1
|
Kiyozumi D. Distinct actions of testicular endocrine and lumicrine signaling on the proximal epididymal transcriptome. Reprod Biol Endocrinol 2024; 22:40. [PMID: 38600586 PMCID: PMC11005294 DOI: 10.1186/s12958-024-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
- Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
- Research Institute for Microbial Diseases, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Kiyozumi D. Busulfan administration replicated the characteristics of the epididymal initial segment observed in mice lacking testis-epididymis lumicrine signaling. J Reprod Dev 2024; 70:104-114. [PMID: 38346723 PMCID: PMC11017096 DOI: 10.1262/jrd.2023-102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024] Open
Abstract
The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Japan Science and Technology Agency, Tokyo 102-0076, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Li Y, Shi H, Zhao Z, Xu M. Identification of castration-dependent and -independent driver genes and pathways in castration-resistant prostate cancer (CRPC). BMC Urol 2022; 22:162. [PMID: 36258196 PMCID: PMC9580185 DOI: 10.1186/s12894-022-01113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the most diagnosed cancers in the world. PCa inevitably progresses to castration-resistant prostate cancer (CRPC) after androgen deprivation therapy treatment, and castration-resistant state means a shorter survival time than other causes. Here we aimed to define castration-dependent and -independent diver genes and molecular pathways in CRPC which are responsible for such lethal metastatic events. Methods By employing digital gene expression (DGE) profiling, the alterations of the epididymal gene expression profile in the mature and bilateral castrated rat were explored. Then we detect and characterize the castration-dependent and -independent genes and pathways with two data set of CPRC-associated gene expression profiles publicly available on the NCBI. Results We identified 1,632 up-regulated and 816 down-regulated genes in rat’s epididymis after bilateral castration. Differential expression analysis of CRPC samples compared with the primary PCa samples was also done. In contrast to castration, we identified 97 up-regulated genes and 128 down-regulated genes that changed in both GEO dataset and DGE profile, and 120 up-regulated genes and 136 down-regulated genes changed only in CRPC, considered as CRPC-specific genes independent of castration. CRPC-specific DEGs were mainly enriched in cell proliferation, while CRPC-castration genes were associated with prostate gland development. NUSAP1 and NCAPG were identified as key genes, which might be promising biomarkers of the diagnosis and prognosis of CRPC. Conclusion Our study will provide insights into gene regulation of CRPC dependent or independent of castration and will improve understandings of CRPC development and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12894-022-01113-5.
Collapse
Affiliation(s)
- Yan Li
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China.
| | - Hui Shi
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Zhenjun Zhao
- College of Life Sciences, Yantai University, 30th Qingquan Road, 264005, Yantai, Shandong Province, China
| | - Minghui Xu
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Yokota S, Takeda K, Oshio S. Spatiotemporal Small Non-coding RNAs Expressed in the Germline as an Early Biomarker of Testicular Toxicity and Transgenerational Effects Caused by Prenatal Exposure to Nanosized Particles. FRONTIERS IN TOXICOLOGY 2022; 3:691070. [PMID: 35295114 PMCID: PMC8915876 DOI: 10.3389/ftox.2021.691070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
In recent years, an apparent decline in human sperm quality has been observed worldwide. One in every 5.5 couples suffers from infertility, with male reproductive problems contributing to nearly 40% of all infertility cases. Although the reasons for the increasing number of infertility cases are largely unknown, both genetic and environmental factors can be contributing factors. In particular, exposure to chemical substances during mammalian male germ cell development has been linked to an increased risk of infertility in later life owing to defective sperm production, reproductive tract obstruction, inflammation, and sexual disorders. Prenatal exposure to nanomaterials (NMs) is no exception. In animal experiments, maternal exposure to NMs has been reported to affect the reproductive health of male offspring. Male germ cells require multiple epigenetic reprogramming events during their lifespan to acquire reproductive capacity. Given that spermatozoa deliver the paternal genome to oocytes upon fertilization, we hypothesized that maternal exposure to NMs negatively affects male germ cells by altering epigenetic regulation, which may in turn affect embryo development. Small non-coding RNAs (including microRNAs, PIWI-interacting RNAs, tRNA-derived small RNAs, and rRNA-derived small RNAs), which are differentially expressed in mammalian male germ cells in a spatiotemporal manner, could play important regulatory roles in spermatogenesis and embryogenesis. Thus, the evaluation of RNAs responsible for sperm fertility is of great interest in reproductive toxicology and medicine. However, whether the effect of maternal exposure to NMs on spermatogenesis in the offspring (intergenerational effects) really triggers multigenerational effects remains unclear, and infertility biomarkers for evaluating paternal inheritance have not been identified to date. In this review, existing lines of evidence on the effects of prenatal exposure to NMs on male reproduction are summarized. A working hypothesis of the transgenerational effects of sperm-derived epigenomic changes in the F1 generation is presented, in that such maternal exposure could affect early embryonic development followed by deficits in neurodevelopment and male reproduction in the F2 generation.
Collapse
Affiliation(s)
- Satoshi Yokota
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Ken Takeda
- Division of Toxicology and Health Science, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Shigeru Oshio
- Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| |
Collapse
|
5
|
Pilutin A, Misiakiewicz-Has K, Rzeszotek S, Wiszniewska B. Morphological and morphometric changes and epithelial apoptosis are induced in the rat epididymis by long-term letrozole treatment. Eur J Histochem 2021; 65:3259. [PMID: 34474552 PMCID: PMC8431869 DOI: 10.4081/ejh.2021.3259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
The epididymis is an organ that plays a key role in sperm maturation. The aim of this study was to examine the association between the chronic treatment of mature male rats with letrozole and morphological evaluation and morphometric values of epididymis as well as changes in the number of apoptotic cells in epididymal epithelium. Adult rats were treated with letrozole for 6 months and the epididymis weight, morphology, morphometric values and the number of apoptotic cells in the epithelium were examined. Long-term aromatase inhibition resulted in presence of intraepithelial clear vacuoles, hyperplasia of clear cells and a hyperplastic alteration in the epithelium known as a cribriform change. Moreover, changes in diameters of the epididymal duct and the epididymal lumen and changes in the epididymal epithelium height were observed. The number of apoptotic epithelial cells was increased in letrozole-treated group. It can be indicated that chronic treatment with letrozole can affect morphology, morphometric values and apoptosis in the epididymis of adult male rats. Observed changes are similar to that observed in the aging processes and may also be important for patients treated with aromatase inhibitors.
Collapse
Affiliation(s)
- Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin.
| | | | - Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin.
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin.
| |
Collapse
|
6
|
Castration causes an increase in lysosomal size and upregulation of cathepsin D expression in principal cells along with increased secretion of procathepsin D and prosaposin oligomers in adult rat epididymis. PLoS One 2021; 16:e0250454. [PMID: 33914781 PMCID: PMC8084160 DOI: 10.1371/journal.pone.0250454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
In the epididymis, lysosomal proteins of the epithelial cells are normally targeted from the Golgi apparatus to lysosomes for degradation, although their secretion into the epididymal lumen has been documented and associated with sperm maturation. In this study, cathepsin D (CatD) and prosaposin (PSAP) were examined in adult epididymis of control, and 2-day castrated rats without (Ct) and with testosterone replacement (Ct+T) to evaluate their expression and regulation within epididymal epithelial cells. By light microscope-immunocytochemistry, a quantitative increase in size of lysosomes in principal cells of Ct animals was noted from the distal initial segment to the proximal cauda. Androgen replacement did not restore the size of lysosomes to control levels. Western blot analysis revealed a significant increase in CatD expression in the epididymis of Ct animals, which suggested an upregulation of its expression in principal cells; androgens restored levels of CatD to that of controls. In contrast, PSAP expression in Ct animals was not altered from controls. Additionally, an increase in procathepsin D levels was noted from samples of the epididymal fluid of Ct compared to control animals, accompanied by an increased complex formation with PSAP. Moreover, an increased oligomerization of prosaposin was observed in the epididymal lumen of Ct rats, with changes reverted to controls in Ct+T animals. Taken together these data suggest castration causes an increased uptake of substrates that are acted upon by CatD in lysosomes of principal cells and in the lumen by procathepsin D. These substrates may be derived from apoptotic cells noted in the lumen of proximal regions and possibly by degenerating sperm in distal regions of the epididymis of Ct animals. Exploring the mechanisms by which lysosomal enzymes are synthesized and secreted by the epididymis may help resolve some of the issues originating from epididymal dysfunctions with relevance to sperm maturation.
