1
|
Wang W, Ledee D. ACAA2 is a ligand-dependent coactivator for thyroid hormone receptor β1. Biochem Biophys Res Commun 2021; 576:15-21. [PMID: 34474245 DOI: 10.1016/j.bbrc.2021.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022]
Abstract
Thyroid hormones (THs) play a critical role in the metabolic phenotype of the heart; and most of the effects involve transcriptional regulation via thyroid hormone receptors (TRs). TRs ability to form combinatorial complexes with an array of partners accounts for TRs physiological flexibility in modulating gene expression. To identify proteins that associate with TRβ1 in the heart we performed a pull-down assay on cardiac tissue using GST-TRβ1 as bait and identified the bound proteins by LC MS/MS. ACAA2, a mitochondrial thiolase enzyme, was identified as a novel interacting protein. We confirmed ACAA2 localized to the nucleus and using a luciferase reporter assay showed ACAA2 acted as a TH-dependent coactivator for TRβ1. ACAA2 showed an ability to bind to TR recognition sequences but did not alter TRβ1 DNA binding ability. Thus, ACAA2 as a novel TRβ1 associating protein opens a new paradigm to understanding how TH/TRs may be manipulated by energetic pathway molecules.
Collapse
Affiliation(s)
- Wesley Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., Seattle, WA, USA.
| | - Dolena Ledee
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., Seattle, WA, USA; Division of Cardiology, Department of Pediatrics, University of Washington, 1959, NE Pacific St, Seattle, WA, USA.
| |
Collapse
|
2
|
Corinti D, Crestoni ME, Chiavarino B, Fornarini S, Scuderi D, Salpin JY. Insights into Cisplatin Binding to Uracil and Thiouracils from IRMPD Spectroscopy and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:946-960. [PMID: 32233383 PMCID: PMC7997577 DOI: 10.1021/jasms.0c00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The monofunctional primary complexes cis-[PtCl(NH3)2(L)]+, formed by the reaction of cisplatin, a major chemotherapeutic agent, with four nucleobases L, i.e., uracil (U), 2-thiouracil (2SU), 4-thiouracil (4SU), and 2,4-dithiouracil (24dSU), have been studied by a combination of infrared multiple photon dissociation (IRMPD) action spectroscopy in both the fingerprint (900-1900 cm-1) and the N-H/O-H stretching (3000-3800 cm-1) ranges, energy-resolved collision-induced dissociation (CID) mass spectrometry, and density functional calculations at the B3LYP/LACVP/6-311G** level. On the basis of the comparison across the experimental features and the linear IR spectra of conceivable structures, the cisplatin residue is found to promote a monodentate interaction preferentially with the O4(S4) atoms of the canonical forms of U, 4SU, and 24dSU and to the S2 atom of 2SU, yielding the most stable structures. Additional absorptions reveal the presence of minor, alternative tautomers in the sampled ion populations of 2SU and 24dSU, underlying the ability of cisplatin to increase the prospect of (therapeutically beneficial) nucleic acid strand disorder. Implication of these evidence may provide insights into drug mechanism and design.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Barbara Chiavarino
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, Roma 00185, Italy
| | - Debora Scuderi
- Universite′
Paris-Saclay, CNRS, Institut de Chimie Physique
UMR8000, Orsay 91405, France
| | - Jean-Yves Salpin
- Université
Paris-Saclay, CNRS, Univ Evry,
LAMBE, Evry-Courcouronnes 91025, France
- CY
Cergy Paris Université, LAMBE, Evry-Courcouronnes 91025, France
| |
Collapse
|
3
|
Groeneweg S, Peeters RP, Visser TJ, Visser WE. Triiodothyroacetic acid in health and disease. J Endocrinol 2017; 234:R99-R121. [PMID: 28576869 DOI: 10.1530/joe-17-0113] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022]
Abstract
Thyroid hormone (TH) is crucial for development and metabolism of many tissues. The physiological relevance and therapeutic potential of TH analogs have gained attention in the field for many years. In particular, the relevance and use of 3,3',5-triiodothyroacetic acid (Triac, TA3) has been explored over the last decades. Although TA3 closely resembles the bioactive hormone T3, differences in transmembrane transport and receptor isoform-specific transcriptional activation potency exist. For these reasons, the application of TA3 as a treatment for resistance to TH (RTH) syndromes, especially MCT8 deficiency, is topic of ongoing research. This review is a summary of all currently available literature about the formation, metabolism, action and therapeutic applications of TA3.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine and Academic Center for Thyroid DiseasesErasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine and Academic Center for Thyroid DiseasesErasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo J Visser
