1
|
Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis 2024; 83:1603-1613. [PMID: 39107081 DOI: 10.1136/ard-2023-225371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/20/2024] [Indexed: 08/09/2024]
Abstract
For three-quarters of a century, glucocorticoids (GCs) have been used to treat rheumatic and autoimmune diseases. Over these 75 years, our understanding of GCs binding to nuclear receptors, mainly the glucocorticoid receptor (GR) and their molecular mechanisms has changed dramatically. Initially, in the late 1950s, GCs were considered important regulators of energy metabolism. By the 1970s/1980s, they were characterised as ligands for hormone-inducible transcription factors that regulate many aspects of cell biology and physiology. More recently, their impact on cellular metabolism has been rediscovered. Our understanding of cell-type-specific GC actions and the crosstalk between various immune and stromal cells in arthritis models has evolved by investigating conditional GR mutant mice using the Cre/LoxP system. A major achievement in studying the complex, cell-type-specific interplay is the recent advent of omics technologies at single-cell resolution, which will provide further unprecedented insights into the cell types and factors mediating GC responses. Alongside gene-encoded factors, anti-inflammatory metabolites that participate in resolving inflammation by GCs during arthritis are just being uncovered. The translation of this knowledge into therapeutic concepts will help tackle inflammatory diseases and reduce side effects. In this review, we describe major milestones in preclinical research that led to our current understanding of GC and GR action 75 years after the first use of GCs in arthritis.
Collapse
Affiliation(s)
- Ann-Kathrin Eiers
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Zhao Y, Mäkitie O, Laakso S, Fedosova V, Sävendahl L, Zaman F. A novel link between chronic inflammation and humanin regulation in children. Front Endocrinol (Lausanne) 2024; 14:1142310. [PMID: 38322155 PMCID: PMC10844658 DOI: 10.3389/fendo.2023.1142310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024] Open
Abstract
Objective Children with inflammatory bowel disease (IBD) often suffer from poor bone growth and impaired bone health. Humanin is a cytoprotective factor expressed in bone and other tissues and we hypothesized that humanin levels are suppressed in conditions of chronic inflammation. To address this, humanin levels were analyzed in serum samples from IBD patients and in ex vivo cultured human growth plate tissue specimens exposed to IBD serum or TNF alone. Methods Humanin levels were measured by ELISA in serum from 40 children with IBD and 40 age-matched healthy controls. Growth plate specimens obtained from children undergoing epiphysiodesis surgery were cultured ex vivo for 48 hours while being exposed to IBD serum or TNF alone. The growth plate samples were then processed for immunohistochemistry staining for humanin, PCNA, SOX9 and TRAF2 expression. Dose-response effect of TNF was studied in the human chondrocytic cell line HCS-2/8. Ex vivo cultured fetal rat metatarsal bones were used to investigate the therapeutic effect of humanin. Results Serum humanin levels were significantly decreased in children with IBD compared to healthy controls. When human growth plate specimens were cultured with IBD serum, humanin expression was significantly suppressed in the growth plate cartilage. When cultured with TNF alone, the expression of humanin, PCNA, SOX9, and TRAF2 were all significantly decreased in the growth plate cartilage. Interestingly, treatment with the humanin analog HNG prevented TNF-induced bone growth impairment in cultured metatarsal bones. Conclusion Our data showing suppressed serum humanin levels in IBD children with poor bone health provides the first evidence for a potential link between chronic inflammation and humanin regulation. Such a link is further supported by the novel finding that serum from IBD patients suppressed humanin expression in ex vivo cultured human growth plates.
