1
|
Nakamura S, Sasaki T, Uenoyama Y, Inoue N, Nakanishi M, Yamada K, Morishima A, Suzumura R, Kitagawa Y, Morita Y, Ohkura S, Tsukamura H. Raphe glucose-sensing serotonergic neurons stimulate KNDy neurons to enhance LH pulses via 5HT2CR: rat and goat studies. Sci Rep 2024; 14:10190. [PMID: 38702366 PMCID: PMC11068885 DOI: 10.1038/s41598-024-58470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
Dysfunction of central serotonergic neurons is known to cause depressive disorders in humans, who often show reproductive and/or glucose metabolism disorders. This study examined whether dorsal raphe (DR) serotonergic neurons sense high glucose availability to upregulate reproductive function via activating hypothalamic arcuate (ARC) kisspeptin neurons (= KNDy neurons), a dominant stimulator of gonadotropin-releasing hormone (GnRH)/gonadotropin pulses, using female rats and goats. RNA-seq and histological analysis revealed that stimulatory serotonin-2C receptor (5HT2CR) was mainly expressed in the KNDy neurons in female rats. The serotonergic reuptake inhibitor administration into the mediobasal hypothalamus (MBH), including the ARC, significantly blocked glucoprivic suppression of luteinizing hormone (LH) pulses and hyperglycemia induced by intravenous 2-deoxy-D-glucose (2DG) administration in female rats. A local infusion of glucose into the DR significantly increased in vivo serotonin release in the MBH and partly restored LH pulses and hyperglycemia in the 2DG-treated female rats. Furthermore, central administration of serotonin or a 5HT2CR agonist immediately evoked GnRH pulse generator activity, and central 5HT2CR antagonism blocked the serotonin-induced facilitation of GnRH pulse generator activity in ovariectomized goats. These results suggest that DR serotonergic neurons sense high glucose availability to reduce gluconeogenesis and upregulate reproductive function by activating GnRH/LH pulse generator activity in mammals.
Collapse
Affiliation(s)
- Sho Nakamura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Takuya Sasaki
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Marina Nakanishi
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Koki Yamada
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ai Morishima
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Reika Suzumura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yuri Kitagawa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Yasuhiro Morita
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Togo-cho, Aichi, 470-0151, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
2
|
Gimeno I, Salvetti P, Carrocera S, Gatien J, Le Bourhis D, Gómez E. The recipient metabolome explains the asymmetric ovarian impact on fetal sex development after embryo transfer in cattle. J Anim Sci 2024; 102:skae081. [PMID: 38567815 PMCID: PMC11005770 DOI: 10.1093/jas/skae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
In cattle, lateral asymmetry affects ovarian function and embryonic sex, but the underlying molecular mechanisms remain unknown. The plasma metabolome of recipients serves to predict pregnancy after embryo transfer (ET). Thus, the aim of this study was to investigate whether the plasma metabolome exhibits distinct lateral patterns according to the sex of the fetus carried by the recipient and the active ovary side (AOS), i.e., the right ovary (RO) or the left ovary (LO). We analyzed the plasma of synchronized recipients by 1H+NMR on day 0 (estrus, n = 366) and day 7 (hours prior to ET; n = 367). Thereafter, a subset of samples from recipients that calved female (n = 50) or male (n = 69) was used to test the effects of embryonic sex and laterality on pregnancy establishment. Within the RO, the sex ratio of pregnancies carried was biased toward males. Significant differences (P < 0.05) in metabolite levels were evaluated based on the day of blood sample collection (days 0, 7 and day 7/day 0 ratio) using mixed generalized models for metabolite concentration. The most striking differences in metabolite concentrations were associated with the RO, both obtained by multivariate (OPLS-DA) and univariate (mixed generalized) analyses, mainly with metabolites measured on day 0. The metabolites consistently identified through the OPLS-DA with a higher variable importance in projection score, which allowed for discrimination between male fetus- and female fetus-carrying recipients, were hippuric acid, l-phenylalanine, and propionic acid. The concentrations of hydroxyisobutyric acid, propionic acid, l-lysine, methylhistidine, and hippuric acid were lowest when male fetuses were carried, in particular when the RO acted as AOS. No pathways were significantly regulated according to the AOS. In contrast, six pathways were found enriched for calf sex in the day 0 dataset, three for day 7, and nine for day 7/day 0 ratio. However, when the AOS was the right, 20 pathways were regulated on day 0, 8 on day 7, and 13 within the day 7/day 0 ratio, most of which were related to amino acid metabolism, with phenylalanine, tyrosine, and tryptophan biosynthesis and phenylalanine metabolism pathways being identified throughout. Our study shows that certain metabolites in the recipient plasma are influenced by the AOS and can predict the likelihood of carrying male or female embryos to term, suggesting that maternal metabolism prior to or at the time of ET could favor the implantation and/or development of either male or female embryos.