- Department of Internal Medicine and Academic Center for Thyroid DiseasesErasmus University Medical Center, Rotterdam, The Netherlands
| | - W Edward Visser
- Department of Internal Medicine and Academic Center for Thyroid DiseasesErasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Santiago LA, Faustino LC, Pereira GF, Imperio GE, Pazos-Moura CC, Wondisford FE, Bloise FF, Ortiga-Carvalho TM. Gene expression of T3-regulated genes in a mouse model of the human thyroid hormone resistance. Life Sci 2017; 170:93-99. [PMID: 27919825 DOI: 10.1016/j.lfs.2016.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Abstract
AIMS To understand how thyroid hormone (TH) regulates tissue-specific gene expression in patients with the syndrome of resistance to TH (RTHβ), we used a mouse model that replicates the human RTHβ, specifically the ∆337T mutation in the thyroid hormone receptor β (THRβ). MAIN METHODS We investigated the expression of key TH target genes in the pituitary and liver of TRβ∆337T and wild type THRβ mice by qPCR before and after a T3 suppression test consisting of the administration of increasing concentrations of T3 to hypothyroid mice. KEY FINDINGS Pituitary Tshb and Cga expression decreased and Gh expression increased in TRβ∆337T mice after T3 suppression. The stimulation of positively regulated TH genes was heterogeneous in the liver. Levels of liver Me1 and Thsrp were elevated in TRβ∆337T mice after T3 administration. Slc16a2 and Gpd2 did not respond to T3 stimulation in the liver of TRβ∆337T mice whereas Dio1 response was lower than that observed in WT mice. Moreover, although Chdh and Upd1 genes were negatively regulated in the liver, the expression of these genes was elevated after T3 suppression. We did not observe significant changes in THRα expression in the liver and pituitary, while THRβ levels were diminished in the pituitary and increased in the liver. SIGNIFICANCE Using a model expressing a THRβ unable to bind T3, we showed the expression pattern of liver negative and positive regulated genes by T3.
Collapse
Affiliation(s)
- L A Santiago
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L C Faustino
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G F Pereira
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G E Imperio
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - C C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - F F Bloise
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - T M Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 2014; 10:582-91. [PMID: 25135573 PMCID: PMC4578869 DOI: 10.1038/nrendo.2014.143] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone action is predominantly mediated by thyroid hormone receptors (THRs), which are encoded by the thyroid hormone receptor α (THRA) and thyroid hormone receptor β (THRB) genes. Patients with mutations in THRB present with resistance to thyroid hormone β (RTHβ), which is a disorder characterized by elevated levels of thyroid hormone, normal or elevated levels of TSH and goitre. Mechanistic insights about the contributions of THRβ to various processes, including colour vision, development of the cochlea and the cerebellum, and normal functioning of the adult liver and heart, have been obtained by either introducing human THRB mutations into mice or by deletion of the mouse Thrb gene. The introduction of the same mutations that mimic human THRβ alterations into the mouse Thra and Thrb genes resulted in distinct phenotypes, which suggests that THRA and THRB might have non-overlapping functions in human physiology. These studies also suggested that THRA mutations might not be lethal. Seven patients with mutations in THRα have since been described. These patients have RTHα and presented with major abnormalities in growth and gastrointestinal function. The hypothalamic-pituitary-thyroid axis in these individuals is minimally affected, which suggests that the central T3 feedback loop is not impaired in patients with RTHα, in stark contrast to patients with RTHβ.
