1
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Zhao X, Wang Y, Meng C, Fang N. FMRP regulates endothelial cell proliferation and angiogenesis via the miR-181a-CaM-CaMKII pathway. Cell Biol Int 2018; 42:1432-1444. [PMID: 30080293 DOI: 10.1002/cbin.11039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
RNA binding proteins (RBPs) and microRNAs have emerged as crucial post-transcriptional regulators of gene expression. Although the role of Fragile X mental retardation protein (FMRP) has been well studied in the brain, the function of FMRP in endothelial cells remains unknown. In our study, we showed that FMRP controlled human umbilical vein endothelial cells (HUVECs) proliferation and angiogenesis via the miR-181a-mediated calmodulin (CaM)/CaMKII pathway. The knockdown of FMRP induced miR-181a expression and contributed to endothelial cell proliferation and angiogenesis. Furthermore, we identified CaM as a downstream target of miR-181a in endothelial cells. Additionally, tumor necrosis factor-ɑ (TNF-ɑ) treatment specifically decreased the activity of the CaM/CaMKII pathway through the dephosphorylation of FMRP and upregulation of miR-181a. Finally, the overexpression of constitutively phosphorylated FMRP rescued the TNF-ɑ-impaired endothelial cell proliferation and angiogenesis by activating the CaM/CaMKII pathway and downregulating miR-181a, which suggested there was a pivotal role of FMRP in vascular integrity in response to inflammatory stimuli. Thus, our study supports a novel function and mechanism involving FMRP and the miR-181a-CaM-CaMKII pathway may be a therapeutic target for protecting against inflammation-induced vascular diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Yang Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, No.138 Yixueyuan Road, Shanghai 200032, China
| | - Chao Meng
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| | - Ningyuan Fang
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New Area, Shanghai 200127, China
| |
Collapse
|
3
|
Yang Y, Liu N, He Y, Liu Y, Ge L, Zou L, Song S, Xiong W, Liu X. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 2018; 9:1504. [PMID: 29666364 PMCID: PMC5904127 DOI: 10.1038/s41467-018-03719-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/09/2018] [Indexed: 01/09/2023] Open
Abstract
GCaMP, one popular type of genetically-encoded Ca2+ indicator, has been associated with various side-effects. Here we unveil the intrinsic problem prevailing over different versions and applications, showing that GCaMP containing CaM (calmodulin) interferes with both gating and signaling of L-type calcium channels (CaV1). GCaMP acts as an impaired apoCaM and Ca2+/CaM, both critical to CaV1, which disrupts Ca2+ dynamics and gene expression. We then design and implement GCaMP-X, by incorporating an extra apoCaM-binding motif, effectively protecting CaV1-dependent excitation–transcription coupling from perturbations. GCaMP-X resolves the problems of detrimental nuclear accumulation, acute and chronic Ca2+ dysregulation, and aberrant transcription signaling and cell morphogenesis, while still demonstrating excellent Ca2+-sensing characteristics partly inherited from GCaMP. In summary, CaM/CaV1 gating and signaling mechanisms are elucidated for GCaMP side-effects, while allowing the development of GCaMP-X to appropriately monitor cytosolic, submembrane or nuclear Ca2+, which is also expected to guide the future design of CaM-based molecular tools. The popular genetically-encoded Ca2+ indicator, GCaMP, has several side-effects. Here the authors show that GCaMP containing CaM interferes with gating and signaling of L-type calcium channels, which disrupts Ca2+ dynamics and gene expression, and develop GCaMP-X to overcome these limitations.
