AACE Clin Case Rep 2022; 8:25-29. [PMID: 35097198 PMCID: PMC8784715 DOI: 10.1016/j.aace.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Case Report Discussion Conclusion
Collapse
|
12
|
Asch RH, Holmes SE, Jastreboff AM, Potenza MN, Baldassarri SR, Carson RE, Pietrzak RH, Esterlis I. Lower synaptic density is associated with psychiatric and cognitive alterations in obesity. Neuropsychopharmacology 2022; 47:543-552. [PMID: 34294874 PMCID: PMC8674236 DOI: 10.1038/s41386-021-01111-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Obesity is a serious medical condition that often co-occurs with stress-related psychiatric disorders. It is recognized that the brain plays a key role in the (patho)physiology of obesity and that there is a bidirectional relationship between obesity and psychopathology, yet molecular mechanisms altered in obesity have not been fully elucidated. Thus, we investigated relationships between obesity and synaptic density in vivo using the radioligand [11C]UCB-J (which binds to synaptic glycoprotein SV2A) and positron emission tomography in individuals with obesity, and with or without stress-related psychiatric disorders. Regions of interest were the dorsolateral prefrontal cortex, orbitofrontal cortex, ventromedial, amygdala, hippocampus, and cerebellum. Forty individuals with a body mass index (BMI) ≥ 25 kg/m2 (overweight/obese), with (n = 28) or without (n = 12) psychiatric diagnosis, were compared to 30 age- and sex-matched normal weight individuals (BMI < 25), with (n = 14) or without (n = 16) psychiatric diagnosis. Overall, significantly lower synaptic density was observed in overweight/obese relative to normal weight participants (ηp2 = 0.193, F = 2.35, p = 0.042). Importantly, in participants with stress-related psychiatric diagnoses, we found BMI to be negatively correlated with synaptic density in all regions of interest (p ≤ 0.03), but no such relationship observed for mentally healthy controls (p ≥ 0.68). In the stress-related psychiatric groups, dorsolateral prefrontal cortex synaptic density was negatively associated with measures of worry (r = -0.46, p = 0.01), tension/anxiety (r = -0.38, p = 0.04), fatigue (r = -0.44, p = 0.02), and attentional difficulties (r = -0.44, p = 0.02). In summary, the findings of this novel in vivo experiment suggest compounding effects of obesity and stress-related psychopathology on the brain and the associated symptomatology that may impact functioning. This offers a novel biological mechanism for the relationship between overweight/obesity and stress-related psychiatric disorders that may guide future intervention development efforts.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ania M Jastreboff
- Department of Internal Medicine (Endocrinology & Metabolism) and Department of Pediatrics (Pediatric Endocrinology), Yale School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Richard E Carson
- Departments of Radiology and Biomedical Imaging and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
13
|
Landis GN, Hilsabeck TAU, Bell HS, Ronnen-Oron T, Wang L, Doherty DV, Tejawinata FI, Erickson K, Vu W, Promislow DEL, Kapahi P, Tower J. Mifepristone Increases Life Span of Virgin Female Drosophila on Regular and High-fat Diet Without Reducing Food Intake. Front Genet 2021; 12:751647. [PMID: 34659367 PMCID: PMC8511958 DOI: 10.3389/fgene.2021.751647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The synthetic steroid mifepristone is reported to have anti-obesity and anti-diabetic effects in mammals on normal and high-fat diets (HFD). We previously reported that mifepristone blocks the negative effect on life span caused by mating in female Drosophila melanogaster. Methods: Here we asked if mifepristone could protect virgin females from the life span-shortening effect of HFD. Mifepristone was assayed for effects on life span in virgin females, in repeated assays, on regular media and on media supplemented with coconut oil (HFD). The excrement quantification (EX-Q) assay was used to measure food intake of the flies after 12 days mifepristone treatment. In addition, experiments were conducted to compare the effects of mifepristone in virgin and mated females, and to identify candidate mifepristone targets and mechanisms. Results: Mifepristone increased life span of virgin females on regular media, as well as on media supplemented with either 2.5 or 5% coconut oil. Food intake was not reduced in any assay, and was significantly increased by mifepristone in half of the assays. To ask if mifepristone might rescue virgin females from all life span-shortening stresses, the oxidative stressor paraquat was tested, and mifepristone produced little to no rescue. Analysis of extant metabolomics and transcriptomics data suggested similarities between effects of mifepristone in virgin and mated females, including reduced tryptophan breakdown and similarities to dietary restriction. Bioinformatics analysis identified candidate mifepristone targets, including transcription factors Paired and Extra-extra. In addition to shortening life span, mating also causes midgut hypertrophy and activation of the lipid metabolism regulatory factor SREBP. Mifepristone blocked the increase in midgut size caused by mating, but did not detectably affect midgut size in virgins. Finally, mating increased activity of a SREBP reporter in abdominal tissues, as expected, but reporter activity was not detectably reduced by mifepristone in either mated or virgin females. Conclusion: Mifepristone increases life span of virgin females on regular and HFD without reducing food intake. Metabolomics and transcriptomics analyses suggest some similar effects of mifepristone between virgin and mated females, however reduced midgut size was observed only in mated females. The results are discussed regarding possible mifepristone mechanisms and targets.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tyler A. U. Hilsabeck
- Buck Institute for Research on Aging, Novato, CA, United States
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, CA, United States
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Tal Ronnen-Oron
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Devon V. Doherty
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Felicia I. Tejawinata
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Katherine Erickson
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - William Vu
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. L. Promislow
- Department of Biology, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, United States
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Varlamov EV, Purnell JQ, Fleseriu M. Glucocorticoid Receptor Antagonism as a New "Remedy" for Insulin Resistance-Not There Yet! J Clin Endocrinol Metab 2021; 106:e2447-e2449. [PMID: 33659987 PMCID: PMC8118574 DOI: 10.1210/clinem/dgab127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Elena V Varlamov
- Departments of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
- Pituitary Center, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan Q Purnell
- Departments of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Maria Fleseriu
- Departments of Medicine, Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, OR, USA
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
- Pituitary Center, Oregon Health & Science University, Portland, OR, USA
- Correspondence: Maria Fleseriu, MD, Oregon Health & Science University, Mail Code CH8N, 3303 South Bond Avenue, Portland, Oregon 97239, USA. E-mail:
| |
Collapse
|