Collapse
Affiliation(s)
- Tânia M Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, S/N, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Aniket R Sidhaye
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| |
Collapse
|
7
|
Bartkowiak G, Wyrzykiewicz E, Schroeder G. Sulfur Analogs of Pyrimidine Bases: Synthesis of 2-Alkylthio- and 4-Alkylthio-5-bromouracils and In SilicoEvaluation of Their Biological Activity. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Weinert LS, Ceolin L, Romitti M, Camargo EG, Maia AL. Is there a role for inherited TRβ mutation in human carcinogenesis? [corrected]. ACTA ACUST UNITED AC 2012; 56:67-71. [PMID: 22460197 DOI: 10.1590/s0004-27302012000100010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 01/20/2012] [Indexed: 11/21/2022]
Abstract
Resistance to thyroid hormone (RTH) is a rare autosomal dominant inherited disorder characterized by end-organ reduced sensitivity to thyroid hormone. This syndrome is caused by mutations of the thyroid hormone receptor (TR) β gene, and its clinical presentation is quite variable. Goiter is reported to be the most common finding. A close association of TRβ mutations with human cancers has become apparent, but the role of TRβ mutants in the carcinogenesis is still undefined. Moreover, higher TSH levels, described in RTH syndrome, are correlated with increased risk of thyroid malignancy, whereas TSH receptor stimulation is likely to be involved in tumor progression. We report here an illustrative case of a 29 year-old patient with RTH caused by a mutation in exon 9 (A317T) of TRβ gene, who presented multicentric papillary thyroid cancer. We review the literature on this uncommon feature, and discuss the potential role of this mutation on human tumorigenesis, as well as the challenges in patient follow-up.
Collapse
|
9
|
Ferrara AM, Onigata K, Ercan O, Woodhead H, Weiss RE, Refetoff S. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab 2012; 97:1328-36. [PMID: 22319036 PMCID: PMC3319181 DOI: 10.1210/jc.2011-2642] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The most common cause of resistance to thyroid hormone (RTH) is heterozygous thyroid hormone receptor β (THRB) gene mutations. Homozygous mutations in the THRB gene are a rare event. OBJECTIVE In this study, the clinical findings of three new patients (belonging to two families) homozygous for mutations in the THRB gene are compared to three other families in which affected individuals lack a normal TRβ. METHODS We conducted clinical studies and genetic analyses. RESULTS The clinical presentation in all three homozygous subjects was unusually severe; their phenotype was characterized by compromised intellectual development, tachycardia, goiter, growth retardation, and hearing loss. This was comparable with one other reported patient homozygous for mutant TRβ, but not in RTH due to THRB gene deletions. CONCLUSION We report three new subjects, from two families, in whom RTH was associated with homozygous mutations in the THRB gene. They represent an important addition to the single known patient homozygous for a mutant TRβ. The clinical and laboratory abnormalities indicate a strong dominant-negative effect and are in agreement with data obtained from mice expressing a mutant Thrb in both alleles. This report strengthens the concept that the mutated TRβ interferes with the function of the TRα1 in humans.