Collapse
Affiliation(s)
- Yaxiong Yang
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 102402, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Yunan University, Kunming, 650091, China
| | - Yuanyuan He
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Yuxia Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Lin Ge
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China
| | - Linzhi Zou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sen Song
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Liu
- Department of Biomedical Engineering, School of Medicine, X-Lab for Transmembrane Signaling Research, Tsinghua University, Beijing, 100084, China. .,School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China. .,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 102402, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
4
|
Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. Br J Nutr 2018; 119:734-747. [DOI: 10.1017/s0007114518000375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AbstractMammalian neonates undergo rapid transitions from a sterile uterine environment with a continuous intravenous supply of nutrients to a microbe-rich environment with intermittent ingesting of colostrum/milk via the gut. Currently, little is known about the colostrum-induced alterations of intestinal mucosal proteins in piglets with intra-uterine growth restriction (IUGR). In this study, we sought to investigate the innate differences and effects of colostrum on alterations in small-intestinal proteomes of IUGR piglets. Two IUGR (approximately 0·9 kg) and two normal-birth weight (NBW; approximately 1·3 kg) piglets were obtained from each of six sows at birth. One half (n12; 6 IUGRv. 6 NBW) of the selected newborn piglets were killed to obtain jejunum samples, and the other half (n12; 6 IUGRv. 6 NBW) of the newborn piglets were allowed to suckle colostrum from their own mothers for 24 h before jejunum sample collection. On the basis of proteomic analysis, we identified thirty-one differentially expressed proteins in the jejunal mucosa between IUGR and normal neonates before or after colostrum consumption. The intestinal proteins altered by colostrum feeding play important roles in the following: (1) increasing intestinal integrity, transport of nutrients, energy metabolism, protein synthesis, immune response and, therefore, cell proliferation; and (2) decreasing oxidative stress, and therefore cell apoptosis, in IUGR neonates. However, colostrum only partially ameliorated the inferior status of the jejunal mucosa in IUGR neonates. These findings provide the first evidence in intestinal protein alterations of IUGR neonates in response to colostrum ingestion, and thus render new insights into the mechanisms responsible for impaired growth in IUGR neonates and into new nutritional intervention strategies.
Collapse
|
5
|
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022]
Abstract
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Collapse
|
6
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
7
|
Lee EH, Woo JS, Hwang JH, Park JH, Cho CH. Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J Cell Physiol 2013; 228:1038-44. [PMID: 23041942 DOI: 10.1002/jcp.24251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/26/2012] [Indexed: 01/23/2023]
Abstract
Angiopoietin 1 (Ang1) plays an important role in various endothelial functions, such as vascular integrity and angiogenesis; however, less is known about its function outside of the endothelium. In this study, we examined whether Ang1 has direct effects on skeletal muscle cells. We found that Ang1 exhibited myogenic potential, as it promoted the proliferation, migration, and differentiation of mouse primary skeletal myoblasts. The positive effect of Ang1 on myoblast proliferation could have been mediated by the α7 and β1 integrins. We also found that Ang1 potentiated cellular Ca(2+) movements in differentiated myotubes in response to stimuli, possibly through the increased expression of two Ca(2+) -related proteins, namely, Orai1 and calmodulin. Ang1 also increased Orai1 and calmodulin expression in mouse hearts in vivo. These results provide an insight into the molecular mechanisms by which Ang1 directly affects the myogenesis of striated muscle.
Collapse
Affiliation(s)
- Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Lu YM, Shioda N, Han F, Kamata A, Shirasaki Y, Qin ZH, Fukunaga K. DY-9760e Inhibits Endothelin-1-induced Cardiomyocyte Hypertrophy Through Inhibition of CaMKII and ERK Activities. Cardiovasc Ther 2009; 27:17-27. [DOI: 10.1111/j.1755-5922.2008.00068.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res 2008; 104:e1-7. [PMID: 19038863 DOI: 10.1161/circresaha.108.188649] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following a pathological insult, the adult mammalian heart undergoes hypertrophic growth and remodeling of the extracellular matrix. Although a small subpopulation of cardiomyocytes can reenter the cell cycle following cardiac injury, the myocardium is largely thought to be incapable of significant regeneration. Periostin, an extracellular matrix protein, has recently been proposed to induce reentry of differentiated cardiomyocytes back into the cell cycle and promote meaningful repair following myocardial infarction. Here, we show that although periostin is induced in the heart following injury, it does not stimulate DNA synthesis, mitosis, or cytokinesis of cardiomyocytes in vitro or in vivo. Mice lacking the gene encoding periostin and mice with inducible overexpression of full-length periostin were analyzed at baseline and after myocardial infarction. There was no difference in heart size or a change in cardiomyocyte number in either periostin transgenic or gene-targeted mice at baseline. Quantification of proliferating myocytes in the periinfarct area showed no difference between periostin-overexpressing and -null mice compared with strain-matched controls. In support of these observations, neither overexpression of periostin in cell culture, via an adenoviral vector, nor stimulation with recombinant protein induced DNA synthesis, mitosis, or cytokinesis. Periostin is a regulator of cardiac remodeling and hypertrophy and may be a reasonable pharmacological target to mitigate heart failure, but manipulation of this protein appears to have no obvious effect on myocardial regeneration.