Collapse
Affiliation(s)
- Yunhan Zhao
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Outi Mäkitie
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Saila Laakso
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vera Fedosova
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Lars Sävendahl
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Farasat Zaman
- Department of Women’s and Children’s Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
3
|
Peng P, Wang X, Qiu C, Zheng W, Zhang H. Extracellular vesicles from human umbilical cord mesenchymal stem cells prevent steroid-induced avascular necrosis of the femoral head via the PI3K/AKT pathway. Food Chem Toxicol 2023; 180:114004. [PMID: 37634611 DOI: 10.1016/j.fct.2023.114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Extracellular vesicles (EVs) secreted by human umbilical cord mesenchymal stem cells (hucMSC) have excellent therapeutic potential for many diseases. The aim of this study was to define the role of hucMSC-EVs in the prevention and treatment of steroid-induced avascular necrosis of the femoral head (SANFH). After establishing the SANFH rat model, the effects of hucMSC-EVs were assessed by measuring the microstructure of the femoral head using HE staining, micro-computed tomography (micro-CT), and TUNEL staining. The administration of hucMSC-EVs caused a significant reduction to glucocorticoids (GCs)-induced osteoblast apoptosis and empty lacuna of the femoral head, while effectively improving the microstructure. HucMSC-EVs rescued the deactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway induced by GCs, and reversed the proliferation and migration of osteoblasts inhibited by GCs. In addition, hucMSC-EVs attenuated the inhibitory effects of GCs on rat osteoblast osteogenesis, angiogenesis of endothelial cells, and prevented osteoblast apoptosis. However, the promoting effects of hucMSC-EVs were abolished following the blockade of PI3K/AKT on osteoblasts. hucMSC-EVs were found to prevent glucocorticoid-induced femoral head necrosis in rats through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Puji Peng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - XueZhong Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chen Qiu
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, 430000, China
| | - Wendi Zheng
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| | - Hongjun Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, 450003, China; Department of Orthopedics, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
4
|
Yin M, Wang J, Zhang J, Wang W, Lu W, Xu F, Ma X, Lyu S, Chen L, Zhang L, Dong Z, Xiao Y. Transcription analyses of differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in the growth plate of rats with glucocorticoid-induced growth retardation. PeerJ 2023; 11:e14603. [PMID: 36684670 PMCID: PMC9851049 DOI: 10.7717/peerj.14603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Glucocorticoids (GCs) are commonly used to treat autoimmune diseases and malignancies in children and adolescents. Growth retardation is a common adverse effect of GC treatment in pediatric patients. Accumulating evidence indicates that non-coding RNAs (ncRNAs) are involved in the pathogenesis of glucocorticoid-induced growth retardation (GIGR), but the roles of specific ncRNAs in growth remain largely unknown. Methods In this study, 2-week-old male Sprague-Dawley rats had been treated with 2 mg/kg/d of dexamethasone for 7 or 14 days, after which the growth plate tissues were collected for high-throughput RNA sequencing to identify differentially expressed mRNAs, lncRNAs, circRNAs, and miRNAs in GIGR rats. Results Transcriptomic analysis identified 1,718 mRNAs, 896 lncRNAs, 60 circRNAs, and 72 miRNAs with different expression levels in the 7d group. In the 14d group, 1,515 mRNAs, 880 lncRNAs, 46 circRNAs, and 55 miRNAs with differential expression were identified. Four mRNAs and four miRNAs that may be closely associated with the development of GIGR were further validated by real-time quantitative fluorescence PCR. Function enrichment analysis indicated that the PI3K-Akt signaling pathway, NF-kappa B signaling pathway, and TGF-β signaling pathway participated in the development of the GIGR. Moreover, the constructed ceRNA networks suggested that several miRNAs (including miR-140-3p and miR-127-3p) might play an important role in the pathogenesis of GIGR. Conclusions These results provide new insights and important clues for exploring the molecular mechanisms underlying GIGR.
Collapse
Affiliation(s)
- Mingyue Yin
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junqi Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juanjuan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Xu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China,Department of Pediatrics, Liqun Hospital, Putuo District, Shanghai, China
| | - Xiaoyu Ma
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sheng Lyu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lifen Chen
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lidan Zhang
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Hua J, Huang J, Li G, Lin S, Cui L. Glucocorticoid induced bone disorders in children: Research progress in treatment mechanisms. Front Endocrinol (Lausanne) 2023; 14:1119427. [PMID: 37082116 PMCID: PMC10111257 DOI: 10.3389/fendo.2023.1119427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
Long-term or supra-physiological dose of glucocorticoid (GC) application in clinic can lead to impaired bone growth and osteoporosis. The side effects of GC on the skeletal system are particularly serious in growing children, potentially causing growth retardation or even osteoporotic fractures. Children's bone growth is dependent on endochondral ossification of growth plate chondrocytes, and excessive GC can hinder the development of growth plate and longitudinal bone growth. Despite the availability of drugs for treating osteoporosis, they have failed to effectively prevent or treat longitudinal bone growth and development disorders caused by GCs. As of now, there is no specific drug to mitigate these severe side effects. Traditional Chinese Medicine shows potential as an alternative to the current treatments by eliminating the side effects of GC. In summary, this article comprehensively reviews the research frontiers concerning growth and development disorders resulting from supra-physiological levels of GC and discusses the future research and treatment directions for optimizing steroid therapy. This article may also provide theoretical and experimental insight into the research and development of novel drugs to prevent GC-related side effects.