Collapse
|
7
|
Apoptosis in epididymis of sand rat Psammomys obesus, Cretzschmar, 1828: Effects of seasonal variations, castration and efferent duct ligation. Morphologie 2021; 105:288-297. [PMID: 33483186 DOI: 10.1016/j.morpho.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/20/2020] [Indexed: 12/06/2022]
Abstract
The aim of this study was to visualize apoptosis throughout the reproductive cycle and after castration, castration then treatment with testosterone, and ligation of efferent ducts. The sand rat, Psammomysobesus, Cretzschmar 1828, is a diurnal rodent belonging to the family Gerbillidae. Its breeding cycle is seasonal with reproduction in autumn, winter and early spring and a short resting period from late spring to early summer. Five groups of males were studied: (1) animals captured during the breeding season; (2) animals captured during the resting season; (3) animals castrated and kept 30 days; (4) animals castrated, kept 30 days, and then treated with testosterone for 15 days; (5) animals subjected to the ligation of efferent ducts and kept 30 days. Epididymis were removed and the presence of apoptotic cells was explored using the "Apostain" immunohistochemical method. Histological results showed cell and tissue remodeling. During the breeding season, a positive apoptotic signal was observed mainly in smooth muscle cells of caput and cauda epididymis. This signal persisted throughout the resting season. The orchiectomy induced apoptosis in almost of epithelial and connective cells. However, this intense cell death was not reversed by treatment with testosterone. In animals that experienced efferent duct ligation, principal cells and smooth muscle cells showed a positive signal for apoptosis. Our results converge to qualify the sand rat epididymis as an excellent model for the study of apoptosis and argue for continued cell death, at least independent of circulating testosterone levels.
Collapse
|
8
|
Linden LDS, Bustamante-Filho IC, Souza APB, Lopes TN, Silva AFT, Tomé LM, Timmers LFMS, Santos SI, Neves AP. Structural modelling of the equine protein disulphide isomerase A1 and its quantification in the epididymis and seminal plasma. Andrologia 2020; 52:e13530. [DOI: 10.1111/and.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 01/05/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liana de Salles Linden
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| | | | | | - Tayná Nauê Lopes
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | - Luise Marcon Tomé
- Laboratório de Biotecnologia Universidade do Vale do Taquari – Univates Lajeado Brazil
| | | | | | - Adriana Pires Neves
- Programa de Pós‐graduação em Medicina Animal: Equinos Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Universidade Federal do Pampa (UNIPAMPA) Dom Pedrito Brazil
| |
Collapse
|
9
|
Pereira GR, de Lazari FL, Dalberto PF, Bizarro CV, Sontag ER, Koetz Junior C, Menegassi SRO, Barcellos JOJ, Bustamante-Filho IC. Effect of scrotal insulation on sperm quality and seminal plasma proteome of Brangus bulls. Theriogenology 2020; 144:194-203. [DOI: 10.1016/j.theriogenology.2020.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
|
10
|
戎 成, 杜 子, 刘 娟, 吴 新. [Expressions of HSP110 family members in the testes and epididymis of mice at different stages of development and their regulation by hormones]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1083-1088. [PMID: 31640949 PMCID: PMC6881726 DOI: 10.12122/j.issn.1673-4254.2019.09.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the expressions of the members of HSP110 family in the testis and epididymis of mice at different stages of development and whether they are regulated by hormones. METHODS The testicular and epididymis tissues of mice at different ages (14, 21, 28, 35, 42, 49, 70, and 90 days after birth, 3 mice at each age) were collected for RT-PCR detection of the expression levels of HSP110 family members. Forty-eight mice were randomized into 3 groups for sham operation, castration, or castration with testosterone injections every other day (starting at 7 days after castration), and at 1, 3, 5, and 7 days after first testosterone injection, the expressions of HSP110 family in the epididymis were detected using RT-PCR. RESULTS The mRNA expression levels of HSP110 family members underwent obvious variations with the development of the mice: HSPA4, HSPA4l and HSPH1 expressions in the testicles of the mice first increased and then decreased, and gradually became stable; they also exhibited similar temporal patterns of changes in the epididymis. In the castrated mice, the mRNA expressions of HSPA4 and HSPA4l in the epididymis decreased significantly with the reduction of serum hormone levels (P < 0.05), and became normal after the supplementation of exogenous hormone. CONCLUSIONS The expression levels of HSP110 family are affected by developmental regulation, and the expressions of HSPA4 and HSPA4l are under the regulation by hormones.
Collapse
Affiliation(s)
- 成婷 戎
- 合肥京东方医院药学科,安徽 合肥 230041Department of Pharmacy, Hefei BOE Hospital, Anhui, Hefei 230041, China
| | - 子伟 杜
- 合肥京东方医院药学科,安徽 合肥 230041Department of Pharmacy, Hefei BOE Hospital, Anhui, Hefei 230041, China
| | - 娟 刘
- 烟台毓璜顶医院 中心实验室,山东 烟台 264000Central Laboratory of Yantai Yuhuangding Hospital, Yantai 264000, China
| | - 新安 吴
- 合肥京东方医院药学科,安徽 合肥 230041Department of Pharmacy, Hefei BOE Hospital, Anhui, Hefei 230041, China
| |
Collapse
|
11
|
Deep sequencing reveals microRNA signature is altered in the rat epididymis following bilateral castration. Genes Genomics 2019; 41:757-766. [DOI: 10.1007/s13258-019-00803-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023]
|
12
|
Cyr DG, Dufresne J, Gregory M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod Toxicol 2018; 81:207-219. [PMID: 30130578 DOI: 10.1016/j.reprotox.2018.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/28/2022]
Abstract
Epididymal sperm maturation is a critical aspect of male reproduction in which sperm acquire motility and the ability to fertilize an ovum. Sperm maturation is dependent on the creation of a specific environment that changes along the epididymis and which enables the maturation process. The blood-epididymis barrier creates a unique luminal micro-environment, different from blood, by limiting paracellular transport and forcing receptor-mediated transport of macromolecules across the epididymal epithelium. Direct cellular communication between cells allows coordinated function of the epithelium. A limited number of studies have directly examined the effects of toxicants on junctional proteins and barrier function in the epididymis. Effects on the integrity of the blood-epididymis barrier have resulted in decreased fertility and, in some cases, the development of sperm granulomas. Studies have shown that in addition to tight junctions, proteins implicated in the maintenance of adherens junctions and gap junctions alter epididymal functions. This review will provide an overview of the types and roles of cellular junctions in the epididymis, and how these are targeted by different toxicants.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
13
|
Fang F, Ni K, Cai Y, Zhao Q, Shang J, Zhang X, Shen S, Xiong C. Busulfan administration produces toxic effects on epididymal morphology and inhibits the expression of ZO-1 and vimentin in the mouse epididymis. Biosci Rep 2017; 37:BSR20171059. [PMID: 29101242 PMCID: PMC5725615 DOI: 10.1042/bsr20171059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/12/2023] Open
Abstract
Busulfan is an alkane sulphonate currently used as an anticancer drug and to prepare azoospermic animal models, because it selectively destroys differentiated spermatogonia in the testes. However, few studies have focussed on the exact effects of busulfan treatment on the epididymis currently. The present study assessed the effect of busulfan on epididymal morphology and the blood-epididymis barrier in mice. We treated mice with a single injection of busulfan and detected the effect at different time points. We showed that busulfan was toxic to the morphological structure and function of the epididymis. Furthermore, busulfan treatment down-regulated the epididymal expression of vimentin and zonula occludens-1 (ZO-1) at the mRNA and protein levels. In addition, there was an increase in total androgen receptor (AR) levels, whereas the estrogen receptor-α (ER-α) levels were reduced, both in the caput and cauda regions after busulfan treatment, which may be secondary to the testicular damage. In conclusion, our study describes the effects of busulfan administration on the mouse epididymis and also provides a potential understanding of male infertility arising from chemotherapy-related defects in the epididymis.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ni
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiting Cai
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Shang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoke Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiliang Shen
- Department of Pathology, Zhong Shen Bioscience Inc., Wuhan, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center of Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
14
|
Falvo S, Di Fiore MM, Burrone L, Baccari GC, Longobardi S, Santillo A. Androgen and oestrogen modulation by D-aspartate in rat epididymis. Reprod Fertil Dev 2016; 28:1865-1872. [DOI: 10.1071/rd15092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/05/2015] [Indexed: 11/23/2022] Open
Abstract
Testosterone (T) synthesised in Leydig cells enters the epididymis and may there be converted into dihydrotestosterone (DHT) by 5α-reductase (5α-red) or into 17β-oestradiol (E2) by P450 aromatase (P450-aro). D-aspartate (D-Asp) is known to induce T synthesis in the testis. In this study, we investigated the effects of in vivo D-Asp administration in two major regions of the rat epididymis (Region I: initial segment, caput, corpus; Region II: cauda). The results suggest that exogenous D-Asp was taken up by both regions of rat epididymis. D-Asp administration induced a rapid increase in T, followed by a more gradual decrease in the T : DHT ratio in Region I. In Region II, T levels rapidly decreased and the T : DHT ratio was consistently lower relative to the control. Expression of 5α-red and androgen receptor genes showed a good correlation with DHT levels in both regions. D-Asp treatment also induced an increase of both E2 levels and oestradiol receptor-α (ERα) expression in Region I, whereas neither E2 levels nor ERα expression were affected in Region II. The early increase of P450-aro expression in Region I and late increase in Region II suggests a direct involvement of D-Asp modulation in P450-aro gene expression. Our results suggest that D-Asp modulates androgen and oestrogen levels and expression of androgen and oestrogen receptors in the rat epididymis by acting on the expression of 5α-red and P450-aro genes.