Collapse
Affiliation(s)
- Angela Lorts
- Department of Pediatrics, Division of Cardiology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Ohio, USA
| | | | | | | | | |
Collapse
|
10
|
Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem 2008; 283:31246-55. [PMID: 18753132 DOI: 10.1074/jbc.m806085200] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The strength and duration of mitogen-activated protein kinase signaling is regulated through phosphorylation and dephosphorylation by dedicated dual-specificity kinases and phosphatases, respectively. Here we investigated the physiological role that extracellular signal-regulated kinases 1/2 (ERK1/2) dephosphorylation plays in vivo through targeted disruption of the gene encoding dual-specificity phosphatase 6 (Dusp6) in the mouse. Dusp6(-/-) mice, which were viable, fertile, and otherwise overtly normal, showed an increase in basal ERK1/2 phosphorylation in the heart, spleen, kidney, brain, and fibroblasts, but no change in ERK5, p38, or c-Jun N-terminal kinases activation. However, loss of Dusp6 did not increase or prolong ERK1/2 activation after stimulation, suggesting that its function is more dedicated to basal ERK1/2 signaling tone. In-depth analysis of the physiological effect associated with increased baseline ERK1/2 signaling was performed in cultured mouse embryonic fibroblasts (MEFs) and the heart. Interestingly, mice lacking Dusp6 had larger hearts at every age examined, which was associated with greater rates of myocyte proliferation during embryonic development and in the early postnatal period, resulting in cardiac hypercellularity. This increase in myocyte content in the heart was protective against decompensation and hypertrophic cardiomyopathy following long term pressure overload and myocardial infarction injury in adult mice. Dusp6(-/-) MEFs also showed reduced apoptosis rates compared with wild-type MEFs. These results demonstrate that ERK1/2 signaling is physiologically restrained by DUSP6 in coordinating cellular development and survival characteristics, directly impacting disease-responsiveness in adulthood.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
11
|
Enayetul Babar SM, Song EJ, Yoo YS. Analysis of calcineurin activity by capillary electrophoresis with laser-induced fluorescence detection using peptide substrate. J Sep Sci 2008; 31:579-87. [DOI: 10.1002/jssc.200700326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Ca2+ oscillation frequency decoding in cardiac cell hypertrophy: role of calcineurin/NFAT as Ca2+ signal integrators. Proc Natl Acad Sci U S A 2008; 105:2859-64. [PMID: 18287024 DOI: 10.1073/pnas.0712316105] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of Ca(2+) signaling in triggering hypertrophy was investigated in neonatal rat cardiomyocytes in vitro. We show that an increase in cell size and sarcomere reorganization were elicited by receptor agonists such as Angiotensin II, aldosterone, and norepinephrine and by a small rise in medium KCl concentration, a treatment devoid of direct effects on receptor functions. All these treatments increased the frequency of spontaneous [Ca(2+)] transients, caused nuclear translocation of transfected NFAT(GFP), and increased the expression of a NFAT-sensitive reporter gene. There was no increase in Ca(2+) spark frequency in the whole cell or in the perinuclear region under these conditions. Hypertrophy and NFAT translocation but not the increased frequency of [Ca(2+)] transients were inhibited by the calcineurin inhibitor cyclosporine A. Hypertrophy by the different stimuli was insensitive to inhibition of myofilament contraction. We concluded that calcineurin-NFAT can act as integrators of the contractile Ca(2+) signal, and that they can decode alterations in the frequency even of rapid Ca(2+) oscillations.
Collapse
|
13
|
Tay LH, Griesbeck O, Yue DT. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor. Biophys J 2007; 93:4031-40. [PMID: 17704158 PMCID: PMC2084226 DOI: 10.1529/biophysj.107.109629] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded Ca(2+) sensors promise sustained in vivo detection of Ca(2+) signals. However, these sensors are sometimes challenged by inconsistent performance and slow/uncertain kinetic responsiveness. The former challenge may arise because most sensors employ calmodulin (CaM) as the Ca(2+)-sensing module, such that interference via endogenous CaM may result. One class of sensors that could minimize this concern utilizes troponin C as the Ca(2+) sensor. Here, we therefore probed the reliability and kinetics of one representative of this class (cyan fluorescence protein/yellow fluorescent protein-fluorescence resonance energy transfer (FRET) sensor TN-L15) within cardiac ventricular myocytes. These cells furnished a pertinent live-cell test environment, given substantial endogenous CaM levels and fast reproducible Ca(2+) transients for testing sensor kinetics. TN-L15 was virally expressed within myocytes, and Indo-1 acutely loaded to monitor "true" Ca(2+) transients. This configuration permitted independent and simultaneous detection of TN-L15 and Indo-1 signals within individual cells. The relation between TN-L15 FRET responses and Indo-1 Ca(2+) transients appeared reproducible, though FRET signals were delayed compared to Ca(2+) transients. Nonetheless, a three-state mechanism sufficed to map between measured Ca(2+) transients and actual TN-L15 outputs. Overall, reproducibility of TN-L15 dynamics, coupled with algorithmic transforms between FRET and Ca(2+) signals, renders these sensors promising for quantitative estimation of Ca(2+) dynamics in vivo.