Collapse
Affiliation(s)
- Isabel Gimeno
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Julie Gatien
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | | | - Enrique Gómez
- Animal Genetics and Reproduction, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
3
|
Uenoyama Y, Inoue N, Tsukamura H. Kisspeptin and lactational anestrus: Current understanding and future prospects. Peptides 2023; 166:171026. [PMID: 37230188 DOI: 10.1016/j.peptides.2023.171026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Lactational anestrus, characterized by the suppression of pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release, would be a strategic adaptation to ensure survival by avoiding pregnancy during lactation in mammals. In the present article, we first provide a current understanding of the central regulation of reproduction in mammals, i.e., a fundamental role of arcuate kisspeptin neurons in mammalian reproduction by driving GnRH/LH pulses. Second, we discuss the central mechanism inhibiting arcuate Kiss1 (encoding kisspeptin) expression and GnRH/LH pulses during lactation with a focus on suckling stimulus, negative energy balance due to milk production, and the role of circulating estrogen in rats. We also discuss upper regulators that control arcuate kisspeptin neurons in rats during the early and late lactation periods based on the findings obtained by a lactating rat model. Finally, we discuss potential reproductive technology for the improvement of reproductive performance in milking cows.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
McCosh RB, O'Bryne KT, Karsch FJ, Breen KM. Regulation of the gonadotropin-releasing hormone neuron during stress. J Neuroendocrinol 2022; 34:e13098. [PMID: 35128742 PMCID: PMC9232848 DOI: 10.1111/jne.13098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
The effect of stress on reproduction and gonadal function has captivated investigators for almost 100 years. Following the identification of gonadotropin-releasing hormone (GnRH) 50 years ago, a niche research field emerged fixated on how stress impairs this central node controlling downstream pituitary and gonadal function. It is now clear that both episodic GnRH secretion in males and females and surge GnRH secretion in females are inhibited during a variety of stress types. There has been considerable advancement in our understanding of numerous stress-related signaling molecules and their ability to impair reproductive neuroendocrine activity during stress. Recently, much attention has turned to the effects of stress on two populations of kisspeptin neurons: the stimulatory afferents to GnRH neurons that regulate pulsatile and surge-type gonadotropin secretion. Indeed, future work is still required to fully construct the neuroanatomical framework underlying stress effects, directly or indirectly, on GnRH neuron function. The present review evaluates and synthesizes evidence related to stress-related signaling molecules acting directly on GnRH neurons. Here, we review the evidence for and against the action of a handful of signaling molecules as inhibitors of GnRH neuron function, including corticotropin-releasing hormone, urocortins, norepinephrine, cortisol/corticosterone, calcitonin gene-related peptide and arginine-phenylalanine-amide-related peptide-3.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| | - Kevin T O'Bryne
- Department of Women and Children's Health, Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London, UK
| | - Fred J Karsch
- Reproductive Sciences Program and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, La Jolla, CA, USA
| |
Collapse
|
5
|
Widiyono I, Sarmin S, Yanuartono Y. Influence of body condition score on the metabolic and reproductive status of adult female Kacang goats. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1764361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Irkham Widiyono
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sarmin Sarmin
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yanuartono Yanuartono
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
6
|
McCosh RB, Kreisman MJ, Tian K, Ho BS, Thackray VG, Breen KM. Insulin-induced hypoglycaemia suppresses pulsatile luteinising hormone secretion and arcuate Kiss1 cell activation in female mice. J Neuroendocrinol 2019; 31:e12813. [PMID: 31758872 PMCID: PMC6933080 DOI: 10.1111/jne.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Stress suppresses pulsatile luteinising hormone (LH) secretion in a variety of species, although the mechanism underlying this inhibition of reproductive function remains unclear. Metabolic stress, particularly hypoglycaemia, is a clinically-relevant stress type that is modelled with bolus insulin injection (insulin-induced hypoglycaemia). The present study utilised ovariectomised C57BL/6 mice to test the hypothesis that acute hypoglycaemia suppresses pulsatile LH secretion via central mechanisms. Pulsatile LH secretion was measured in 90-minute sampling periods immediately prior to and following i.p. injection of saline or insulin. The secretion of LH was not altered over time in fed animals or acutely fasted (5 hours) animals following an i.p. saline injection. By contrast, insulin elicited a robust suppression of pulsatile LH secretion in fasted animals, preventing LH pulses in five of six mice. To identify the neuroendocrine site of impairment, a kisspeptin challenge was performed in saline or insulin pre-treated animals in a cross-over design. LH secretion in response to exogenous kisspeptin was not different between animals pre-treated with saline or insulin, indicating normal gonadotrophin-releasing hormone cell and pituitary responses during acute hypoglycaemia. Based on this finding, the effect of insulin-induced hypoglycaemia on arcuate kisspeptin (Kiss1) cell function was determined using c-Fos as a marker of neuronal activation. Insulin caused a significant suppression in the percentage of Kiss1 cells in the arcuate nucleus that contained c-Fos compared to saline-injected controls. Taken together, these data support the hypothesis that insulin-induced hypoglycaemia suppresses pulsatile LH secretion in the female mouse via predominantly central mechanisms, which culminates in the suppression of the arcuate Kiss1 population.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Michael J Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Katherine Tian
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Bryan S Ho
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
7
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
8
|
Cameron EZ, Edwards AM, Parsley LM. Developmental sexual dimorphism and the evolution of mechanisms for adjustment of sex ratios in mammals. Ann N Y Acad Sci 2016; 1389:147-163. [PMID: 27862006 DOI: 10.1111/nyas.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022]
Abstract
Sex allocation theory predicts biased offspring sex ratios in relation to local conditions if they would maximize parental lifetime reproductive return. In mammals, the extent of the birth sex bias is often unpredictable and inconsistent, leading some to question its evolutionary significance. For facultative adjustment of sex ratios to occur, males and females would need to be detectably different from an early developmental stage, but classic sexual dimorphism arises from hormonal influences after gonadal development. Recent advances in our understanding of early, pregonadal sexual dimorphism, however, indicate high levels of dimorphism in gene expression, caused by chromosomal rather than hormonal differences. Here, we discuss how such dimorphism would interact with and link previously hypothesized mechanisms for sex-ratio adjustment. These differences between males and females are sufficient for offspring sex both to be detectable to parents and to provide selectable cues for biasing sex ratios from the earliest stages. We suggest ways in which future research could use the advances in our understanding of sexually dimorphic developmental physiology to test the evolutionary significance of sex allocation in mammals. Such an approach would advance our understanding of sex allocation and could be applied to other taxa.
Collapse
Affiliation(s)
- Elissa Z Cameron
- School of Biological Sciences, University of Tasmania, Hobart, Australia.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy M Edwards
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Laura M Parsley
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
9
|
Shamas S, Khan SUH, Khan MY, Shabbir N, Zubair H, Shafqat S, Wahab F, Shahab M. Fasting induced kisspeptin signaling suppression is regulated by glutamate mediated cues in adult male rhesus macaque (Macaca mulatta). Neuropeptides 2015; 52:39-45. [PMID: 26138506 DOI: 10.1016/j.npep.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Kisspeptin signaling is suppressed by short term fasting. It has been reported that hypothalamic Kiss1 and Kiss1r mRNA expression decreased after 48h of fasting in male rhesus monkey. But the mechanism involved in the reduction of kisspeptin signaling after 48h of fasting is unknown. Recent studies have suggested the role of afferent excitatory and inhibitory pathways in the regulation of kisspeptin neurons. Therefore, this study was designed to observe the changes in the glutamate and GABA signaling during fed and 48h fasting states by performing immunofluorescence to examine the interaction of kisspeptin neurons with NR1 subunit of NMDA receptors and by performing SYBR green qRT-PCR to measure and quantify the levels of Kiss1, Kiss1r, NR1 and GAD67 mRNA in the POA and MBH of adult male rhesus macaque (Macaca mulatta) during 48h of fasting (n=2) and fed ad libitum (n=2). Plasma testosterone (p<0.05) and blood glucose levels were significantly (p<0.001) decreased after short term fasting. Our results clearly showed that expression of hypothalamic Kiss1, Kiss1r and NR1 mRNA was significantly (p<0.05) reduced in adult male rhesus monkeys which were fasted for 48h as compared to those which were fed ad libitum. There was no clear difference in the GAD67 mRNA contents between the two groups. Number of kisspeptin neurons and the interactions of kisspeptin neurons with NR1 were significantly (p<0.05) reduced after 48h fasting. These observations suggest that decreased kisspeptin signaling during fasting may occur due to reduction in glutamatergic inputs to kisspeptin neurons. Our results also suggest that fasting induced suppression of kisspeptin signaling is not mediated through GABAergic neurons.