Collapse
|
15
|
Effect of Melatonin Intake on Oxidative Stress Biomarkers in Male Reproductive Organs of Rats under Experimental Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:614579. [PMID: 26064423 PMCID: PMC4438187 DOI: 10.1155/2015/614579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/11/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
Abstract
This study investigated the antioxidant system response of male reproductive organs during early and late phases of diabetes and the influence of melatonin treatment. Melatonin was administered to five-week-old Wistar rats throughout the experiment, in drinking water (10 μg/kg b.w). Diabetes was induced at 13 weeks of age by streptozotocin (4.5 mg/100 g b.w., i.p.) and animals were euthanized with 14 or 21 weeks old. Activities of catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and lipid peroxidation were evaluated in prostate, testis, and epididymis. The enzymes activities and lipid peroxidation were not affected in testis and epididymis after one or eight weeks of diabetes. Prostate exhibited a 3-fold increase in GPx activity at short-term diabetes and at long-term diabetes there were 2- and 3-fold increase in CAT and GST, respectively (p ≤ 0.01). Melatonin treatment to healthy rats caused a 47% increase in epididymal GPx activity in 14-week-old rats. In prostate, melatonin administration normalized GST activity at both ages and mitigated GPx at short-term and CAT at long-term diabetes. The testis and epididymis were less affected by diabetes than prostate. Furthermore, melatonin normalized the enzymatic disorders in prostate demonstrating its effective antioxidant role, even at low dosages.
Collapse
|
16
|
Lombardi APG, Royer C, Pisolato R, Cavalcanti FN, Lucas TFG, Lazari MFM, Porto CS. Physiopathological aspects of the Wnt/β-catenin signaling pathway in the male reproductive system. SPERMATOGENESIS 2014; 3:e23181. [PMID: 23687614 PMCID: PMC3644045 DOI: 10.4161/spmg.23181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Wnt/β-catenin signaling pathway controls several biological processes throughout development and adult life. Dysregulation of Wnt/β-catenin signaling underlies a wide range of pathologies in animals and humans, including cancer in different tissues. In this review, we provide an update of the Wnt/β-catenin signaling pathway and the possible roles of the Wnt/β-catenin signaling in the biology of testis, epididymis and prostate. Data from our laboratory suggest the involvement of 17β-estradiol and estrogen receptors (ERs) on the regulation of β-catenin expression in rat Sertoli cells. We also provide emerging evidences of the involvement of Wnt/β-catenin pathway in testis and prostate cancer. Our understanding of the role of Wnt/β-Catenin signaling in male reproductive tissues is still evolving, and several questions are open to be addressed in the future.
Collapse
Affiliation(s)
- Ana Paola G Lombardi
- Section of Experimental Endocrinology; Department of Pharmacology; Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo, SP Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Carvelli L, Bannoud N, Aguilera AC, Sartor T, Malossi E, Sosa MA. Testosterone influences the expression and distribution of the cation-dependent mannose-6-phosphate receptor in rat epididymis. Implications in the distribution of enzymes. Andrologia 2013; 46:224-30. [PMID: 23290006 DOI: 10.1111/and.12065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/30/2022] Open
Abstract
The mammalian epididymis plays a role in sperm maturation through its secretory activity. Among the proteins secreted by the epithelium, there are significant amounts of acid hydrolases. In most cell types, the normal distribution of lysosomal enzymes is mediated by mannose-6-phosphate receptors (MPRs). In this study, we analysed the expression and distribution of the cation-dependent MPR (CD-MPR) in epididymis from control, castrated or castrated rats with testosterone replacement. It was observed that expression of CD-MPR increased due to castration in all regions of the epididymis, which was reversed by injection of testosterone. We also measured the activity of α-mannosidase and observed that the castration tends to increase the retention of this enzyme in the tissue, which is reversed by the hormone replacement. In corpus, this resulted in a reduced secretion of the enzyme. Immunohistochemistry showed that CD-MPR has a supranuclear location (different from the cation-independent MPR), most likely in principal cells, and low reactivity in other cell types. The signal in castrated animals was more intense and tended to redistribute towards the apical cytoplasm. Thus, we concluded that expression and distribution of CD-MPR is affected by decrease of testosterone in rat epididymis, and this could change the distribution of lysosomal enzymes.
Collapse
Affiliation(s)
- L Carvelli
- Laboratorio de Biología y Fisiología Celular 'Dr. Francisco Bertini', Instituto de Histología y Embriología, CONICET - Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Hermo L, Krzeczunowicz D, Ruz R. Cell Specificity of Aquaporins 0, 3, and 10 Expressed in the Testis, Efferent Ducts, and Epididymis of Adult Rats. ACTA ACUST UNITED AC 2013; 25:494-505. [PMID: 15223838 DOI: 10.1002/j.1939-4640.2004.tb02820.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Aquaporins (AQPs) are transmembrane protein channels that allow the rapid passage of water across an epithelium at a low energy requirement, though some also transport glycerol, urea, and solutes of various sizes. At present, 11 members of the AQP family of proteins have been described in mammals, with several being localized to the testis (AQP-7 and AQP-8), efferent ducts (AQP-1 and AQP-9), and epididymis (AQP-1 and AQP-9) of adult rats. With the discovery of expression of multiple AQPs in different tissues, we undertook a systematic analysis of several other members of the AQP family on Bouin-fixed tissues of the male reproductive tract employing light microscope immunocytochemistry. In the testis, AQP-0 expression in the seminiferous epithelium was restricted to Sertoli cells and to Leydig cells of the interstitial space; no reaction was observed in the efferent ducts or epididymis. In Sertoli cells, a semicircular pattern of staining was noted, with only one fourth or one half of the Sertoli cells of a given tubule showing a reaction product. Furthermore, while Sertoli cells at stages VI-VIII of the cycle showed intense staining, those at stages IX-XIV were least reactive, with Sertoli cells at stages I-V showing intermediate levels of reaction product. The epithelial expression of AQP-10 was restricted to the microvilli of the nonciliated cells and the cilia of the ciliated cells of the efferent ducts; however, the endothelial cells of vascular channels of the efferent ducts and epididymis were also intensely reactive. AQP-3 expression was localized exclusively to the epididymis, where intense staining was noted exclusively over basal cells. Examination of orchidectomized rats revealed that AQP-3 expression was abolished over basal cells and that it was greatly diminished after efferent duct ligation. As the reaction was not fully restored in orchidectomized animals supplemented with high levels of testosterone, we suggest that AQP-3 expression in basal cells is regulated in part by testosterone, in addition to a luminal factor emanating from the testis. Together, the data indicate a cell- and tissue-specific expression for AQP-0, AQP-3, and AQP-10 in the testis, efferent ducts, and epididymis, as well as differential regulating factors for the expression of AQP-3 in basal cells.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
19
|
Belleannée C, Thimon V, Sullivan R. Region-specific gene expression in the epididymis. Cell Tissue Res 2012; 349:717-31. [DOI: 10.1007/s00441-012-1381-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/10/2012] [Indexed: 02/04/2023]
|
20
|
Bhardwaj A, Song HW, Beildeck M, Kerkhofs S, Castoro R, Shanker S, De Gendt K, Suzuki K, Claessens F, Issa JP, Orgebin-Crist MC, Wilkinson MF. DNA demethylation-dependent AR recruitment and GATA factors drive Rhox5 homeobox gene transcription in the epididymis. Mol Endocrinol 2012; 26:538-49. [PMID: 22322598 DOI: 10.1210/me.2011-1059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian male fertility depends on the epididymis, a highly segmented organ that promotes sperm maturation and protects sperm from oxidative damage. Remarkably little is known about how gene expression is controlled in the epididymis. A candidate to regulate genes crucial for epididymal function is reproductive homeobox gene on X chromosome (RHOX)5, a homeobox transcription factor essential for optimal sperm motility that is expressed in the caput region of the epididymis. Here, we report the identification of factors that control Rhox5 gene expression in epididymal cells in a developmentally regulated and region-specific fashion. First, we identify GATA transcription factor-binding sites in the Rhox5 proximal promoter (Pp) necessary for Rhox5 expression in epididymal cells in vitro and in vivo. Adjacent to the GATA sites are androgen-response elements, which bind to the nuclear hormone receptor androgen receptor (AR), and are responsible for the AR-dependent expression of Rhox5 in epididymal cells. We provide evidence that AR is recruited to the Pp in a region-specific and developmentally regulated manner in the epididymis that is dictated not only by differential AR availability but differential methylation of the Pp. Site-specific methylation of the Pp cytosine and guanine separated by one phosphate, most of which overlap with androgen-response elements, inhibited both AR occupancy at the Pp and Pp-dependent transcription in caput epididymal cells. Together, our data support a model in which DNA methylation, AR, and GATA factors collaborate to dictate the unique developmental and region-specific expression pattern of the RHOX5 homeobox transcription factor in the caput epididymis, which in turn controls the expression of genes critical for promoting sperm motility and function.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG. Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 2011; 78:124-38. [DOI: 10.1002/mrd.21280] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, Griswold MD, Hinton BT. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Dev Dyn 2011; 239:2479-91. [PMID: 20652947 DOI: 10.1002/dvdy.22378] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tissues of the male reproductive tract are characterized by distinct morphologies, from highly coiled to un-coiled. Global gene expression profiles of efferent ducts, epididymis, and vas deferens were generated from embryonic day 14.5 to postnatal day 1 as tissue-specific morphologies emerge. Expression of homeobox genes, potential mediators of tissue-specific morphological development, was assessed. Twenty homeobox genes were identified as either tissue-enriched, developmentally regulated, or both. Additionally, ontology analysis demonstrated cell adhesion to be highly regulated along the length of the reproductive tract. Regulators of cell adhesion with variable expression between the three tissues were identified including Alcam, various cadherins, and multiple integrins. Immunofluorescence localization of the cell adhesion regulators POSTN and CDH2 demonstrated cell adhesion in the epithelium and mesenchyme of the epididymis may change throughout development. These results suggest cell adhesion may be modulated in a tissue-specific manner, playing an important role in establishing each tissue's final morphology.