Collapse
Affiliation(s)
- Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Jianping Huang
- Department of Prosthodontics, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, China
- *Correspondence: Liao Cui, ; Sien Lin,
| |
Collapse
|
6
|
Naik AA, Sivaramakrishnan V. Systems analysis of steroid induced osteonecrosis shows role for heme and vitamin D in pathogenesis. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Velentza L, Zaman F, Sävendahl L. Bone health in glucocorticoid-treated childhood acute lymphoblastic leukemia. Crit Rev Oncol Hematol 2021; 168:103492. [PMID: 34655742 DOI: 10.1016/j.critrevonc.2021.103492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glucocorticoids (GCs) are widely used in the treatment of childhood acute lymphoblastic leukemia (ALL), but their long-term use is also associated with bone-related morbidities. Among others, growth deficit, decreased bone mineral density (BMD) and increased fracture rate are well-documented and severely impact quality of life. Unfortunately, no efficient treatment for the management of bone health impairment in patients and survivors is currently available. The overall goal of this review is to discuss the existing data on how GCs impair bone health in pediatric ALL and attempts made to minimize these side effects.
Collapse
Affiliation(s)
- Lilly Velentza
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| | - Farasat Zaman
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Pediatric Endocrinology Unit, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Atta G, Schroedl F, Kaser-Eichberger A, Spitzer G, Traweger A, Heindl LM, Tempfer H. Scleraxis expressing scleral cells respond to inflammatory stimulation. Histochem Cell Biol 2021; 156:123-132. [PMID: 33966129 PMCID: PMC8397666 DOI: 10.1007/s00418-021-01985-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 11/15/2022]
Abstract
The sclera is an ocular tissue rich of collagenous extracellular matrix, which is built up and maintained by relatively few, still poorly characterized fibroblast-like cells. The aims of this study are to add to the characterization of scleral fibroblasts and to examine the reaction of these fibroblasts to inflammatory stimulation in an ex vivo organotypic model. Scleras of scleraxis-GFP (SCX-GFP) mice were analyzed using immunohistochemistry and qRT-PCR for the expression of the tendon cell associated marker genes scleraxis (SCX), mohawk and tenomodulin. In organotypic tissue culture, explanted scleras of adult scleraxis GFP reporter mice were exposed to 10 ng/ml recombinant interleukin 1-ß (IL1-ß) and IL1-ß in combination with dexamethasone. The tissue was then analyzed by immunofluorescence staining of the inflammation- and fibrosis-associated proteins IL6, COX-2, iNOS, connective tissue growth factor, MMP2, MMP3, and MMP13 as well as for collagen fibre degradation using a Collagen Hybridizing Peptide (CHP) binding assay. The mouse sclera displayed a strong expression of scleraxis promoter-driven GFP, indicating a tendon cell-like phenotype, as well as expression of scleraxis, tenomodulin and mohawk mRNA. Upon IL1-ß stimulation, SCX-GFP+ cells significantly upregulated the expression of all proteins analysed. Moreover, IL1-ß stimulation resulted in significant collagen degradation. Adding the corticosteroid dexamethasone significantly reduced the response to IL1-ß stimulation. Collagen degradation was significantly enhanced in the IL1-ß group. Dexamethasone demonstrated a significant rescue effect. This work provides insights into the characteristics of scleral cells and establishes an ex vivo model of scleral inflammation.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.,Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Gabriel Spitzer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Düsseldorf, Cologne, Germany
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
9
|
Choi JH, Park A, Lee W, Youn J, Rim MA, Kim W, Kim N, Song JE, Khang G. Preparation and characterization of an injectable dexamethasone-cyclodextrin complexes-loaded gellan gum hydrogel for cartilage tissue engineering. J Control Release 2020; 327:747-765. [PMID: 32941931 DOI: 10.1016/j.jconrel.2020.08.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