Collapse
Affiliation(s)
- Lai Hock Tay
- Calcium Signals Laboratory, Department of Biomedical Engineering, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
14
|
Ramakrishna S, Kim IM, Petrovic V, Malin D, Wang IC, Kalin TV, Meliton L, Zhao YY, Ackerson T, Qin Y, Malik AB, Costa RH, Kalinichenko VV. Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor. Dev Dyn 2007; 236:1000-13. [PMID: 17366632 DOI: 10.1002/dvdy.21113] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Forkhead Box m1 (Foxm1) transcription factor is expressed in cardiomyocytes and cardiac endothelial cells during heart development. In this study, we used a novel Foxm1 -/- mouse line to demonstrate that Foxm1-deletion causes ventricular hypoplasia and diminished DNA replication and mitosis in developing cardiomyocytes. Proliferation defects in Foxm1 -/- hearts were associated with a reduced expression of Cdk1-activator Cdc25B phosphatase and NFATc3 transcription factor, and with abnormal nuclear accumulation of the Cdk-inhibitor p21(Cip1) protein. Depletion of Foxm1 levels by siRNA caused altered expression of these genes in cultured HL-1 cardiomyocytes. Endothelial-specific deletion of the Foxm1 fl/fl allele in Tie2-Cre Foxm1 fl/fl embryos did not influence heart development and cardiomyocyte proliferation. Foxm1 protein binds to the -9,259/-9,288-bp region of the endogenous mouse NFATc3 promoter, indicating that Foxm1 is a transcriptional activator of the NFATc3 gene. Foxm1 regulates expression of genes essential for the proliferation of cardiomyocytes during heart development.
Collapse
|
15
|
McKinsey TA. Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 2006; 73:667-77. [PMID: 17217938 DOI: 10.1016/j.cardiores.2006.11.036] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/22/2006] [Accepted: 11/30/2006] [Indexed: 01/09/2023] Open
Abstract
In response to pathologic stresses such as hypertension or myocardial infarction, the heart undergoes a remodeling process that is characterized by myocyte hypertrophy, myocyte death and fibrosis, resulting in impaired cardiac function and heart failure. Cardiac remodeling is associated with derepression of genes that contribute to disease progression. This review focuses on evidence linking members of the Ca(2+)/calmodulin-dependent protein kinase (CaMK) superfamily, specifically CaMKII, protein kinase D (PKD) and microtubule associated kinase (MARK), to stress-induced derepression of pathological cardiac gene expression through their effects on class IIa histone deacetylases (HDACs).
Collapse
Affiliation(s)
- Timothy A McKinsey
- Myogen, Inc./Gilead Colorado, Inc., 7575 West 103rd Ave., Westminster, Colorado 80021, USA.
| |
Collapse
|
16
|
Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 2006; 103:4753-8. [PMID: 16537386 PMCID: PMC1450242 DOI: 10.1073/pnas.0509378103] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded sensor proteins provide unique opportunities to advance the understanding of complex cellular interactions in physiologically relevant contexts; however, previously described sensors have proved to be of limited use to report cell signaling in vivo in mammals. Here, we describe an improved Ca(2+) sensor, GCaMP2, its inducible expression in the mouse heart, and its use to examine signaling in heart cells in vivo. The high brightness and stability of GCaMP2 enable the measurement of myocyte Ca(2+) transients in all regions of the beating mouse heart and prolonged pacing and mapping studies in isolated, perfused hearts. Transgene expression is efficiently temporally regulated in cardiomyocyte GCaMP2 mice, allowing recording of in vivo signals 4 weeks after transgene induction. High-resolution imaging of Ca(2+) waves in GCaMP2-expressing embryos revealed key aspects of electrical conduction in the preseptated heart. At embryonic day (e.d.) 10.5, atrial and ventricular conduction occur rapidly, consistent with the early formation of specialized conduction pathways. However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue. Consistent with the elimination of the inner AV canal muscle layer at e.d. 13.5, atrioventricular conduction through the canal was abolished at this stage. These studies demonstrate that GCaMP2 will have broad utility in the dissection of numerous complex cellular interactions in mammals, in vivo.