Collapse
Affiliation(s)
- Shazia Shamas
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed-Ul-Hassan Khan
- Department of Pathology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Muhammad Yousaf Khan
- Department of Pathology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Nadia Shabbir
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saira Shafqat
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fazal Wahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
10
|
Matsuda F, Nakatsukasa K, Suetomi Y, Naniwa Y, Ito D, Inoue N, Wakabayashi Y, Okamura H, Maeda KI, Uenoyama Y, Tsukamura H, Ohkura S. The luteinising hormone surge-generating system is functional in male goats as in females: involvement of kisspeptin neurones in the medial preoptic area. J Neuroendocrinol 2015; 27:57-65. [PMID: 25367275 DOI: 10.1111/jne.12235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Abstract
A luteinising hormone (LH) surge is fundamental to the induction of ovulation in mammalian females. The administration of a preovulatory level of oestrogen evokes an LH surge in ovariectomised females, whereas the response to oestrogen in castrated males differs among species; namely, the LH surge-generating system is sexually differentiated in some species (e.g. rodents and sheep) but not in others (e.g. primates). In the present study, we aimed to determine whether there is a functional LH surge-generating system in male goats, and whether hypothalamic kisspeptin neurones in male goats are involved in the regulation of surge-like LH secretion. By i.v. infusion of oestradiol (E2; 6 μg/h) for 16 h, a surge-like LH increase occurred in both castrated male and ovariectomised female goats, although the mean peak LH concentration was lower and the mean peak of the LH surge was later in males compared to females. Dual staining with KISS1 in situ hybridisation and c-Fos immunohistochemistry revealed that E2 treatment significantly increased c-Fos expression in the medial preoptic area (mPOA) KISS1 cells in castrated males, as well as ovariectomised females. By contrast, dual-labelled cells were scarcely detected in the arcuate nucleus (ARC) after E2 treatment in both sexes. These data suggest that kisspeptin neurones in the mPOA, but not those in the ARC, are involved in the induction of surge-like LH secretion in both male and female goats. In summary, our data show that the mechanism that initiates the LH surge in response to oestrogen, the mPOA kisspeptin neurones, is functional in male goats. Thus, sexual differentiation of the LH surge-generating system would not be applicable to goats.
Collapse
Affiliation(s)
- F Matsuda
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yamamura T, Wakabayashi Y, Ohkura S, Navarro VM, Okamura H. Effects of intravenous administration of neurokinin receptor subtype-selective agonists on gonadotropin-releasing hormone pulse generator activity and luteinizing hormone secretion in goats. J Reprod Dev 2014; 61:20-9. [PMID: 25345909 PMCID: PMC4354227 DOI: 10.1262/jrd.2014-109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent evidence suggests that neurokinin B (NKB), a member of the neurokinin (tachykinin) peptide family, plays a pivotal role in gonadotropin-releasing hormone (GnRH) pulse generation. Three types of neurokinin receptors (NKRs), NK1R, NK2R and NK3R, are found in the brain. Although NKB preferentially binds to NK3R, other NKRs are possibly also involved in NKB action. The present study examined the effects of intravenous administration of the NKR subtype-selective agonists GR73632 (NK1R), GR64349 (NK2R), and senktide (NK3R) on GnRH pulse generator activity and luteinizing hormone (LH) secretion. Multiple-unit activity (MUA) was monitored in ovariectomized goats (n = 5) implanted with recording electrodes. Characteristic increases in MUA (MUA volleys) were considered GnRH pulse generator activity. Although three NKR agonists dose-dependently induced an MUA volley and an accompanying increase in LH secretion, the efficacy in inducing the volley markedly differed. As
little as 10 nmol of senktide induced an MUA volley in all goats, whereas a dose of 1000 nmol was only effective for the NK1R and NK2R agonists in two and four goats, respectively. When the treatment failed to evoke an MUA volley, no apparent change was observed in the MUA or LH secretion. Similar effects of the NK2R and NK3R agonists were observed in the presence of estradiol. The results demonstrated that NK3R plays a predominant role in GnRH pulse generation and suggested that the contributions of NK1R and NK2R to this mechanism may be few, if any, in goats.
Collapse
Affiliation(s)
- Takashi Yamamura
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
12
|
OHARA H, MOGI K, ICHIMARU T, OHKURA S, TAKEUCHI Y, MORI Y, OKAMURA H. Effects of exposure to male goat hair extracts on luteinizing hormone secretion and neuronal activation in seasonally anestrous ewes. J Vet Med Sci 2014; 76:1329-37. [PMID: 24942115 PMCID: PMC4221165 DOI: 10.1292/jvms.14-0260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022] Open
Abstract
In sheep and goats, exposure of seasonally anestrous females to males or their fleece/hair activates the gonadotropin-releasing hormone (GnRH) pulse generator leading to pulsatile luteinizing hormone (LH) secretion. Pheromones emitted by sexually mature males are thought to play a prominent role in this male effect. In the present study, we first aimed to clarify whether the male goat pheromone is effective in ewes. Seasonally anestrous St. Croix ewes were exposed to hair extracts derived from either intact or castrated (control) male Shiba goats. The male goat-hair extract significantly increased LH secretion compared to the control, suggesting that an interspecies action of the male pheromone occurs between sheep and goats. Using the male goat-hair extract as the pheromone source, we then aimed to clarify the neural pathway involved in the signal transduction of the male pheromone. Ewes were exposed to either the goat-hair extract or the control and sacrificed 2 hr after the exposure. Expression of c-Fos, a marker of neuronal activation, was immunohistochemically examined. The male goat-hair extract significantly increased the c-Fos expression compared to the control in regions of the vomeronasal system, such as the accessory olfactory bulb and medial amygdala, and the arcuate nucleus. The main olfactory bulb did not exhibit any significant increase in the c-Fos expression by the male goat-hair extract. This result suggests that the neural signal of the male pheromone is conveyed to the GnRH pulse generator through the activated regions in ewes.