Collapse
Affiliation(s)
- Elizabeth M Snyder
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Estrogen's presence in the male reproductive system has been known for over 60 years, but its potential function in the epididymis remains an important area of investigation. Estrogen is synthesized by germ cells, producing a relatively high concentration in rete testis fluid. There are two estrogen receptors (ESR), the presence of which in the head of the epididymis is well documented and consistent between species; however, in other regions of the epididymis, their expression appears to be isotype, species, and cell specific. ESR1 is expressed constitutively in the epididymis; however, its presence is downregulated by high doses of estrogen, making the design of experiments complicated, as the phenotype of the Cyp19a1(-/-) mouse does not resemble that of the Esr1(-/-) mouse. Ligand-independent and DNA-binding Esr1 mutant models further demonstrate the complexity and importance of both signaling pathways in maintenance of efferent ductules and epididymis. Data now reveal the presence of not only classical nuclear receptors, but also cytoplasmic ESR and rapid responding membrane receptors; however, their importance in the epididymis remains undetermined. ESR1 regulates ion transport and water reabsorption in the efferent ducts and epididymis, and its regulation of other associated genes is continually being uncovered. In the male, some genes, such as Aqp9 and Slc9a3, contain both androgen and estrogen response elements and are dually regulated by these hormones. While estrogen pathways are a necessity for fertility in the male, future studies are needed to understand the interplay between androgens and estrogens in epididymal tissues, particularly in cell types that contain both receptors and their cofactors.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | |
Collapse
|
24
|
Ding NZ, He M, He CQ, Hu JS, Teng J, Chen J. Expression and regulation of FAAP in the mouse epididymis. Endocrine 2010; 38:188-93. [PMID: 21046479 DOI: 10.1007/s12020-010-9371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/29/2010] [Indexed: 04/17/2023]
Abstract
The focal adhesion-associated protein (FAAP), encoded by the murine D10Wsu52e gene, is named as involved in modulating cell adhesion dynamics. It is a highly conserved and ubiquitously expressed protein, and its human homologue HSPC117 has been identified in many protein complexes. However, the expression and regulation of the FAAP gene have not yet been well characterized. Herein, we demonstrate that FAAP mRNA and protein expression are highly regionalized in the mouse epididymis with predominant enrichment in the initial segment. During sexual maturation, FAAP mRNA is always expressed in the caput epididymides. Castration causes rapid and significant decrease of FAAP mRNA abundance within the initial segment, whereas testosterone replacement fails to reverse the regression. Unilateral orchidectomy and efferent duct ligation studies further validate that expression of the FAAP mRNA is highly dependent on the presence of luminal testicular factors rather than testosterone. Furthermore, FAAP expression in the initial segment is not affected by cryptorchism.
Collapse
Affiliation(s)
- Nai-Zheng Ding
- The Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education and The State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | | | |
Collapse
|
25
|
Hamzeh M, Robaire B. Identification of early response genes and pathway activated by androgens in the initial segment and caput regions of the regressed rat epididymis. Endocrinology 2010; 151:4504-14. [PMID: 20660069 DOI: 10.1210/en.2010-0023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To identify the initial response to androgens and estrogens in the orchidectomized, regressed epididymis, we determined the gene expression changes triggered by the administration of either of two metabolites of testosterone, 5alpha-dihydrotestosterone (DHT) or 17beta-estradiol (E2), in the regressed rat epididymis. Adult rats were orchidectomized and 8 d later implanted with either empty implants (control), DHT-filled-, or E2-filled-polydioxanone implants. Rats were euthanized 12 h, 1 d, and 7 d later, and RNA was extracted and probed on Rat230-2.0 Affymetrix arrays. Probe sets that respond to DHT or E2 were identified at early time points; although the expression of some was repressed, the expression of many others was either transiently or chronically elevated. Nerve growth factor receptor (Ngfr) and S100 calcium binding protein G (S100g) were two E2 up-regulated genes detected at 12 h. Among the genes that showed a dramatic early response to DHT were endothelin 1 (Edn1), bone morphogenetic protein 4 (Bmp4), and IGF binding protein 3 (Igfbp3), which were suppressed, and IGF-I (Igf1), which was induced. Genes that were up- or down-regulated by DHT were classified based on biological function. Using PathwayStudio 4.0, we identified genes that were linked and directly influenced either the expression or regulation of one another. Epidermal growth factor and IGF-I play an important role in the pathway due to their function in regulation and expression of many other genes. These results provide novel insights into the impact of androgen action on the expression of genes that are important for epididymal function.
Collapse
Affiliation(s)
- Mahsa Hamzeh
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6
| | | |
Collapse
|
26
|
Silva EJR, Queiróz DBC, Honda L, Avellar MCW. Glucocorticoid receptor in the rat epididymis: expression, cellular distribution and regulation by steroid hormones. Mol Cell Endocrinol 2010; 325:64-77. [PMID: 20573576 DOI: 10.1016/j.mce.2010.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 01/12/2023]
Abstract
Glucocorticoids regulate several physiological functions, including reproduction, in mammals. Curiously, little is known about glucocorticoid-induced effects on the epididymis, an androgen-dependent tissue with vital role on sperm maturation. Here, RT-PCR, Western blot and immunohistochemical studies were performed to evaluate expression, cellular distribution and hormonal regulation of glucocorticoid receptor (GR) along rat epididymis. The rat orthologue of human GRalpha (mRNA and protein) was detected in caput, corpus and cauda epididymis and immunolocalized in the nucleus and cytoplasm of different epididymal cells (epithelial, smooth muscle and interstitial cells) and nerve fibers. Changes in plasma glucocorticoid and androgen levels differentially regulated GR expression in caput and cauda epididymis by homologous and heterologous mechanisms. In vivo treatment with dexamethasone significantly changed the expression of glucocorticoid-responsive genes and induced ligand-dependent GR nuclear translocation in epithelial cells from epididymis, indicating that GR is fully active in this tissue. Heterologous regulation of androgen receptor expression by glucocorticoids was also demonstrated in cauda epididymis. Our results demonstrate that the epididymis is under glucocorticoid regulation, opening new insights into the roles of this hormone in male fertility.
Collapse
Affiliation(s)
- Erick J R Silva
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua 03 de maio 100, INFAR, Vila Clementino, São Paulo, SP 04044-020, Brazil
| | | | | | | |
Collapse
|
27
|
Zhang J, Liu Q, Zhang W, Li J, Li Z, Tang Z, Li Y, Han C, Hall SH, Zhang Y. Comparative profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides. Acta Biochim Biophys Sin (Shanghai) 2010; 42:145-53. [PMID: 20119626 DOI: 10.1093/abbs/gmp116] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand roles of transcriptional factors and miRNAs in regulating gene expression in the epididymis from postnatal development through aging, systematic profiling of genes and miRNAs expressed in the newborn, young adult, and aged human epididymides was performed by cDNA array and miRNA array analysis, respectively. The newborn human epididymis expressed the fewest mRNAs but the largest number of miRNAs, whereas the adult and aged epididymides expressed the most mRNAs but the fewest miRNAs, a negative correlation between mRNAs and miRNA during aging. By integrative analysis, a set of miRNA targets were predicted based on the miRNA and cDNA arrays. In the newborn epididymis, 127 miRNAs were exclusively or preferentially expressed but only 3 and 2 miRNAs showed an age-enriched expression pattern in the adult and aged epididymides, respectively. This study provides a basic database as well as new insights and foundations for further studies on the complex regulation of gene expression in the epididymis.