Collapse
Affiliation(s)
- Yvonne N. Tallini
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Masamichi Ohkura
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka 882-8508, Japan; Departments of
| | | | - Guangju Ji
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Keiji Imoto
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Robert Doran
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Jane Lee
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | | | - Jason Wilson
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Hong-Bo Xin
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| | - Atsushi Sanbe
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - James Gulick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | - John Mathai
- **Medicine, University of Pittsburgh School of Medicine, Room S 314 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229; and
| | | | - Junichi Nakai
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Michael I. Kotlikoff
- *Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850
| |
Collapse
|
17
|
Obata K, Nagata K, Iwase M, Odashima M, Nagasaka T, Izawa H, Murohara T, Yamada Y, Yokota M. Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway. Biochem Biophys Res Commun 2005; 338:1299-305. [PMID: 16256941 DOI: 10.1016/j.bbrc.2005.10.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/09/2005] [Indexed: 11/23/2022]
Abstract
The possible role of calcineurin in cardiac hypertrophy induced by calmodulin (CaM) overexpression in the heart was investigated. CaM transgenic (CaM-TG) mice developed marked cardiac hypertrophy and exhibited up-regulation of atrial natriuretic factor (ANF) and beta-myosin heavy chain gene expression in the heart during the first 2 weeks after birth. The activity of calcineurin in the heart was also significantly increased in CaM-TG mice compared with wild-type littermates. Treatment of CaM-TG mice with the calcineurin inhibitor FK506 (1mg/kg per day) prevented the increase in the heart-to-body weight ratio as well as that in cardiomyocyte width. FK506 also inhibited the induction of fetal-type cardiac gene expression in CaM-TG mice. Overexpression of CaM in cultured rat cardiomyocytes activated the ANF gene promoter in a manner sensitive to FK506. Activation of a calcineurin-dependent pathway thus contributes to the development of cardiac hypertrophy induced by CaM overexpression in the heart.
Collapse
Affiliation(s)
- Koji Obata
- Department of Cardiovascular Genome Science, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McMullen NM, Gaspard GJ, Pasumarthi KBS. Reactivation of cardiomyocyte cell cycle: A potential approach for myocardial regeneration. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/sita.200400050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Liu H, Harris TM, Kim HH, Childs G. Cardiac myocyte differentiation: the Nkx2.5 and Cripto target genes in P19 clone 6 cells. Funct Integr Genomics 2005; 5:218-39. [PMID: 15806425 DOI: 10.1007/s10142-005-0140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 01/07/2005] [Accepted: 01/12/2005] [Indexed: 01/29/2023]
Abstract
Genetic evidence has implicated several genes as being critical for the development of cardiomyocytes. Whereas a few of the targets of these genes and the pathways they constitute are known the majority of targets and the interrelationships of the pathways involved still remains largely unknown. The power of high-throughput analytical techniques like microarrays and real-time RT-PCR combined with the ability to selectively silence specific mRNA in model tissue culture systems can begin to fill in these gaps and increase our understanding of the molecular mechanisms of cell commitment and terminal differentiation. We have used microarray analysis and siRNA directed against the cardiac-specific transcription factor Nkx2.5 and one of its targets Cripto in P19 clone 6 (P19Cl6) cells to identify potential targets for these genes. We demonstrate Nkx2.5 affects genes that have been shown to be controlled by the canonical Wnt or TGFbeta/BMP signaling pathways. We also show that Cripto can regulate the critical stem cell gene Nanog and two Oct 4-regulated genes: Dppa2 and 4. Cripto also affects the formation of nitric oxide, a small signaling molecule that has been reported to be important for growth and development of cardiac and smooth muscle. It affects the nitric oxide system by regulating genes that control the levels of nitric oxide synthase mRNA concentration as well as the activation and bioavailability of the protein.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|