In this study, 6-(6-aminohexyl) amino-6-deoxy-β-cyclodextrin-gellan gum complex hydrogel (HCD-GG) was developed to enhance the affinity of anti-inflammatory drug dexamethasone (Dx), improve chondrogenesis, and decrease the inflammatory response. The modified chemical structure was confirmed by NMR and FTIR. Mechanical and physicochemical properties were characterized by performing viscosity study, compression test, injection force test, swelling kinetic, weight loss, and morphological study. The release profile of the drug-loaded hydrogels was analyzed to confirm the affinity of the hydrophobic drugs and the matrix and characterize cumulative release. In vitro test was carried out with MTT assay, live/dead staining, glycosaminoglycan (GAGs) content, double-stranded DNA (dsDNA) content, morphological analysis, histology, and gene expression. In vivo experiment was conducted by implanting the samples under a subcutaneous area of SPD rat and cartilage defected rabbit model. The results displayed successfully synthesized HCD-GG. The gelation temperature of the modified hydrogels was decreased while the mechanical property was improved when the drug was loaded in the modified hydrogel. Swelling and degradation kinetics resulted in a higher level compared to the pristine GG but was a sufficient level to support drugs and cells. The affinity and release rate of the drug was higher in the HCD-GG group which shows an improved drug delivery system of the GG-based material. The microenvironment provided a suitable environment for cells to grow. Also, chondrogenesis was affected by the existence of Dx and microenvironment, resulting in higher expression levels of cartilage-related genes while the expression of the inflammation mediators decreased when the Dx was loaded. In vivo study showed an improved anti-inflammatory response in the drug-loaded hydrogel. Furthermore, the cartilage defected rabbit model showed an enhanced regenerative effect when the Dx@HCD-GG was implanted. These results suggest that HCD-GG and Dx@HCD-GG have the potential for cartilage regeneration along with multiple applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea.
| | - Ain Park
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Wonchan Lee
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Min A Rim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Namyeong Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea.
| |
Collapse
|
10
|
Mushtaq I, Mushtaq I, Akhter Z, Murtaza I, Qamar S, Ayub S, Mirza B, Butt TM, Janjua NK, Shah FU, Zaman F. Engineering electroactive and biocompatible tetra(aniline)-based terpolymers with tunable intrinsic antioxidant properties in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110456. [DOI: 10.1016/j.msec.2019.110456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/27/2022]
|
11
|
Nganvongpanit K, Euppayo T, Siengdee P, Buddhachat K, Chomdej S, Ongchai S. Post-treatment of hyaluronan to decrease the apoptotic effects of carprofen in canine articular chondrocyte culture. PeerJ 2020; 8:e8355. [PMID: 32030322 PMCID: PMC6995269 DOI: 10.7717/peerj.8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
A major concern associated with the use of drugs is their adverse side effects. Specific examples of the drugs of concern include antibiotic agents and non-steroidal anti-inflammatory drugs. Despite the presence of a high degree of efficacy for specific conditions, these drugs may deteriorate the surrounding tissues that are exposed to them. Often, carprofen is used for joint inflammation; however, it may stimulate cartilage degradation which can then lead to osteoarthritis progression. In this study, hyaluronan was combined with carprofen treatment in three different applications (pre-treatment, co-treatment and post-treatment) on normal canine chondrocytes to determine whether Hyaluronan (HA) is capable of mitigating the degree of chondrotoxicity of carprofen. Our findings revealed that carprofen at IC20 (0.16 mg/mL) decreased viability and increased nitric oxide (NO) production. Importantly, carprofen induced the apoptosis of canine chondrocytes via the up-regulation of Bax, Casp3, Casp8, Casp9 and NOS2 as compared to the control group. Although the co-treatment of HA and carprofen appeared not to further alleviate the chondrotoxicity of carprofen due to the presence of a high number of apoptotic chondrocytes, post-treatment with HA (carprofen treatment for 24 h and then changed to HA for 24 h) resulted in a decrease in chondrocyte apoptosis by the down-regulation of Bax, Casp3, Casp8, Casp9, NOS2, along with NO production when compared with the treatment of carprofen for 48 h (P < 0.05). These results suggest that HA can be used as a therapeutic agent to mitigate the degree of chondrotoxicity of carprofen.