Collapse
Affiliation(s)
- Jinsong Zhang
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Patrão MTCC, Silva EJR, Avellar MCW. Androgens and the male reproductive tract: an overview of classical roles and current perspectives. ACTA ACUST UNITED AC 2009; 53:934-45. [DOI: 10.1590/s0004-27302009000800006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 11/14/2009] [Indexed: 11/22/2022]
Abstract
Androgens are steroid hormones that play key roles in the development and maintenance of male phenotype and reproductive function. These hormones also affect the function of several non-reproductive organs, such as bone and skeletal muscle. Endogenous androgens exert most of their effects by genomic mechanisms, which involve hormone binding to the androgen receptor (AR), a ligand-activated transcription factor, resulting in the modulation of gene expression. AR-induced non-genomic mechanisms have also been reported. A large number of steroidal and non-steroidal AR-ligands have been developed for therapeutic use, including the treatment of male hypogonadism (AR agonists) and prostate diseases (AR antagonists), among other pathological conditions. Here, the AR gene and protein structure, mechanism of action and AR gene homologous regulation were reviewed. The AR expression pattern, its in vivo regulation and physiological relevance in the developing and adult testis and epididymis, which are sites of sperm production and maturation, respectively, were also presented.
Collapse
|
29
|
Snyder EM, Small CL, Li Y, Griswold MD. Regulation of gene expression by estrogen and testosterone in the proximal mouse reproductive tract. Biol Reprod 2009; 81:707-16. [PMID: 19553595 DOI: 10.1095/biolreprod.109.079053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The role of estrogen and testosterone in the regulation of gene expression in the proximal reproductive tract is not completely understood. To address this question, mice were treated with testosterone or estradiol, and RNA from the efferent ducts and caput epididymides was processed and hybridized to Affymetrix M430 2.0 microarrays. Analysis of array output identified probe sets in each tissue with altered levels in hormone-treated versus control animals. Hormone treatment efficacy was confirmed by determination of serum hormone levels before and after treatment and by observed changes in transcript levels of previously reported hormone-responsive genes. Tissue-specific hormone sensitivity was observed with 2867 and 3197 probe sets changing significantly in the efferent ducts after estrogen and testosterone treatment, respectively. In the caput epididymidis, 117 and 268 probe sets changed after estrogen and testosterone treatment, respectively, demonstrating a greater response to hormone in the efferent ducts than in the caput epididymidis. Transcripts sharing similar profiles in the intact and hormone-treated animals compared with castrated controls were also identified. Ontology analysis of probe sets revealed that a significant number of hormone-regulated transcripts encode proteins associated with lipid metabolism, transcription, and steroid metabolism in both tissues. Real-time RT-PCR was used to confirm array data and to investigate other potential hormone-responsive regulators of proximal reproductive tract function. The results of this work reveal previously unknown responses to estrogen in the caput epididymidis and to testosterone in the efferent ducts, as well as tissue-specific hormone sensitivity in the proximal reproductive tract.
Collapse
Affiliation(s)
- Elizabeth M Snyder
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | | | | | | |
Collapse
|
30
|
Sipilä P, Jalkanen J, Huhtaniemi IT, Poutanen M. Novel epididymal proteins as targets for the development of post-testicular male contraception. Reproduction 2009; 137:379-89. [DOI: 10.1530/rep-08-0132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apart from condoms and vasectomy, modern contraceptive methods for men are still not available. Besides hormonal approaches to stop testicular sperm production, the post-meiotic blockage of epididymal sperm maturation carries lots of promise. Microarray and proteomics techniques and libraries of expressed sequence tags, in combination with digital differential display tools and publicly available gene expression databases, are being currently used to identify and characterize novel epididymal proteins as putative targets for male contraception. The data reported indicate that these technologies provide complementary information for the identification of novel highly expressed genes in the epididymis. Deleting the gene of interest by targeted ablation technology in mice or using immunization against the cognate protein are the two preferred methods to functionally validate the function of novel genesin vivo. In this review, we summarize the current knowledge of several epididymal proteins shown eitherin vivoorin vitroto be involved in the epididymal sperm maturation. These proteins include CRISP1, SPAG11e, DEFB126, carbonyl reductase P34H, CD52, and GPR64. In addition, we introduce novel proteinases and protease inhibitor gene families with potentially important roles in regulating the sperm maturation process. Furthermore, potential contraceptive strategies as well as delivery methods will be discussed. Despite the progress made in recent years, further studies are needed to reveal further details in the epididymal sperm maturation process and the factors involved, in order to facilitate the development of new epididymal contraceptives.
Collapse
|
31
|
Kolasa A, Marchlewicz M, Adler G, Ciechanowicz A, Głąbowski W, Wiszniewska B. Expression of E-SOD, GPX5 mRNAs and immunoexpression of Cu/ZnSOD in epididymal epithelial cells of finasteride-treated rats. Andrologia 2008; 40:303-11. [DOI: 10.1111/j.1439-0272.2008.00858.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
32
|
Dubé E, Hermo L, Chan PT, Cyr DG. Alterations in Gene Expression in the Caput Epididymides of Nonobstructive Azoospermic Men1. Biol Reprod 2008; 78:342-51. [DOI: 10.1095/biolreprod.107.062760] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Pearl CA, Berger T, Roser JF. Estrogen and androgen receptor expression in relation to steroid concentrations in the adult boar epididymis. Domest Anim Endocrinol 2007; 33:451-9. [PMID: 17034985 DOI: 10.1016/j.domaniend.2006.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
The steroid hormone regulation of the epididymis in a high estrogen producing animal like the boar is not currently understood. To test the hypothesis that the boar epididymis is an estrogen and androgen responsive tissue, the presence of estrogen and androgen receptors, in conjunction with steroid hormone concentrations were investigated in the boar epididymis. Epididymal (caput, corpus, cauda) and testicular samples of boars (1-2.5 years; n=5) were collected for immunolocalization of estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta) and androgen receptor (AR). Concentrations of testosterone, estradiol and estrogen conjugates (EC) in the tissue were also determined. AR and ERbeta were localized in the principal and basal cells of all three epididymal regions. ERalpha was localized in the principal cells of the caput, some cells of the corpus and was not present in the cauda. Testosterone (p<0.0001), estradiol (p<0.0001) and EC (p<0.005) were significantly lower in the epididymis compared with the testis. The epididymal regions were not significantly different from each other for testosterone (p>0.15) or estradiol (p>0.09). EC were significantly higher in the corpus than either the caput (p=0.003) or cauda (p=0.002). These results suggest that the boar epididymis is responsive to both estrogens and androgens and that both steroid hormones are important for proper epididymal function. Since testosterone and estradiol concentrations are similar throughout the epididymis, regional differences in steroid hormone regulation are likely due to differences in receptor expression.
Collapse
Affiliation(s)
- Christopher A Pearl
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | | | | |
Collapse
|
34
|
Turner TT, Johnston DS, Jelinsky SA, Tomsig JL, Finger JN. Segment boundaries of the adult rat epididymis limit interstitial signaling by potential paracrine factors and segments lose differential gene expression after efferent duct ligation. Asian J Androl 2007; 9:565-73. [PMID: 17589796 DOI: 10.1111/j.1745-7262.2007.00302.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The epididymis is divided into caput, corpus and cauda regions, organized into intraregional segments separated by connective tissue septa (CTS). In the adult rat and mouse these segments are highly differentiated. Regulation of these segments is by endocrine, lumicrine and paracrine factors, the relative importance of which remains under investigation. Here, the ability of the CTS to limit signaling in the interstitial compartment is reviewed as is the effect of 15 days of unilateral efferent duct ligation (EDL) on ipsilateral segmental transcriptional profiles. Inter-segmental microperifusions of epidermal growth factor (EGF), vascular endothelial growth factor (VEGFA) and fibroblast growth factor 2 (FGF2) increased phosphorylation of mitogen activated protein kinase (MAPK) in segments 1 and 2 of the rat epididymis and the effects of all factors were limited by the CTS separating the segments. Microarray analysis of segmental gene expression determined the effect of 15 days of unilateral EDL on the transcriptome-wide gene expression of rat segments 1-4. Over 11,000 genes were expressed in each of the four segments and over 2000 transcripts in segment 1 responded to deprivation of testicular lumicrine factors. Segments 1 and 2 of control tissues were the most transcriptionally different and EDL had its greatest effects there. In the absence of lumicrine factors, all four segments regressed to a transcriptionally undifferentiated state, consistent with the less differentiated histology. Deprivation of lumicrine factors could stimulate an individual gene's expression in some segments yet suppress it in others. Such results reveal a higher complexity of the regulation of rat epididymal segments than that is generally appreciated.