Collapse
Affiliation(s)
- Hiromi OHARA
- Graduate School of Agricultural and Life Sciences, The
University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Kazutaka MOGI
- Graduate School of Agricultural and Life Sciences, The
University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
- Laboratory of Companion Animal Research, Azabu University,
1–17–71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252–5201, Japan
| | - Toru ICHIMARU
- Graduate School of Agricultural and Life Sciences, The
University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
- Faculty of Medical Sciences, University of Fukui, 23–3
Matsuoka-shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910–1193, Japan
| | - Satoshi OHKURA
- Graduate School of Bioagricultural Sciences, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464–8601, Japan
| | - Yukari TAKEUCHI
- Graduate School of Agricultural and Life Sciences, The
University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Yuji MORI
- Graduate School of Agricultural and Life Sciences, The
University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Hiroaki OKAMURA
- Division of Animal Science, National Institute of
Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305–0901, Japan
| |
Collapse
|
13
|
Roland AV, Moenter SM. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front Neuroendocrinol 2014; 35:494-511. [PMID: 24747343 PMCID: PMC4175187 DOI: 10.1016/j.yfrne.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/15/2014] [Accepted: 04/09/2014] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy with elusive origins. A clinically heterogeneous disorder, PCOS is likely to have multiple etiologies comprised of both genetic and environmental factors. Reproductive neuroendocrine dysfunction involving increased frequency and amplitude of gonadotropin-releasing hormone (GnRH) release, as reflected by pulsatile luteinizing hormone (LH) secretion, is an important pathophysiologic component in PCOS. Whether this defect is primary or secondary to other changes in PCOS is unclear, but it contributes significantly to ongoing reproductive dysfunction. This review highlights recent work in animal models, with a particular emphasis on the mouse, demonstrating the ability of pre- and postnatal steroidal and metabolic factors to drive changes in GnRH/LH pulsatility and GnRH neuron function consistent with the observed abnormalities in PCOS. This work has begun to elucidate how a complex interplay of ovarian, metabolic, and neuroendocrine factors culminates in this syndrome.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
14
|
Regulation of gonadotropin secretion by monitoring energy availability. Reprod Med Biol 2014; 14:39-47. [PMID: 29259401 DOI: 10.1007/s12522-014-0194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022] Open
Abstract
Nutrition is a principal environmental factor influencing fertility in animals. Energy deficit causes amenorrhea, delayed puberty, and suppression of copulatory behaviors by inhibiting gonadal activity. When gonadal activity is impaired by malnutrition, the signals originating from an undernourished state are ultimately conveyed to the gonadotropin-releasing hormone (GnRH) pulse generator, leading to suppressed secretion of GnRH and luteinizing hormone (LH). The mechanism responsible for energetic control of gonadotropin release is believed to involve metabolic signals, sensing mechanisms, and neuroendocrine pathways. The availabilities of blood-borne energy substrates such as glucose, fatty acids, and ketone bodies, which fluctuate in parallel with changes in nutritional status, act as metabolic signals that regulate the GnRH pulse generator activity and GnRH/LH release. As components of the specific sensing system, the ependymocytes lining the cerebroventricular wall in the lower brainstem integrate the information derived from metabolic signals to control gonadotropin release. One of the pathways responsible for the energetic control of gonadal activity consists of noradrenergic neurons from the solitary tract nucleus in the lower brainstem, projecting to the paraventricular nucleus of the hypothalamus. Further studies are needed to elucidate the mechanisms underlying energetic control of reproductive function.
Collapse
|
15
|
Influence of growth hormone on growth and onset of puberty of Rahmani ewe lamb. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(14)60030-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Naniwa Y, Nakatsukasa K, Setsuda S, Oishi S, Fujii N, Matsuda F, Uenoyama Y, Tsukamura H, Maeda KI, Ohkura S. Effects of full-length kisspeptin administration on follicular development in Japanese Black beef cows. J Reprod Dev 2013; 59:588-94. [PMID: 24107742 PMCID: PMC3934150 DOI: 10.1262/jrd.2013-064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kisspeptin is a key molecule that stimulates gonadotropin secretion via release of gonadotropin-releasing hormone (GnRH). In the present study, our aim was to investigate whether kisspeptin has stimulatory effects on follicular development via GnRH/gonadotropin secretion in cows. Japanese Black beef cows were intravenously injected with full-length bovine kisspeptin [Kp-53 (0.2 or 2 nmol/kg)] or vehicle 5 days after they exhibited standing estrus (Day 0). In cows injected with Kp-53 at 2 nmol/kg, the follicular sizes of the first dominant follicles increased on Day 6 and thereafter. Ovulation of the first dominant follicle occurred in 1 out of 4 cows treated with Kp-53 at 2 nmol/kg. Injection of Kp-53 at 2 nmol/kg increased the concentration of plasma luteinizing hormone (LH) but not follicle-stimulating hormone, over a 4-h period following injection in all cows. The present study suggests that administration of full-length kisspeptin causes LH secretion, which is sustained for a few hours, and it is capable of stimulating follicular development and/or ovulation.
Collapse
Affiliation(s)
- Yousuke Naniwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tanaka T, Ohkura S, Wakabayashi Y, Kuroiwa T, Nagai K, Endo N, Tanaka A, Matsui H, Kusaka M, Okamura H. Differential effects of continuous exposure to the investigational metastin/kisspeptin analog TAK-683 on pulsatile and surge mode secretion of luteinizing hormone in ovariectomized goats. J Reprod Dev 2013; 59:563-8. [PMID: 24047956 PMCID: PMC3934154 DOI: 10.1262/jrd.2013-060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to determine if the estradiol-induced luteinizing
hormone (LH) surge is influenced by the constant exposure to TAK-683, an
investigational metastin/kisspeptin analog, that had been established to depress the
pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats.
Ovariectomized goats subcutaneously received TAK-683 (TAK-683 group, n=6) or vehicle
(control group, n=6) constantly via subcutaneous implantation of an osmotic pump.
Five days after the start of the treatment, estradiol was infused intravenously in
both groups to evaluate the effects on the LH surge. Blood samples were collected at
6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment or
the estradiol infusion, to determine the profiles of pulsatile LH secretion. They
were also collected at 2-h intervals from –4 h to 32 h after the start of estradiol
infusion for analysis of LH surges. The frequency and mean concentrations of LH
pulses in the TAK-683 group were remarkably suppressed 5 days after the start of
TAK-683 treatment compared with those of the control group (P<0.05). On the other
hand, a clear LH surge was observed in all animals of both groups. There were no
significant differences in the LH concentrations for surge peak and the peak time of
the LH surge between the TAK-683 and control groups. These findings suggest that the
effects of continuous exposure to kisspeptin or its analog on the mechanism(s) that
regulates the pulsatile and surge mode secretion of GnRH/LH are different in
goats.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McFadden SA, Menchella JA, Chalmers JA, Centeno ML, Belsham DD. Glucose responsiveness in a novel adult-derived GnRH cell line, mHypoA-GnRH/GFP: involvement of AMP-activated protein kinase. Mol Cell Endocrinol 2013; 377:65-74. [PMID: 23835445 DOI: 10.1016/j.mce.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 01/26/2023]
Abstract
Glucose regulates energy homeostasis and reproductive function within the hypothalamus. The underlying mechanisms responsible for glucose regulation of GnRH gene transcription were investigated using a novel murine immortalized, adult-derived hypothalamic cell line, mHypoA-GnRH/GFP. Analysis of GnRH mRNA synthesis and secretion following agonist treatment demonstrated that the mHypoA-GnRH/GFP cell line is a representative model of in vivo GnRH neurons. c-fos mRNA levels, following glucose exposure, indicated that these neurons were responsive to low (0.5mM) and high (5mM) glucose, and high glucose stimulated GnRH mRNA transcription in a metabolism-dependent manner. Glucose inhibited AMPK activity, and was linked to the downstream stimulation of GnRH mRNA levels. The effect was confirmed with an AMPK antagonist, Compound C. Collectively, these findings demonstrate that glucose can directly regulate GnRH transcription, while implicating the AMPK pathway as an essential mediator of nutritional signaling in a novel GnRH neuronal cell model.