Collapse
Affiliation(s)
- Alfonso Massimiliano Ferrara
- Department of Medicine, The University of Chicago, MC3090, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
10
|
Richter CP, Münscher A, Machado DS, Wondisford FE, Ortiga-Carvalho TM. Complete activation of thyroid hormone receptor β by T3 is essential for normal cochlear function and morphology in mice. Cell Physiol Biochem 2011; 28:997-1008. [PMID: 22178950 DOI: 10.1159/000335812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Thyroid hormones (THs) regulate many developmental processes, including the developmental onset of cochlear differentiation and function. TH action is mediated mostly by triiodothyronine (T3) bound to thyroid hormone nuclear receptors (TRs). At positive regulated genes and in the absence of THs, nuclear co-repressors are bound to TRs and decrease basal transcription rate. Ligand (T(3)) binding results in the dissociation of co-repressors and the recruitment of co-activators to the complex, which results in full transcriptional activation. METHODS We measured cochlear function in two knock-in mouse models: TRβ(E457A/E457A), with the TRβ co-activator binding surface (AF-2) disrupted to prevent co-activator binding; and TRβ(Δ337T/Δ337T), which is unable to bind T(3). Cochlear morphology and function were analyzed in 10-week-old normal and mutated mice. Cochlear function was determined by measuring auditory brainstem responses, cochlear tuning and compound action potential (CAP) thresholds. RESULTS All TRβ(Δ337T/Δ337T) and 85% of the TRβ(E457A/E457A) mice presented elevated CAP thresholds (P < 0.05 or less). Five percent of the TRβ(E457A/E457A) mice presented normal CAP thresholds with broadened cochlear tuning. TRβ(E457A/E457A) and TRβ(Δ337T/Δ337T) presented developmental defects that led to a decreased width (P < 0.01) and an increased thickness (P<0.01) of the tectorial membrane. In addition, TRβ(Δ337T/Δ337T) animals showed an increased tectorial membrane area (P<0.01). CONCLUSION Both mutations were deleterious to tectorial membrane development and led to important alterations in cochlear morphology and loss of cochlear function.
Collapse
Affiliation(s)
- Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
11
|
Faustino LC, Pires RM, Lima AC, Cordeiro A, Souza LL, Ortiga-Carvalho TM. Liver glutathione S-transferase α expression is decreased by 3,5,3′-triiodothyronine in hypothyroid but not in euthyroid mice. Exp Physiol 2011; 96:790-800. [DOI: 10.1113/expphysiol.2011.058172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci 2010; 44:68-77. [PMID: 20193766 DOI: 10.1016/j.mcn.2010.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/28/2009] [Accepted: 02/19/2010] [Indexed: 11/21/2022] Open
Abstract
Cerebellar development on the postnatal period is mainly characterized by cellular proliferation in the external granular layer (EGL) followed by migration of granular cells in the molecular layer through the Bergmann glia (BG) fibers in order to form the granular layer in the adult. All these events are drastically affected by thyroid hormones (TH), which actions are mainly mediated by alpha (TRalpha) and beta (TRbeta) nuclear receptor isoforms. Here, we analyzed the effects of a natural human mutation (337T) in the TRbeta locus, which impairs T3 binding to its receptor, on the mouse cerebellum ontogenesis. We report that target inactivation of TRbeta-TH binding leads to a smaller cerebellum area characterized by impaired lamination and foliation. Further, TRbeta mutant mice presented severe deficits in proliferation of granular precursors, arborization of Purkinje cells and organization of BG fibers. Together, our data suggest that the action of TH via TRbeta regulates important events of cerebellar ontogenesis contributing to a better understanding of some neuroendocrine disorders. Further, our data correlate TRbeta with cerebellar foliation, and provide, for the first time, evidence of a receptor-mediated mechanism underlying TH actions on this event.
Collapse
|
13
|
Pulcrano M, Palmieri EA, Mannavola D, Ciulla M, Campi I, Covelli D, Lombardi G, Biondi B, Beck-Peccoz P. Impact of resistance to thyroid hormone on the cardiovascular system in adults. J Clin Endocrinol Metab 2009; 94:2812-6. [PMID: 19435825 DOI: 10.1210/jc.2009-0096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND The clinical manifestations of resistance to thyroid hormone (RTH) are highly variable, and the impact of RTH on the cardiovascular system has been poorly investigated. AIM The objective of the study was to evaluate the cardiovascular characteristics of 16 untreated and asymptomatic patients with RTH compared with 16 euthyroid healthy controls to define the cardiovascular involvement in RTH syndrome. PATIENTS AND METHODS Sixteen untreated and asymptomatic RTH patients (eight males; aged 33 +/- 12 yr, range 21-45 yr) and 16 controls (nine males; aged 33 +/- 5 yr, range 24-42 yr) were enrolled. Clinical data, thyroid status, and echocardiographic results were recorded. RESULTS Heart rate was comparable with that of controls, whereas arterial pressure was higher than controls. Mean interventricular septum diastolic thickness and mean left ventricular (LV) posterior wall diastolic thickness were significantly lower in RTH patients than controls with a consequent significant decrease of the mean LV mass and LV mass indexed by body surface area. Patients also had abnormalities of myocardial relaxation as indicated by a significant increase of peak A and consequent reduction of the early to late ratio. Finally, systemic vascular resistance was significantly higher in RTH patients than controls. CONCLUSIONS Our results suggest the presence of cardiovascular alterations in asymptomatic and untreated RTH patients similar to those reported in hypothyroid patients. Our strict selection likely created a bias in the inclusion of a particular type of RTH patients, who could represent a minority of patients with RTH. However, no correlation was found between the type of mutation and cardiovascular characteristics of RTH patients.