Collapse
Affiliation(s)
- Terry T Turner
- Department of Urology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
35
|
Robaire B, Seenundun S, Hamzeh M, Lamour SA. Androgenic regulation of novel genes in the epididymis. Asian J Androl 2007; 9:545-53. [PMID: 17589794 DOI: 10.1111/j.1745-7262.2007.00316.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The epididymis is critically dependent on the presence of the testis. Although several hormones, such as retinoids and progestins, and factors secreted directly into the epididymal lumen, such as androgen binding protein and fibroblast growth factor, might play regulatory roles in epididymal function, testosterone (T) and its metabolites, dihydrotestosterone (DHT) and estradiol (E2), are accepted as the primary regulators of epididymal structure and functions, with the former playing the greater role. To ascertain the molecular action of androgens on the epididymis, three complementary approaches were pursued to monitor changes in gene expression in response to different hormonal milieux. The first was to establish changes in gene expression along the epididymis as androgenic support is withdrawn. The second was to determine the sequence of responses that occur in an androgen deprived tissue upon re-administration of the two metabolites of T, DHT and E2. The third was to study the effects of androgen withdrawal and re-administration on gene expression in immortalized murine caput epididymidal principal cells. Specific responses were observed under each of these conditions, with an expected major difference in the panoply of genes expressed upon hormone withdrawal and re-administration; however, some key common features were the common roles of genes in insulin like growth factor/epidermal growth factor and the relatively minor and specific effects of E2 as compared to DHT. Together, these results provide novel insights into the mechanisms of androgen regulation in epididymal principal cells.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G1Y6, Canada.
| | | | | | | |
Collapse
|
36
|
Turner TT, Johnston DS, Finger JN, Jelinsky SA. Differential Gene Expression among the Proximal Segments of the Rat Epididymis Is Lost after Efferent Duct Ligation1. Biol Reprod 2007; 77:165-71. [PMID: 17377138 DOI: 10.1095/biolreprod.106.059493] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epididymis has traditionally been divided into the caput, corpus, and cauda regions, which are further organized into intraregional segments. In the rat and mouse, these segments have high degrees of transcriptional differentiation, and what has traditionally been called the initial segment of the rat epididymis actually consists of three transcriptionally different intraregional segments. These segments are regulated by endocrine, lumicrine, and paracrine factors, whose relative importance remains a topic of investigation. In the present study, 15-day unilateral efferent duct ligation (EDL) was used to deprive ipsilateral rat epididymides of lumicrine regulation. Segments 1-4 of EDL epididymides and contralateral, sham-operated tissues were collected individually. Microarray analysis of gene expression was used to determine the effect of lumicrine factor deprivation on the transcriptome-wide gene expression of each segment studied. More than 11 000 genes were detected as being expressed in each of the four segments examined. More than 2000 genes responded significantly to EDL in segment 1, although this number of genes declined in each succeeding segment. Segments 1 and 2 of control tissues were the most different transcriptionally and the most affected by EDL. In the absence of lumicrine factors, the four segments regressed to a transcriptionally undifferentiated state, which was consistent with the less-differentiated histology seen after EDL. Interestingly, for an individual gene, lumicrine factor deprivation could stimulate expression in some segments and suppress expression in other segments. These results reveal a higher complexity to the regulation of rat epididymal segments than heretofore appreciated.
Collapse
Affiliation(s)
- Terry T Turner
- Department of Urology, University of Virginia Health Science System, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
37
|
Pujianto DA, Damdimopoulos AE, Sipilä P, Jalkanen J, Huhtaniemi I, Poutanen M. Bfk, a novel member of the bcl2 gene family, is highly expressed in principal cells of the mouse epididymis and demonstrates a predominant nuclear localization. Endocrinology 2007; 148:3196-204. [PMID: 17412810 DOI: 10.1210/en.2007-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
B-cell lymphoma 2 (BCL2) family kin (BFK) is a recently identified novel protein that is similar to proteins of the BCL2 family. In the present study, we discovered that the mouse Bfk transcript is expressed at the highest level in the epididymis. Two transcripts of 0.9 and 2.6 kb in size were identified, with alternative exon 4 structures, resulting in a difference in the last three to five amino acids of the variants. However, the 0.9-kb transcript was found to be the predominant form in the epididymis and mammary gland, another tissue with strong Bfk expression. Epididymal Bfk expression was regulated both by androgens and other testicular factors. It is thus one of the few initial-segment enriched genes under androgen control, the majority of them being regulated by other testicular factors. BFK protein was expressed specifically in the principal cells of the epididymis. Its nuclear localization was evident in the initial segment and caput epididymis and in the epithelium of pregnant female mammary gland. The expression of BFK-enhanced green fluorescent protein recombinant protein in epididymal cells further confirmed the predominant nuclear localization of BFK with nucleo-cytoplasmic shuttling. Overexpressing BFK in epididymal cells did not induce apoptosis. However, enhanced caspase 3 activation was observed in the presence of BFK upon staurosporine-induced apoptosis. This suggests that BFK may have a proapoptotic role only after the process has been initiated by other mechanisms. Being exceptionally highly expressed in the initial segment, Bfk is suggested to have a role in the differentiation of this segment of the epididymis.
Collapse
Affiliation(s)
- Dwi Ari Pujianto
- Department of Physiology, Institute of Biomedicine, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Dubé E, Chan PTK, Hermo L, Cyr DG. Gene Expression Profiling and Its Relevance to the Blood-Epididymal Barrier in the Human Epididymis1. Biol Reprod 2007; 76:1034-44. [PMID: 17287494 DOI: 10.1095/biolreprod.106.059246] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The luminal environment along the epididymal duct is important for spermatozoal maturation. This environment is unique and created by the blood-epididymal barrier, which is formed by tight and adhering junctions. For the human epididymis, little information exists on the proteins that comprise these junctions. Our objectives were to assess the gene expression profiles in the different segments of the human epididymis and to identify the proteins that make up the blood-epididymal barrier. Using microarrays, we identified 2980 genes that were differentially expressed by at least 2-fold between the various segments. Of the many genes involved in diverse functions, were those that encoded adhesion proteins (cadherins and catenins) and tight junctional proteins (claudins [CLDN] and others). PCR analyses confirmed the microarray data. Immunolocalization of CLDNs 1, 3, 4, 8, and 10 revealed that the localization of CLDNs differed along the epididymis. In all three segments, CLDNs 1, 3, and 4 were localized to tight junctions, along the lateral margins of adjacent principal cells, and at the interface between basal and principal cells. CLDN8 was localized to tight junctions in all three segments, in addition to being localized in the caput along the lateral margins of principal cells, and in the corpus, at the interface between principal and basal cells. CLDN10, tight junction protein 1, and occludin were localized exclusively to tight junctions in all three epididymal segments. These data indicate that the epididymis displays a complex pattern of gene expression, which includes genes that are implicated in the formation of the blood-epididymal barrier, which suggests complex regulation of this barrier.
Collapse
Affiliation(s)
- Evemie Dubé
- INRS-Institut Armand Frappier, Université du Québec, 245 Hymus Boulevard, Pointe Claire, Québec, Canada
| | | | | | | |
Collapse
|
39
|
Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura KI. LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod 2006; 76:303-13. [PMID: 17079737 DOI: 10.1095/biolreprod.106.054619] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of the leucine-rich repeat domain containing G protein-coupled receptor (GPCR) 4 (Lgr4), which is one of the orphan GPCRs, were analyzed with the Lgr4 hypomorphic mutant mouse line (Lgr4(Gt)). This homozygous mutant had only one-tenth the normal transcription level; furthermore, 60% of them survived to adulthood. The homozygous male was infertile, showing morphologic abnormalities in both the testes and the epididymides. In the testes, luminal swelling, loss of germinal epithelium in the seminiferous tubules, and rete testis dilation were observed. Cauda epididymidis sperm were immotile. Rete testis dilation was due to a water reabsorption failure caused by a decreased expression of an estrogen receptor (ESR1) and SLC9A3 in the efferent ducts. Although we found differential regulation of ESR1 expression in the efferent ducts and the epididymis, the role of ESR1 in the epididymis remains unclear. The epididymis contained short and dilated tubules and completely lacked its initial segment. In the caput region, we observed multilamination and distortion of the basement membranes (BMs) with an accumulation of laminin. Rupture of swollen epididymal ducts was observed, leading to an invasion of macrophages into the lumen. Male infertility was probably due to the combination of a developmental defect of the epididymis and the rupture of the epithelium resulting in the immotile spermatozoa. These results indicate that Lgr4 has pivotal roles to play in the regulation of ESR1 expression, the control of duct elongation through BM remodeling, and the regional differentiation of the caput epididymidis.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/metabolism
- Animals, Newborn/physiology
- Cell Line
- Down-Regulation
- Epididymis/abnormalities
- Epididymis/growth & development
- Epididymis/metabolism
- Estrogen Receptor alpha/metabolism
- Female
- Genitalia, Male/growth & development
- Genitalia, Male/metabolism
- Homozygote
- Infertility, Male/genetics
- Laminin/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Microscopy, Electron
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Rete Testis/metabolism
- Rete Testis/pathology
- Rete Testis/ultrastructure
- Sodium-Hydrogen Exchanger 3
- Sodium-Hydrogen Exchangers/metabolism
- Sperm Motility
- Survival Analysis
- Testis/abnormalities
Collapse
Affiliation(s)
- Takayuki Hoshii
- Division of Developmental Genetics, Institute of Molecular Embryology and Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Parlevliet JM, Pearl CA, Hess MF, Famula TR, Roser JF. Immunolocalization of estrogen and androgen receptors and steroid concentrations in the stallion epididymis. Theriogenology 2006; 66:755-65. [PMID: 16530259 DOI: 10.1016/j.theriogenology.2005.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/28/2005] [Indexed: 11/15/2022]
Abstract
The presence of steroids and their receptors throughout development, specifically androgen receptor (AR), estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta), in the epididymis of a high estrogen producing species like the stallion has not been determined. Epididymal and testicular samples were collected for analysis of testosterone and estradiol-17beta (E(2)) concentrations and for immunolocalization of AR, ERalpha and ERbeta. The concentration of testosterone in the testis and epididymis were not different among age groups (P>0.05). AR was localized in the principal cells of the caput, corpus and cauda in all four age groups. This lack of change in testosterone concentration and receptor localization suggests that testosterone is important for both development and maintenance of epididymal function. There was an age-related increase in E(2) concentrations in all regions of the epididymis (P<0.05), suggesting that E(2) is also important for adult function. ERbeta was localized in the principal cells of the caput, corpus and cauda in all four age groups, but the localization of ERalpha was regional and age dependent. In peri-pubertal animals, ERalpha immunostaining was most prominent and estradiol was similarly present in all three epididymal regions; this suggests that estradiol also plays a key role in the maturation of the stallion epididymis during the pubertal transition when sperm first arrive in the epididymis. In conclusion, these results suggest that the stallion epididymis is regulated by both androgens and estrogens throughout development and that estradiol is more important to epididymal function in the stallion than previously believed.