Collapse
Affiliation(s)
- Sean A McFadden
- Department of Physiology, University of Toronto, University Health Network, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
19
|
Catunda A, Lima I, Bandeira G, Gadelha C, Pereira E, Salmito-Vanderley C, Araújo A, Martins G, Campos A. Blood leptin, insulin and glucose concentrations in hair sheep raised in a tropical climate. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Samadi F, Phillips NJ, Blache D, Martin GB, D'Occhio MJ. Interrelationships of nutrition, metabolic hormones and resumption of ovulation in multiparous suckled beef cows on subtropical pastures. Anim Reprod Sci 2013; 137:137-44. [PMID: 23352421 DOI: 10.1016/j.anireprosci.2012.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/21/2012] [Accepted: 12/29/2012] [Indexed: 11/30/2022]
Abstract
The effect of nutrition before and after calving on metabolic status and the resumption of ovulation postpartum was examined in multiparous sucked beef cows on subtropical pastures. At 6-7 months of gestation, Droughtmaster cows were randomly assigned on body weight (BW) and stage of gestation to two groups that received either standard subtropical pasture (SP, n = 7, 543 ± 12 kg BW) or improved pasture (IP, n = 7, 564 ± 12 kg BW). The two nutritional treatments were maintained after calving. Starting at 1 week after calving, cows were monitored for BW and body condition score (BCS, biweekly) and for circulating concentrations of insulin, glucose, IGF-1, GH and leptin (weekly). Ovarian follicular status was monitored weekly by trans-rectal ultrasonography. Fecal samples were obtained at 3-week intervals to ascertain percentage crude protein (%CP) and dry matter digestibility (DMD) of pastures. Crude protein and DMD were greater (P < 0.05) for cows on IP during the first 9 weeks after calving after which there were no differences between nutritional treatments. Cows on IP were heavier (P < 0.05) and had a greater (P < 0.01) BCS than cows on SP at 1 week after calving (585 ± 9 kg and 3.7 ± 0.2 BCS and 528 ± 21 kg and 2.3 ± 0.2 BCS, respectively). Cows on SP showed a gradual increase in BW and there were no differences in BW after approximately 7 weeks postpartum whilst BCS remained less for cows on SP. Plasma concentrations of insulin, glucose, IGF-1 and leptin were all greater (P < 0.01) for cows on IP compared with cows on SP, whilst GH did not differ. The diameter of the largest follicle did not differ between cows on IP and SP throughout the postpartum period. However, 7 of 7 cows on IP resumed ovulations between 12 and 15 weeks postpartum whilst only 1 of 7 cows on SP had resumed ovulation during the study. It is concluded from the findings that exposure of cows to IP and SP before and after calving resulted in two groups of cows with different metabolic homeostasis and that the greater circulating concentrations of insulin, glucose, IGF-1 and leptin promoted the earlier resumption of ovulation for cows on IP.
Collapse
Affiliation(s)
- F Samadi
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Australia
| | | | | | | | | |
Collapse
|
21
|
Sakamoto K, Murata K, Wakabayashi Y, Yayou KI, Ohkura S, Takeuchi Y, Mori Y, Okamura H. Central administration of neurokinin B activates kisspeptin/NKB neurons in the arcuate nucleus and stimulates luteinizing hormone secretion in ewes during the non-breeding season. J Reprod Dev 2012; 58:700-6. [PMID: 22972185 DOI: 10.1262/jrd.2011-038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human genetic studies have suggested that kisspeptin and neurokinin B (NKB) play pivotal roles in the control of gonadotropin-releasing hormone (GnRH) secretion. However, the role of NKB in this context is less clear compared with that of kisspeptin. In the present study, we investigated the ratio of colocalization of kisspeptin and NKB in neurons in the arcuate nucleus (ARC), the effects of intracerebroventricular infusion of NKB on luteinizing hormone (LH) secretion and whether the treatment activates ARC kisspeptin/NKB neurons in seasonally anestrous ewes. Double-labeling immunohistochemistry revealed that the majority of kisspeptin neurons coexpressed NKB in the ARC. Infusion of NKB for 2 h into the lateral ventricle elicited a discharge of LH, which resulted in significant increases in LH concentrations between 20 and 50 min after the start of infusion compared with a saline-infused control. Animals were sacrificed immediately after the end of infusion, and Fos expression in ARC kisspeptin neurons was immunohistochemically examined. The NKB treatment activated kisspeptin neurons throughout the ARC, and approximately 70% of kisspeptin neurons expressed Fos immunoreactivity at the caudal portion of the nucleus. The present study demonstrated that a central infusion of NKB elicited a discharge of LH, which was associated with the activation of a large population of ARC kisspeptin/NKB neurons in seasonally anestrous ewes. The results suggest that NKB plays a stimulatory role in the control of pulsatile GnRH secretion and that the population of ARC kisspeptin/NKB neurons is one of sites of the NKB action in sheep.