Collapse
Affiliation(s)
- Melania Pulcrano
- Department of Clinical and Molecular Endocrinology and Oncology, University Federico II of Naples, Via S. Pansini 5, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Effect of thyroid hormone T3 on myosin-Va expression in the central nervous system. Brain Res 2009; 1275:1-9. [PMID: 19379719 DOI: 10.1016/j.brainres.2009.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) are essential for brain development, where they regulate gliogenesis, myelination, cell proliferation and protein synthesis. Hypothyroidism severely affects neuronal growth and establishment of synaptic connections. Triiodothyronine (T3), the biologically active form of TH, has a central function in these activities. So, Myosin-Va (Myo-Va), a molecular motor protein involved in vesicle and RNA transport, is a good candidate as a target for T3 regulation. Here, we analyzed Myo-Va expression in euthyroid and hypothyroid adult rat brains and synaptosomes. We observed a reduction of Myo-Va expression in cultured neural cells from newborn hypothyroid rat brain, while immunocytochemical experiments showed a punctate distribution of this protein in the cytoplasm of cells. Particularly, Myo-Va co-localized with microtubules in neurites, especially in their varicosities. Myo-Va immunostaining was stronger in astrocytes and neurons of controls when compared with hypothyroid brains. In addition, supplementation of astrocyte cultures with T3 led to increased expression of Myo-Va in cells from both euthyroid and hypothyroid animals, suggesting that T3 modulates Myo-Va expression in neural cells both in vivo and in vitro. We have further analyzed Myo-Va expression in U373 cells, a human glioblastoma line, and found the same punctate cytoplasmic protein localization. As in normal neural cells, this expression was also increased by T3, suggesting that the modulatory mechanism exerted by T3 over Myo-Va remains active on astrocyte tumor cells. These data, coupled with the observation that Myo-Va is severely affected in hypothyroidism, support the hypothesis that T3 activity regulates neural motor protein expression, taking Myo-Va as a model. As a consequence, reduced T3 activity could supposedly affect axonal transport and synaptic function, and could therefore explain disturbances seen in the hypothyroid brain.
Collapse
|
15
|
Almeida NAS, Cordeiro A, Machado DS, Souza LL, Ortiga-Carvalho TM, Campos-de-Carvalho AC, Wondisford FE, Pazos-Moura CC. Connexin40 messenger ribonucleic acid is positively regulated by thyroid hormone (TH) acting in cardiac atria via the TH receptor. Endocrinology 2009; 150:546-54. [PMID: 18787025 DOI: 10.1210/en.2008-0451] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) regulates many cardiac genes via nuclear thyroid receptors, and hyperthyroidism is frequently associated with atrial fibrillation. Electrical activity propagation in myocardium depends on the transfer of current at gap junctions, and connexins (Cxs) 40 and 43 are the predominant junction proteins. In mice, Cx40, the main Cx involved in atrial conduction, is restricted to the atria and fibers of the conduction system, which also express Cx43. We studied cardiac expression of Cx40 and Cx43 in conjunction with electrocardiogram studies in mice overexpressing the dominant negative mutant thyroid hormone receptor-beta Delta337T exclusively in cardiomyocytes [myosin heavy chain (MHC-mutant)]. These mice develop the cardiac hypothyroid phenotype in the presence of normal serum TH. Expression was also examined in wild-type mice rendered hypothyroid or hyperthyroid by pharmacological treatment. Atrial Cx40 mRNA and protein levels were decreased (85 and 55%, respectively; P < 0.001) in MHC-mt mice. Atrial and ventricular Cx43 mRNA levels were not significantly changed. Hypothyroid and hyperthyroid animals showed a 25% decrease and 40% increase, respectively, in Cx40 mRNA abundance. However, MHC-mt mice presented very low Cx40 mRNA expression regardless of whether they were made hypothyroid or hyperthyroid. Atrial depolarization velocity, as represented by P wave duration in electrocardiograms of unanesthetized mice, was extremely reduced in MHC-mt mice, and to a lesser extent also in hypothyroid mice (90 and 30% increase in P wave duration). In contrast, this measure was increased in hyperthyroid mice (19% decrease in P wave duration). Therefore, this study reveals for the first time that Cx40 mRNA is up-regulated by TH acting in cardiac atria via the TH receptor and that this may be one of the mechanisms contributing to atrial conduction alterations in thyroid dysfunctions.