Collapse
Affiliation(s)
- Joyce M Parlevliet
- Department of Farm Animal Health, Utrecht University, Yalelaan 7, 3584 CL Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
41
|
Sipilä P, Pujianto DA, Shariatmadari R, Nikkilä J, Lehtoranta M, Huhtaniemi IT, Poutanen M. Differential Endocrine Regulation of Genes Enriched in Initial Segment and Distal Caput of the Mouse Epididymis as Revealed by Genome-Wide Expression Profiling1. Biol Reprod 2006; 75:240-51. [PMID: 16641146 DOI: 10.1095/biolreprod.105.047811] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have performed genome-wide expression profiling of endocrine regulation of genes expressed in the mouse initial segment (IS) and distal caput of the epididymis by using Affymetrix microarrays. The data revealed that of the 15 020 genes expressed in the epididymis, 35% were enriched in one of the two regions studied, indicating that differential functions can be attributed to the IS and the more distal caput regions. The data, furthermore, showed that 27% of the genes expressed in the IS and/or distal caput epididymidis are under the regulation of testicular factors present in the duct fluid, while bloodborne androgens can regulate for 14% of them. This is in line with the high testis dependency of epididymal physiology. We then focused on genes with moderate or strong expression, showing strict segment enrichment and strong dependency on testicular factors. Analyses of the 59 genes, including upregulated and downregulated genes, fulfilling the criteria indicated that the expression of 18 (17 downregulated genes; 1 upregulated gene) of 19 gonadectomy-responsive genes enriched in the IS was not maintained by the androgen treatment, whereas the expression of all six downregulated genes enriched in the distal caput and the majority of those with no strict segment enrichment of expression (28 of 34; consisting of 23 downregulated and 5 upregulated genes) were maintained by androgens. Hence, it is evident that testicular factors other than androgens are important for the expression of IS-enriched genes, whereas the expression of distal caput-enriched genes is typically regulated by androgens. Identical data were obtained by independent clustering analyses performed for the expression data of 3626 epididymal genes. Several novel genes with putative involvement in epididymal sperm maturation, such as a disintegrin and metallopeptidase domain 28 (Adam28) and a solute carrier organic anion transporter family, member 4C1 (Slco4c1), were identified, indicating that this approach is successful for identifying novel epididymal genes.
Collapse
Affiliation(s)
- Petra Sipilä
- Department of Physiology, Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
42
|
Yamazaki K, Adachi T, Sato K, Yanagisawa Y, Fukata H, Seki N, Mori C, Komiyama M. Identification and characterization of novel and unknown mouse epididymis-specific genes by complementary DNA microarray technology. Biol Reprod 2006; 75:462-8. [PMID: 16707773 DOI: 10.1095/biolreprod.105.048058] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To examine epididymal function, we attempted to identify highly expressed genes in mouse epididymis using a cDNA microarray containing PCR products amplified from a mouse epididymal cDNA library. We isolated one novel and four known genes-lymphocyte cytosolic protein 1 (Lcp1), complement subcomponents C1r/C1s, Uegf protein, and bone morphogenetic protein and zona pellucida-like domains 1 (Cuzd1), transmembrane epididymal protein 1 (Teddm1), and whey acidic protein 4-disulfide core domain 16 (Wfdc16)-with unknown functions in the epididymis. The novel gene, designated Serpina1f (serine peptidase inhibitor [SERPIN], clade A, member 1f), harbors an open reading frame of 1 233 bp encoding a putative protein of 411 amino acids, including a SERPIN domain. These five genes were predominantly expressed in the epididymis as compared to other organs. In situ hybridization analysis revealed their epididymal region-specific expression patterns. Real-time RT-PCR analysis revealed a significant increase in mRNA expression of these genes around puberty. Castration decreased their expression, except forLcp1. Testosterone (T) restored these reduced expressions, except forTeddm1; however, this restoration was not observed with 17 beta-estradiol (E2). Administration of T and E2 combination recovered the Serpina1f mRNA concentration; this recovery was also observed with T alone. However, the recovery of Cuzd1and Wfdc16mRNA concentrations was inadequate. Neonatal diethylstilbestrol treatment suppressed the Cuzd1, Wfdc16, and Serpina1f mRNA expression in the epididymis of 8-week-old mice; this was not observed with E2. These results suggest that our microarray system can provide a novel insight into the epididymal function on a molecular basis, and the five genes might play important roles in the epididymis.
Collapse
Affiliation(s)
- Koji Yamazaki
- Department of Bioenvironmental Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jalkanen J, Shariatmadari R, Pujianto DA, Sipilä P, Huhtaniemi I, Poutanen M. Identification of novel epididymal genes by expression profiling and in silico gene discovery. Mol Cell Endocrinol 2006; 250:163-8. [PMID: 16413671 DOI: 10.1016/j.mce.2005.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have used both the UniGene RIKEN epididymal EST library and the Affymetrix microarray profiling for identifying novel epididymal genes in mouse. The use of ESTs is a complementary approach to Affymetrix arrays for identifying novel epididymal genes, while only 32% and 28% of ESTs of unknown genes were present in the U74v.2Set and MG 430 2.0 version Affymetrix arrays, respectively. As expected, the probe set for a notably larger proportion of known genes was present in the Affymetrix arrays, and the coverage was greatly improved by the newer array version. Furthermore, many genes with more than five ESTs in the UniGene library showed variable levels of expression in both versions of the Affymetrix arrays. However, both the Affymetrix and EST data correlated well with that obtained by quantitative RT-PCR, and thus, we conclude that the findings of high EST number but only limited expression in the arrays could be considered as false negatives in the Affymetrix arrays.
Collapse
Affiliation(s)
- Jenni Jalkanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
44
|
Zhang JS, Liu Q, Li YM, Hall SH, French FS, Zhang YL. Genome-wide profiling of segmental-regulated transcriptomes in human epididymis using oligo microarray. Mol Cell Endocrinol 2006; 250:169-77. [PMID: 16412555 DOI: 10.1016/j.mce.2005.12.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Sperm maturation during passage through the epididymis depends on regionalized gene expression which maintains the progressively changing environment within the epididymal tubule. Towards defining the genes that drive the sequential maturation of spermatozoa, we profiled regionally regulated gene expression pattern in the epididymis of a fertile young male donor using Affymetrix human genome U133 plus 2.0 microarray representing approximately the whole human genome. Over 15000 transcripts, almost one-third of the total on the array were identified in whole epididymis. Among them, 65% were detected in all three regions of the epididymis, 410 or 2.6% were present only in one region and the remaining 32.4% were distributed in two regions. Region-specific transcripts observed in caput (264), corpus (61) and cauda (81) epididymides were further classified as empirically determined reported genes or ESTs. This study revealed for the first time, the expression in human epididymis of a number of region-specific genes. The original data will be made publicly available on the Shanghai Science and Technology Database (http://www.scbit.org/human_epididymis_transcriptomes).