Collapse
Affiliation(s)
- Kohei Sakamoto
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tanaka T, Ohkura S, Wakabayashi Y, Okamura H. Effect of peripherally administered kisspeptin-10 on GnRH neurosecretion into the hypophyseal portal circulation in ovariectomized goat does. Small Rumin Res 2012. [DOI: 10.1016/j.smallrumres.2012.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Harris VM, Bendre SV, Gonzalez De Los Santos F, Fite A, El-Yaman El-Dandachli A, Kurenbekova L, Abou-Samra AB, Buggs-Saxton C. GnRH increases glucose transporter-1 expression and stimulates glucose uptake in the gonadotroph. J Endocrinol 2012; 212:139-47. [PMID: 22107955 DOI: 10.1530/joe-11-0359] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
GnRH is the main regulator of the hypothalamic-pituitary-gonadal (H-P-G) axis. GnRH stimulates the pituitary gonadotroph to synthesize and secrete gonadotrophins (LH and FSH), and this effect of GnRH is dependent on the availability of glucose and other nutrients. Little is known about whether GnRH regulates glucose metabolism in the gonadotroph. This study examined the regulation of glucose transporters (Gluts) by GnRH in the LβT2 gonadotroph cell line. Using real-time PCR analysis, the expression of Glut1, -2, -4, and -8 was detected, but Glut1 mRNA expression level was more abundant than the mRNA expression levels of Glut2, -4, and -8. After the treatment of LβT2 cells with GnRH, Glut1 mRNA expression was markedly induced, but there was no GnRH-induction of Glut2, -4, or -8 mRNA expression in LβT2 cells. The effect of GnRH on Glut1 mRNA expression is partly mediated by ERK activation. GnRH increased GLUT1 protein and stimulated GLUT1 translocation to the cell surface of LβT2 cells. Glucose uptake assays were performed in LβT2 cells and showed that GnRH stimulates glucose uptake in the gonadotroph. Finally, exogenous treatment of mice with GnRH increased the expression of Glut1 but not the expression of Glut2, -4, or -8 in the pituitary. Therefore, regulation of glucose metabolism by GnRH via changes in Gluts expression and subcellular location in the pituitary gonadotroph reveals a novel response of the gonadotroph to GnRH.
Collapse
Affiliation(s)
- Valerie M Harris
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Boulevard, 421 E. Canfield, Detroit, Michigan 48201-2119, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Roland AV, Moenter SM. Regulation of gonadotropin-releasing hormone neurons by glucose. Trends Endocrinol Metab 2011; 22:443-9. [PMID: 21855365 PMCID: PMC3205187 DOI: 10.1016/j.tem.2011.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/14/2011] [Accepted: 07/08/2011] [Indexed: 01/03/2023]
Abstract
Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and might in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons might directly sense changes in glucose availability by a mechanism involving AMP-activated protein kinase. These findings expand our understanding of how metabolic signaling in the brain regulates reproduction.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
25
|
Dos Santos ZA, Da Silva RJ, Bacurau RFP, Tirapegui J, Ribeiro SML. Effect of food restriction and intense physical training on estrous cyclicity and plasma leptin concentrations in rats. J Nutr Sci Vitaminol (Tokyo) 2011; 57:1-8. [PMID: 21512284 DOI: 10.3177/jnsv.57.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Intense physical training and dietary energy restriction have been associated with consequences such as nutritional amenorrhea. We investigated the effects of intense physical training, food restriction or the combination of both strategies on estrous cyclicity in female rats, and the relationship between leptin ad these effects. Twenty-seven female Wistar rats were distributed into four groups: SF: sedentary, fed ad libitum; SR: sedentary subjected to 50% food restriction (based on the food intake of their fed counterparts); TF: trained (physical training on a motor treadmill with a gradual increase in speed and time), fed ad libitum; TR: trained with 50% food restriction. We analysed estrous cyclicity, plasma leptin and estradiol as well as chemical composition of the carcass, body weight variation, and weight of ovaries and perirenal adipose tissue. Data demonstrate that physical training alone was not responsible for significant modifications in either carcass chemical composition or reproductive function. Food restriction reduced leptin levels in all animals and interrupted the estrous cyclicity in some animals, but only the combination of food restriction and physical training was capable of interrupting the estrous cyclicity in all animals. Leptin was not directly related to estrous cyclicity. From our findings, it may be concluded that there is an additive or synergistic effect of energy intake restriction and energy expenditure by intense physical training on estrous cyclicity. Leptin appears to be one among others factors related to estrous cycle, but it probably acts indirectly.
Collapse
|
26
|
Roland AV, Moenter SM. Glucosensing by GnRH neurons: inhibition by androgens and involvement of AMP-activated protein kinase. Mol Endocrinol 2011; 25:847-58. [PMID: 21393446 DOI: 10.1210/me.2010-0508] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
GnRH neurons integrate steroidal and metabolic cues to regulate fertility centrally. Central glucoprivation reduces LH secretion, which is governed by GnRH release, suggesting GnRH neuron activity is modulated by glucose availability. Here we tested whether GnRH neurons can sense changes in extracellular glucose, and whether glucosensing is altered by the steroids dihydrotestosterone (DHT) and/or estradiol (E). Extracellular recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice ± DHT and/or E implants. Firing rate was reduced by a switch from 4.5 to 0.2 mm glucose in cells from OVX, OVX+E, and OVX+DHT+E mice, but not OVX+DHT mice. This suggests that androgens reduce the sensitivity of GnRH neurons to changes in extracellular glucose, but E mitigates this effect. Next we investigated potential mechanisms. In the presence of the ATP-sensitive potassium channel antagonist tolbutamide, glucosensing persisted. In contrast, glucosensing was attenuated in the presence of compound C, an antagonist of AMP-activated protein kinase (AMPK), suggesting a role for AMPK in glucosensing. The AMPK activator N1-(b-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR) mimicked the effect of low glucose and was less effective in cells from DHT-treated mice. The effect of DHT to diminish responses to low glucose and AICAR was abolished by blockade of fast synaptic transmission. Both AICAR and low glucose activated a current with a reversal potential near -50 mV, suggesting a nonspecific cation current. These studies indicate that glucosensing is one mechanism by which GnRH neurons sense fuel availability and point to a novel role for AMPK in the central regulation of fertility.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
27
|
Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 2010; 30:3124-32. [PMID: 20181609 DOI: 10.1523/jneurosci.5848-09.2010] [Citation(s) in RCA: 428] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.
Collapse
|
28
|
Ohkura S, Takase K, Matsuyama S, Mogi K, Ichimaru T, Wakabayashi Y, Uenoyama Y, Mori Y, Steiner RA, Tsukamura H, Maeda KI, Okamura H. Gonadotrophin-releasing hormone pulse generator activity in the hypothalamus of the goat. J Neuroendocrinol 2009; 21:813-21. [PMID: 19678868 DOI: 10.1111/j.1365-2826.2009.01909.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pulsatile release of gonadotrophin-releasing hormone (GnRH) is indispensable to maintain normal gonadotrophin secretion. The pulsatile secretion of GnRH is associated with synchronised electrical activity in the mediobasal hypothalamus (i.e. multiple unit activity; MUA), which is considered to reflect the rhythmic oscillations in the activity of the neuronal network that drives pulsatile GnRH secretion. However, the cellular source of this ultradian rhythm in GnRH activity is unknown. Direct input from kisspeptin neurones in the arcuate nucleus (ARC) to GnRH cell bodies in the medial preoptic area or their terminals in the median eminence could be the intrinsic source for driving the GnRH pulse generator. To determine whether kisspeptin signalling could be responsible for producing pulsatile GnRH secretion, we studied goats, measured plasma levels of luteinising hormone (LH) and recorded MUA in the posterior ARC, where the majority of kisspeptin neuronal cell bodies are located. Rhythmic volleys of MUA were found to be accompanied by LH pulses with regular intervals in the ARC, where kisspeptin neuronal cell bodies were found. Exogenous administration of kisspeptin stimulated a sustained increase in LH secretion, without influencing MUA, suggesting that the GnRH pulse generator, as reflected by MUA, originated from outside of the network of GnRH neurones, and could plausibly reflect the pacemaker activity of kisspeptin neurones, whose projections reach the median eminence where GnRH fibres project. These observations suggest that the kisspeptin neurones in the ARC may be the intrinsic source of the GnRH pulse generator.