Collapse
Affiliation(s)
- Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Kittisak Buddhachat
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Siriwadee Chomdej
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Siriwan Ongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Tan F, Al-Rubeai M. A multifunctional dexamethasone-delivery implant fabricated using atmospheric plasma and its effects on apoptosis, osteogenesis and inflammation. Drug Deliv Transl Res 2020; 11:86-102. [PMID: 31898081 DOI: 10.1007/s13346-019-00700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implant-based local drug delivery is a unique surgical therapy with many clinical advantages. Atmospheric pressure plasma is a novel non-thermal surface biotechnology that has only recently been applied in enhancing a surgical implant. We are the first to use this technology to successfully create a dexamethasone-delivery metallic implant. Irrespective of the loaded medication, the surface of this novel implant possesses advantageous material features including homogeneity, hydrophilicity, and optimal roughness. UV-vis spectroscopy revealed much more sustainable drug release compared to the implants produced using simple drug attachment. In addition, our drug-releasing implant was found to have multiple biological benefits. As proven by the ELISA data, this multi-layer drug complex provides differential regulation on the cell apoptosis, as well as pro-osteogenic and anti-inflammatory effects on the peri-implant tissue. Furthermore, using the pathway-specific PCR array, our study discovered 28 and 26 upregulated and downregulated genes during osteogenesis and inflammation on our newly fabricated drug-delivery implant, respectively. The medication-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric pressure plasma as a potent tool for creating a surgical implant-based drug-delivery system, which renders multiple therapeutic potentials. Graphical abstract Schematic of the APP-facilitated Dex-delivery implant. This layer-by-layer drug-releasing complex consisted of bottom plasma activation layer, middle medication layer, and top absorbable polymer layer.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital, and School of Medicine, Tongji University, Shanghai, China. .,School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin-National University of Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| | | |
Collapse
|
13
|
Alanyl-glutamine Heals Indomethacin-induced Gastric Ulceration in Rats Via Antisecretory and Anti-apoptotic Mechanisms. J Pediatr Gastroenterol Nutr 2019; 69:710-718. [PMID: 31764439 DOI: 10.1097/mpg.0000000000002474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Alanylglutamine (AG) is a dipeptide that fuels enterocytes and has a coadjuvant role during gut healing. The current study aimed to investigate the potential ulcer-healing effect of AG in indomethacin-induced gastropathy. METHODS Animals (n = 10 rats/group) were randomly allocated into 5 groups. Gastric ulcerated rats were administered AG, AG + dexamethasone, or pantoprazole after indomethacin exposure. RESULTS Comparable to pantoprazole, AG inhibited H-KATPase pump, and elevated the pH of gastric juice. Moreover, the dipeptide increased the serum/mucosal contents of glucagon-like peptide-1 (GLP-1), pS473-Akt, and cyclin-D1. On the contrary, AG abated serum tumor necrosis factor-α and gastric mucosal content of pS45-β catenin, pS9-GSK3β, pS133-CREB, pS536-NF-κB, H2O2, claudin-1, and caspase-3. The administration of dexamethasone before AG hampered its effect on almost all the measured parameters. CONCLUSIONS AG confers its antiulcerogenic/antisecretory potentials by repressing the proton pump to increase the gastric juice pH via boosting p-CREB, p-Akt, p-GSK-3β, and GLP-1. Also, it inhibits apoptosis through suppressing nuclear factor-kappa B/tumor necrosis factor-α/H2O2/claudin-1 cue. This trajectory contributes to loosen the tight junction priming AG-mediated GLP-1/β-catenin/cyclin-D1 that results in pronounced increase in gastric mucosa proliferation. Therefore, the crosstalk between multiple pathways orchestrates the action of AG against gastric ulceration.
Collapse
|
14
|
Delucchi Á, Toro L, Alzamora R, Barrientos V, González M, Andaur R, León P, Villanueva F, Galindo M, Las Heras F, Montecino M, Moena D, Lazcano A, Pinto V, Salas P, Reyes ML, Mericq V, Michea L. Glucocorticoids Decrease Longitudinal Bone Growth in Pediatric Kidney Transplant Recipients by Stimulating the FGF23/FGFR3 Signaling Pathway. J Bone Miner Res 2019; 34:1851-1861. [PMID: 31099911 DOI: 10.1002/jbmr.3761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/05/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
Renal transplantation (RTx) is an effective therapy to improve clinical outcomes in pediatric patients with terminal chronic kidney disease. However, chronic immunosuppression with glucocorticoids (GCs) reduces bone growth and BMD. The mechanisms causing GC-induced growth impairment have not been fully clarified. Fibroblast growth factor 23 (FGF23) is a peptide hormone that regulates phosphate homeostasis and bone growth. In pathological conditions, FGF23 excess or abnormal FGF receptors (FGFR) activity leads to bone growth impairment. Experimental data indicate that FGF23 expression is induced by chronic GC exposure. Therefore, we hypothesize that GCs impair bone growth by increasing FGF23 expression, which has direct effects on bone growth plate. In a post hoc analysis of a multicentric randomized clinical trial of prepubertal RTx children treated with early GC withdrawal or chronic GC treatment, we observed that GC withdrawal was associated with improvement in longitudinal growth and BMD, and lower plasma FGF23 levels as compared with a chronic GC group. In prepubertal rats, GC-induced bone growth retardation correlated with increased plasma FGF23 and bone FGF23 expression. Additionally, GC treatment decreased FGFR1 expression whereas it increased FGFR3 expression in mouse tibia explants. The GC-induced bone growth impairment in tibiae explants was prevented by blockade of FGF23 receptors using either a pan-FGFR antagonist (PD173074), a C-terminal FGF23 peptide (FGF23180-205) which blocks the binding of FGF23 to the FGFR-Klotho complex or a specific FGFR3 antagonist (P3). Finally, local administration of PD173074 into the tibia growth plate ameliorated cartilage growth impairment in GC-treated rats. These results show that GC treatment partially reduces longitudinal bone growth via upregulation of FGF23 and FGFR3 expression, thus suggesting that the FGF23/Klotho/FGFR3 axis at the growth plate could be a potential therapeutic target for the management of GC-induced growth impairment in children.