Collapse
Affiliation(s)
- Jin-Song Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
This report represents the joint efforts of three laboratories, one with a primary interest in understanding regulatory processes in the epididymal epithelium (TTT) and two with a primary interest in identifying and characterizing new contraceptive targets (DSJ and SAJ). We have developed a highly refined mouse epididymal transcriptome and have used it as a starting point for determining genes in the human epididymis, which may serve as targets for male contraceptives. Our database represents gene expression information for approximately 39,000 transcripts, of which over 17,000 are significantly expressed in at least one segment of the mouse epididymis. Over 2000 of these transcripts are up- or down-regulated by at least four-fold between at least two segments. In addition, human databases have been queried to determine expression of orthologs in the human epididymis and the specificity of their expression in the epididymis. Genes highly regulated in the human epididymis and showing high tissue specificity are potential targets for male contraceptives.
Collapse
Affiliation(s)
- T T Turner
- Department of Urology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
46
|
Hannema SE, Print CG, Charnock-Jones DS, Coleman N, Hughes IA. Changes in Gene Expression during Wolffian Duct Development. Horm Res Paediatr 2006; 65:200-9. [PMID: 16567946 DOI: 10.1159/000092408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Wolffian ducts (WDs) are the embryonic precursors of the male reproductive tract. Their development is induced by testosterone, which interacts with the androgen receptor (AR). The molecular pathways underlying androgen-dependent WD development are largely unknown. We aimed to identify AR target genes important in this process. METHODS RNA was isolated from rat WDs at E17.5 and E20.5. Affymetrix GeneChip expression arrays were used to identify transcripts up- or downregulated more than 2-fold. Regulation of seven transcripts was confirmed using quantitative PCR. RESULTS Transcripts from 76 known genes were regulated, including modulators of insulin-like growth factor and transforming growth factor-beta signalling. By controlling these modulators, androgens may indirectly affect growth factor signalling pathways important in epithelial-mesenchymal interactions and organ development. Caveolin-1, also upregulated, may play a role in modifying as well as mediating AR signalling. Differentiation of WD epithelium and smooth muscle, innervation and extracellular matrix synthesis were reflected in regulation of other transcripts. Several genes were previously suggested to be regulated by androgens or contained functional or putative androgen/glucocorticoid response elements, indicating they may be direct targets of androgen signalling. CONCLUSION Our results suggest novel cohorts of signals that may contribute to androgen-dependent WD development and provide hypotheses that can be tested by future studies.
Collapse
Affiliation(s)
- Sabine E Hannema
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
47
|
Kwon J, Sekiguchi S, Wang YL, Setsuie R, Yoshikawa Y, Wada K. The region-specific functions of two ubiquitin C-terminal hydrolase isozymes along the epididymis. Exp Anim 2006; 55:35-43. [PMID: 16508210 DOI: 10.1538/expanim.55.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We previously showed that gad mice, which are deficient for ubiquitin C-terminal hydrolase L1 (UCH-L1), have a significantly increased number of defective spermatozoa, suggesting that UCH-L1 functions in sperm quality control during epididymal maturation. The epididymis is the site of spermatozoa maturation, transport and storage. Region-specific functions along the epididymis are essential for establishing the environment required for sperm maturation. We analyzed the region-specific expression of UCH-L1 and UCH-L3 along the epididymis, and also assessed the levels of ubiquitin, which has specificity for UCH-L1. In wild-type mice, western blot analysis demonstrated a high level of UCH-L1 expression in the caput epididymis, consistent with ubiquitin expression, whereas UCH-L3 expression was high in the cauda epididymis. We also investigated the function of UCH-L1 and UCH-L3 in epididymal apoptosis induced by efferent duct ligation. The caput epididymides of gad mice were resistant to apoptotic stress induced by efferent duct ligation, whereas Uchl3 knockout mice showed a marked increase in apoptotic cells following ligation. In conclusion, the response of gad and Uchl3 knockout mice to androgen withdrawal suggests a reciprocal function of the two UCH enzymes in the caput epididymis.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Yuan H, Liu A, Zhang L, Zhou H, Wang Y, Zhang H, Wang G, Zeng R, Zhang Y, Chen Z. Proteomic Profiling of Regionalized Proteins in Rat Epididymis Indicates Consistency between Specialized Distribution and Protein Functions. J Proteome Res 2006; 5:299-307. [PMID: 16457595 DOI: 10.1021/pr050324s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The epididymis is a key structure of the male reproductive system; its function is to mature, transport, and store sperm. Most of the research examining the epididymis to date has been limited to the study of the secreted proteins involved in the maturation of spermatozoa. However, it is also very important to understand the protein components, regulation and function of the tissue itself since these are the basis for all of its physiological processes. We investigated the differential expression of proteins among the caput, corpus, and cauda regions of rat epididymis and considered the possible links between the localization of these proteins and the different functions of these epididymal regions. High-resolution 2-D gel electrophoresis followed by mass spectrometry (MS) revealed 28 distinct proteins whose expression levels varied from the caput to the cauda epididymis. Sixteen of them were reported for first time to be expressed in the epididymis. Expression patterns of some proteins were validated by Northern blot or Western blot. Immunohistochemistry revealed that inducible carbonyl reductase (iCR), an important enzyme in the anti-oxidative system, exhibits primary and cell-type specific distribution in the distal cauda region. Moreover, analysis of iCR transcription in castrated animals showed that its expression is androgen-dependent. Together with its known functions, iCR may also be involved in androgen metabolism and maintaining a steady microenvironment in the duct of epididymis.
Collapse
Affiliation(s)
- Haixin Yuan
- Key Laboratory of Proteomics, Graduate School of the Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, Peoples Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Radhakrishnan Y, Hamil KG, Yenugu S, Young SL, French FS, Hall SH. Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun 2005; 6:203-10. [PMID: 15772680 PMCID: PMC1464053 DOI: 10.1038/sj.gene.6364184] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Defensins are members of a large diverse family of cationic antimicrobial peptides that share a signature pattern consisting of six conserved cysteine residues. Defensins have a wide variety of functions and their disruption has been implicated in various human diseases. Here we report the characterization of DEFB119-DEFB123, five genes in the human beta-defensin cluster locus on chromosome 20q11.1. The genomic structures of DEFB121 and DEFB122 were determined in silico. Sequences of the five macaque orthologs were obtained and expression patterns of the genes were analyzed in humans and macaque by semiquantitative reverse transcription polymerase chain reaction. Expression was restricted to the male reproductive tract. The genes in this cluster are differentially regulated by androgens. Evolutionary analyses suggest that this cluster originated by a series of duplication events and by positive selection. The evolutionary forces driving the proliferation and diversification of these defensins may be related to reproductive specialization and/or the host-parasite coevolutionary process.
Collapse
Affiliation(s)
- Y Radhakrishnan
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
| | - KG Hamil
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
| | - S Yenugu
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
| | - SL Young
- Department of Obstetrics and Gynecology, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
| | - FS French
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
| | - SH Hall
- Department of Pediatrics, Laboratories for Reproductive Biology, University of North Carolina, Chapel Hill, NC, USA
- Correspondence: Dr SH Hall, Laboratories for Reproductive Biology, CB#7500, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599-7500, USA. E-mail:
| |
Collapse
|
50
|
Maróstica E, Avellar MCW, Porto CS. Effects of testosterone on muscarinic acetylcholine receptors in the rat epididymis. Life Sci 2005; 77:656-69. [PMID: 15921997 DOI: 10.1016/j.lfs.2004.12.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 12/07/2004] [Indexed: 11/30/2022]
Abstract
The effect of testosterone on the expression of muscarinic acetylcholine receptor (mAChR) subtypes was studied in the rat epididymis, at mRNA and protein level. The rat androgen status was monitored by measuring plasma testosterone level and caput and cauda epididymis wet weight. Ribonuclease protection assay (RPA) and [3H]quinuclidinyl benzilate ([3H]QNB) binding assay were performed in the caput and cauda epididymis from control (50-day old), castrated, castrated and treated with testosterone and sexually immature (30-day old) rats. The expression of each mAChR transcript subtype differed depending on the epididymal region analyzed and rat testosterone and/or testicular factors status. In control rats, RPA showed the presence of mRNA for M1, M2 and M3 mAChR in the caput and cauda epididymis. The abundance of m2 and m3 transcripts in the cauda was higher than that in the caput epididymis. Low amount of m1 transcript was observed in both regions. Orchidectomy increased m1 mRNA amount in the caput and cauda epididymis when compared to control rats, an effect slightly modified by testosterone replacement. Although orchidectomy down-regulated the level of m2 transcript in both epididymal regions, castration significantly increased m3 mRNA amount in the caput region. These effects on m2 and m3 transcripts were prevented by testosterone replacement to castrated rats. Similar abundance of m3 transcript, however, was detected in the cauda epididymis of all experimental group tested. [3H]QNB binding studies revealed that orchidectomy down-regulated the number of mAChR detected in both epididymal regions, an effect also prevented by testosterone replacement. Thus, testosterone and/or testicular factors may play a role in the regulation of mAChR expression in the rat epididymis.
Collapse
Affiliation(s)
- Elisabeth Maróstica
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de maio 100, INFAR, Vila Clementino, 04044-020 São Paulo, Brazil
| | | | | |
Collapse
|