Collapse
Affiliation(s)
- S Ohkura
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zabuli J, Tanaka T, Lu W, Kuroiwa T, Kamomae H. Responses of gonadotropin secretion to short-term dietary supplementation in ovariectomized goats with different body weights. Anim Reprod Sci 2009; 116:274-81. [PMID: 19268503 DOI: 10.1016/j.anireprosci.2009.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/27/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
The responses of luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion to acute dietary supplementation were studied in goats with different body weights. Ovariectomized Shiba goats (n=11) were used and were maintained with a feed of 100% of their energy requirement. They were implanted subcutaneously with an oestradiol capsule and were divided into light (LBW; <or=24kg, n=6, mean+/-S.D., 21.8+/-2.7kg) and heavy body weight (HBW; >24kg, n=5, mean+/-S.D., 32.0+/-6.3kg) groups on the basis of their body weights at 8 days before the start of treatment. At the start of treatment (Day 1), the level of a feed changed to 250% of their energy requirement and this level was maintained for 7 days in both groups. Blood samples were collected daily from Day -7 to Day 7 for the analysis of FSH, glucose, and insulin profiles in plasma. Frequent blood samples were also collected at 10min intervals for 6h on Day 0, Day 3, and Day 7 for analysis of LH pulses. LH pulse frequency increased significantly on Day 3 as compared with that on Day 0 in both the HBW (7.4+/-0.5pulses/6h vs. 6.2+/-0.8pulses/6h, p<0.05) and LBW (6.5+/-0.8pulses/6h vs. 5.5+/-0.5pulses/6h, p<0.05) groups, whereas it decreased on Day 7 (HBW, 6.4+/-0.9pulses/6h; LBW, 6.3+/-1.6pulses/6h, p>0.05 vs. Day 0). Plasma glucose and insulin concentrations increased temporarily from Day 2 to Day 4 and then decreased to the level before the start of dietary supplementation in both groups. There was no significant difference in the LH pulse frequency or daily concentrations of FSH, glucose, or insulin between the HBW and LBW groups throughout the experimental period. The present study indicated that acute dietary supplementation stimulates pulsatile LH secretion in parallel with a rise of blood glucose and insulin levels. However, the influence of body weight on these responses between light and heavy animals was not observed.
Collapse
Affiliation(s)
- Jahid Zabuli
- Laboratory of Veterinary Reproduction, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
30
|
Veldhuis JD, Keenan DM, Pincus SM. Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev 2008; 29:823-64. [PMID: 18940916 PMCID: PMC2647703 DOI: 10.1210/er.2008-0005] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 09/16/2008] [Indexed: 01/05/2023]
Abstract
Endocrine glands communicate with remote target cells via a mixture of continuous and intermittent signal exchange. Continuous signaling allows slowly varying control, whereas intermittency permits large rapid adjustments. The control systems that mediate such homeostatic corrections operate in a species-, gender-, age-, and context-selective fashion. Significant progress has been made in understanding mechanisms of adaptive interglandular signaling in vivo. Principal goals are to understand the physiological origins, significance, and mechanisms of pulsatile hormone secretion. Key analytical issues are: 1) to quantify the number, size, shape, and uniformity of pulses, nonpulsatile (basal) secretion, and elimination kinetics; 2) to evaluate regulation of the axis as a whole; and 3) to reconstruct dose-response interactions without disrupting hormone connections. This review will focus on the motivations driving and the methodologies used for such analyses.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical School, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
31
|
Leroy JLMR, Vanholder T, Van Knegsel ATM, Garcia-Ispierto I, Bols PEJ. Nutrient Prioritization in Dairy Cows Early Postpartum: Mismatch Between Metabolism and Fertility? Reprod Domest Anim 2008; 43 Suppl 2:96-103. [DOI: 10.1111/j.1439-0531.2008.01148.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ichimaru T, Mogi K, Ohkura S, Mori Y, Okamura H. Exposure to ram wool stimulates gonadotropin-releasing hormone pulse generator activity in the female goat. Anim Reprod Sci 2008; 106:361-8. [PMID: 17573212 DOI: 10.1016/j.anireprosci.2007.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/30/2022]
Abstract
In the sheep and goat, exposure of anestrous females to a conspecific male odor enhances reproductive activity. Interestingly, a previous report indicated that male goat hair stimulated pulsatile luteinizing hormone (LH) secretion in the ewe. In the present study, we addressed whether ram wool affects the gonadotropin-releasing hormone (GnRH) pulse generator activity in the female goat. Five ovariectomized (OVX) goats were chronically implanted with recording electrodes in the mediobasal hypothalamus, and manifestations of the GnRH pulse generator were monitored as characteristic increases in multiple-unit activity (MUA volleys). Wool or hair samples were collected from a mature ram, ewe and male goat, and their effects on the MUA volley were examined. The exposure to ram wool induced an MUA volley within 1 min in all five OVX goats, as did the exposure to male goat hair. The ewe wool had no effect on the timing of an MUA volley occurrence. An invariable association of MUA volleys with LH pulses in the peripheral circulation was also confirmed in two OVX goats exposed to ram wool. The present results clearly indicate that exposure to ram wool stimulates pulsatile GnRH/LH release in the female goat. Since exposure to male goat hair enhances pulsatile LH secretion in the ewe, it is likely that very similar, if not identical, molecules are contained in the male-effect pheromone in the sheep and goat.