Collapse
Affiliation(s)
- Norma A S Almeida
- Laboratório de Endocrinologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Buroker NE, Young ME, Wei C, Serikawa K, Ge M, Ning XH, Portman MA. The dominant negative thyroid hormone receptor beta-mutant {Delta}337T alters PPAR{alpha} signaling in heart. Am J Physiol Endocrinol Metab 2007; 292:E453-60. [PMID: 16985257 DOI: 10.1152/ajpendo.00267.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PPARalpha and TR independently regulate cardiac metabolism. Although ligands for both these receptors are currently under evaluation for treatment of congestive heart failure, their interactions or signaling cooperation have not been investigated in heart. We tested the hypothesis that cardiac TRs interact with PPARalpha regulation of target genes and used mice exhibiting a cardioselective Delta337T TRbeta1 mutation (MUT) to reveal cross-talk between these nuclear receptors. This dominant negative transgene potently inhibits DNA binding for both wild-type (WT) TRalpha and TRbeta. We used UCP3 and MTE-1 as principal reporters and analyzed gene expression from hearts of transgenic (MUT) and nontransgenic (WT) littermates 6 h after receiving either specific PPARalpha ligand (WY-14643) or vehicle. Interactions were determined through qRT-PCR analyses, and the extent of these interactions across multiple genes was determined using expression arrays. In the basal state, we detected no differences between groups for protein content for UCP3, PPARalpha, TRalpha2, RXRbeta, or PGC-1alpha. However, protein content for TRalpha1 and the PPARalpha heterodimeric partner RXRalpha was diminished in MUT, whereas PPARbeta increased. We demonstrated cross-talk between PPAR and TR for multiple genes, including the reporters UCP3 and MTE1. WY-14643 induced a twofold increase in UCP3 gene expression that was totally abrogated in MUT. We demonstrated variable cross-talk patterns, indicating that multiple mechanisms operate according to individual target genes. The non-ligand-binding TRbeta1 mutation alters expression for multiple nuclear receptors, providing a novel mechanism for interaction that has not been previously demonstrated. These results indicate that therapeutic response to PPARalpha ligands may be determined by thyroid hormone state and TR function.
Collapse
Affiliation(s)
- Norman E Buroker
- Division of Cardiology, Children's Hospital and Regional Medical Center, 4800 Sand Point Way N. E., Seattle, WA 98105, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Yang Z, Rodgers MT. Influence of Thioketo Substitution on the Properties of Uracil and Its Noncovalent Interactions with Alkali Metal Ions: Threshold Collision-Induced Dissociation and Theoretical Studies†. J Phys Chem A 2006; 110:1455-68. [PMID: 16435805 DOI: 10.1021/jp054849j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental and theoretical studies are carried out to determine the influence of thioketo substitution on the properties of uracil and its noncovalent interactions with alkali metal ions. Bond dissociation energies of alkali metal ion-thiouracil complexes, M(+)(SU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M(+) = Li(+), Na(+), and K(+) and SU = 2-thiouracil, 4-thiouracil, 2,4-dithiouracil, 5-methyl-2-thiouracil, and 6-methyl-2-thiouracil. Ab initio electronic structure calculations are performed to determine the structures and theoretical bond dissociation energies of these complexes and provide molecular constants necessary for thermodynamic analysis of the experimental data. Theoretical calculations are also performed to examine the influence of thioketo substitution on the acidities, proton affinities, and A::SU Watson-Crick base pairing energies. In general, thioketo substitution leads to an increase in both the proton affinity and the acidity of uracil. 2-Thio substitution generally results in an increase in the alkali metal ion binding affinities but has almost no affect on the stability of the A::SU base pair. In contrast, 4-thio substitution results in a decrease in the alkali metal ion binding affinities and a significant decrease in the stability of the A::SU base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of both single-stranded and double-stranded nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
18
|
|
19
|
Abstract
The major thyroid hormone (TH) secreted by the thyroid gland is thyroxine (T(4)). Triiodothyronine (T(3)), formed chiefly by deiodination of T(4), is the active hormone at the nuclear receptor, and it is generally accepted that deiodination is the major pathway regulating T(3) bioavailability in mammalian tissues. The alternate pathways, sulfation and glucuronidation of the phenolic hydroxyl group of iodothyronines, the oxidative deamination and decarboxylation of the alanine side chain to form iodothyroacetic acids, and ether link cleavage provide additional mechanisms for regulating the supply of active hormone. Sulfation may play a general role in regulation of iodothyronine metabolism, since sulfation of T(4) and T(3) markedly accelerates deiodination to the inactive metabolites, reverse triiodothyronine (rT(3)) and T(2). Sulfoconjugation is prominent during intrauterine development, particularly in the precocial species in the last trimester including humans and sheep, where it may serve both to regulate the supply of T(3), via sulfation followed by deiodination, and to facilitate maternal-fetal exchange of sulfated iodothyronines (e.g., 3,3'-diiodothyronine sulfate [T(2)S]). The resulting low serum T(3) may be important for normal fetal development in the late gestation. The possibility that T(2)S or its derivative, transferred from the fetus and appearing in maternal serum or urine, can serve as a marker of fetal thyroid function is being studied. Glucuronidation of TH often precedes biliary-fecal excretion of hormone. In rats, stimulation of glucuronidation by various drugs and toxins may lead to lower T(4) and T(3) levels, provocation of thyrotropin (TSH) secretion, and goiter. In man, drug induced stimulation of glucuronidation is limited to T(4), and does not usually compromise normal thyroid function. However, in hypothyroid subjects, higher doses of TH may be required to maintain euthyroidism when these drugs are given. In addition, glucuronidates and sulfated iodothyronines can be hydrolyzed to their precursors in gastrointestinal tract and various tissues. Thus, these conjugates can serve as a reservoir for biologically active iodothyronines (e.g., T(4), T(3), or T(2)). The acetic acid derivatives of T(4), tetrac and triac, are minor products in normal thyroid physiology. However, triac has a different pattern of receptor affinity than T(3), binding preferentially to the beta receptor. This makes it useful in the treatment of the syndrome of resistance to thyroid hormone action, where the typical mutation affects only the beta receptor. Thus, adequate binding to certain mutated beta receptors can be achieved without excessive stimulation of alpha receptors, which predominate in the heart. Ether link cleavage of TH is also a minor pathway in normal subjects. However, this pathway may become important during infections, when augmented TH breakdown by ether-link cleavage (ELC) may assist in bactericidal activity. There is a recent claim that decarboxylated derivates of thyronines, that is, monoiodothyronamine (T(1)am) and thyronamine (T(0)am), may be biologically important and have actions different from those of TH. Further information on these interesting derivatives is awaited.
Collapse
Affiliation(s)
- Sing-Yung Wu
- Nuclear Medicine and Medical Services, University of California, Irvine and Department of Veterans' Affairs Healthcare System, Long Beach, California 90822, USA.
| | | | | | | | | |
Collapse
|