Collapse
Affiliation(s)
- T Ichimaru
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Butler ST, Pelton SH, Butler WR. Energy balance, metabolic status, and the first postpartum ovarian follicle wave in cows administered propylene glycol. J Dairy Sci 2006; 89:2938-51. [PMID: 16840609 DOI: 10.3168/jds.s0022-0302(06)72566-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mature Holstein cows were drenched daily with either 500 mL of water (control; n = 28) or propylene glycol (PPG; n = 28) from d 10 before parturition until d 25 postpartum. Follicular development was monitored thrice weekly by transrectal ultrasound. Blood samples were collected every 30 min from a subset of 10 cows per treatment on d -10, 2, and 25 to assess glucose and insulin response to treatments, and on d 10 postpartum, blood was collected every 10 min for 12 h to determine LH pulse profiles. Both insulin and glucose were elevated on d 2 and 25 following PPG administration, but only insulin was elevated on d -10. On d 10 postpartum, the number of LH pulses, mean LH, and pulse amplitude were not different between control and PPG cows. The proportion of first postpartum dominant follicles that became ovulatory, atretic, or cystic was not different between control and PPG cows. Despite evidence of improved metabolic status, PPG failed to increase LH pulse frequency, and failed to increase the proportion of first postpartum follicle waves resulting in ovulation. The dominant follicle of each cow was retrospectively categorized as being ovulatory (n = 17), nonovulatory high estradiol (n = 6), nonovulatory low estradiol (n = 24), or cystic (n = 8). Differences in dry matter intake and energy balance among cows in the different follicle categories were apparent as early as 3 wk before parturition. The nonovulatory low estradiol cows had lower pre- and postpartum dry matter intake and energy balance compared with ovulatory cows. The nonovulatory low estradiol cows also had postpartum metabolic hormone and metabolite profiles indicative of more severe negative energy balance.
Collapse
Affiliation(s)
- S T Butler
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
35
|
Shahab M, Sajapitak S, Tsukamura H, Kinoshita M, Matsuyama S, Ohkura S, Yamada S, Uenoyama Y, I'Anson H, Maeda KI. Acute lipoprivation suppresses pulsatile luteinizing hormone secretion without affecting food intake in female rats. J Reprod Dev 2006; 52:763-72. [PMID: 17008757 DOI: 10.1262/jrd.18066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study examined the effect of acute lipoprivation on pulsatile luteinizing hormone (LH) secretion in both normal-fat diet, ad libitum-fed and fasted female rats. To produce an acute lipoprivic condition, mercaptoacetate (MA), an inhibitor of fatty acid oxidation, was administered intraperitoneally to ad libitum-fed or 24-h fasted ovariectomized (OVX) rats with or without an estradiol (E2) implant, that produces a negative feedback effect on LH pulses. The steroid treatment was performed to determine the effect of estrogen on lipoprivic changes in LH release, because estrogen enhances fasting- or glucoprivation-induced suppression of LH pulses. Pulsatile LH secretion was suppressed by MA administration in a dose-dependent manner in the ad libitum-fed OVX and OVX+E2 rats. LH pulses were more severely suppressed in the 24-h-fasted OVX and OVX+E2 rats compared to the ad libitum-fed rats. Estrogen slightly enhanced lipoprivic suppression but the effect was not significant. In the present study, increased plasma glucose and free-fatty acid concentrations may indicate a blockade of fatty acid metabolism by the MA treatment, but food intake was not affected by any of the MA doses. Acute vagotomy did not block lipoprivic suppression of LH pulses. Thus, the present study indicates that lipid metabolism is important for maintenance of normal reproductive function even in rats fed a normal-fat diet and lipoprivation may be more critical in fasted animals that probably rely more heavily on fatty acid oxidation to maintain appropriate metabolic fuel levels. In addition, failure of blockade of lipoprivic LH inhibition by vagotomy suggests that lipoprivic information resulting in LH suppression is not transmitted to the brain via the vagus nerve.
Collapse
Affiliation(s)
- Mohammad Shahab
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Matsuyama S, Ohkura S, Sakurai K, Tsukamura H, Maeda KI, Okamura H. Activation of melanocortin receptors accelerates the gonadotropin-releasing hormone pulse generator activity in goats. Neurosci Lett 2005; 383:289-94. [PMID: 15955423 DOI: 10.1016/j.neulet.2005.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/15/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
The present study aims to elucidate whether the central melanocortin receptors [melanocortin-3 and -4 receptors (MC3/4-R)] are involved in regulating GnRH pulse generator activity in female goats. The GnRH pulse generator activity was electrophysiologically assessed at the intervals of characteristic increases in multiple-unit activity (MUA volleys) in the mediobasal hypothalamus. In ovariectomized goats, all doses (0.02, 0.2 and 2 nmol) of MT II, an MC3/4-R agonist, injected into the lateral ventricle significantly shortened MUA volley intervals. The duration of the period during which MT II accelerated MUA volleys was positively correlated with the dose of MT II injected. The stimulatory effect of MT II on the GnRH pulse generator activity was attenuated in the presence of estrogen. Intracerebroventricular injection of SHU9119, an MC3/4-R antagonist, significantly prolonged MUA volley intervals at 1 nmol. MT II (0.2 nmol)-induced acceleration of MUA volleys was partially blocked by the antagonism of MC3/4-R with pre-administered SHU9119 (1 nmol). The present findings demonstrate that MC3/4-R are involved in maintaining GnRH pulse generator activity in goats.
Collapse
Affiliation(s)
- Shuichi Matsuyama
- Laboratory of Neuroendocrinology, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Matsuyama S, Ohkura S, Ichimaru T, Sakurai K, Tsukamura H, Maeda KI, Okamura H. Simultaneous observation of the GnRH pulse generator activity and plasma concentrations of metabolites and insulin during fasting and subsequent refeeding periods in Shiba goats. J Reprod Dev 2005; 50:697-704. [PMID: 15647622 DOI: 10.1262/jrd.50.697] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The time course of GnRH pulse generator activity and plasma concentrations of energy substrates and insulin were simultaneously observed in female goats during 4-day fasting and subsequent refeeding in the presence or absence of estrogen for a better understanding of the mechanism of energetic control of gonadotropin secretion in ruminants. The GnRH pulse generator activity was electrophysiologically assessed with the intervals of characteristic increases in multiple-unit activity (MUA volleys) in the mediobasal hypothalamus. In estradiol-treated ovariectomized (OVX+E2) goats, the MUA volley intervals increased as fasting progressed. Plasma concentrations of non-esterified fatty acid and ketone body increased, while those of acetic acid and insulin decreased during fasting. The MUA volley intervals and plasma concentrations of those metabolites and insulin were restored to pre-fasting levels after subsequent refeeding. In ovariectomized (OVX) goats, changes in plasma metabolites and insulin concentrations were similar to those in OVX+E2 goats, but the MUA volley intervals were not altered. The present results demonstrated that fasting suppressed GnRH pulse generator activity in an estrogen-dependent manner. Changes in plasma concentrations of energy substrates and insulin during fasting were associated with the GnRH pulse generator activity in the presence of estrogen, but not in the absence of the steroid in female goats.
Collapse
Affiliation(s)
- Shuichi Matsuyama
- Laboratory of Neuroendocrinology, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|