Collapse
Affiliation(s)
- Ángela Delucchi
- Division of Nephrology, Hospital Luis Calvo Mackenna, Santiago, Chile.,Division of Nephrology, Clínica Alemana de Santiago, Santiago, Chile
| | - Luis Toro
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, Santiago, Chile.,Clinica Las Condes, Santiago, Chile
| | - Rodrigo Alzamora
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Victor Barrientos
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Magdalena González
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Andaur
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo León
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisco Villanueva
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Galindo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| | - Facundo Las Heras
- Clinica Las Condes, Santiago, Chile.,Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Daniel Moena
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Andrea Lazcano
- Division of Nephrology, Clínica Alemana de Santiago, Santiago, Chile.,Division of Nephrology, Hospital de Niños Roberto del Río, Santiago, Chile
| | - Viola Pinto
- Clinica Las Condes, Santiago, Chile.,Pediatric Nephrology Unit, Hospital Doctor Exequiel González Cortés, Santiago, Chile
| | - Paulina Salas
- Pediatric Nephrology Unit, Hospital Doctor Exequiel González Cortés, Santiago, Chile
| | - María Loreto Reyes
- Pediatric Endocrinology Unit, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Mericq
- Clinica Las Condes, Santiago, Chile.,Institute of Maternal and Child Research, Universidad de Chile, Santiago, Chile
| | - Luis Michea
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (MIII), Santiago, Chile
| |
Collapse
|
15
|
Ahmed SEAM, Soliman AT, Ramadan MA, Elawwa A, Abugabal AMS, Emam MHA, De Sanctis V. Long-term prednisone versus hydrocortisone treatment in children with classic Congenital Adrenal Hyperplasia (CAH) and a brief review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:360-369. [PMID: 31580328 PMCID: PMC7233741 DOI: 10.23750/abm.v90i3.8732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Debate still exist about the safety of long-term use of prednisone (PD) versus hydrocortisone (HC) for treating children with congenital adrenal hyperplasia -21OH D (CAH). Despite recent developments in congenital adrenal hyperplasia -21OH D (CAH), several issues related to patient growth and final height remain unsolved. Debate still exist about the safety of long-term use of PD versus HC for treating children with CAH. The mechanism by which glucocorticoid therapy interferes with growth is complex and multifactorial. Relatively slight supra-physiologic levels may be enough to blunt growth velocity. An increased risk of developing obesity is another possible consequence of hyper-cortisolism in children with CAH. OBJECTIVES OF THE STUDY To evaluate the anthropometric and biochemical effects of long-term PD versus HC treatment in children with CAH-21OHD. A brief review of the literature is also reported. PATIENTS AND METHODS This retrospective study evaluated linear growth and biochemical data of thirty children with classic CAH (19 females and 11 males), who were on PD (n=22) or HC (n=8) treatment, since their first diagnosis. Clinical data included age, gender, duration of therapy, dose of HC and or equivalent dose of HC in the PD group, blood pressure, height (Ht) and weight. Ht-SDS and BMI were also calculated. Biochemical data included measurement of 17- OH progesterone, cholesterol, triglycerides (TG), HDL, LDL, fasting glucose, and insulin concentrations. HOMA-IR was calculated. Carotid intima-media thickness (CIMT) was measured using high-resolution B-mode ultrasonography. Thirty normal age matched children were used as controls for the anthropometric and CIMT data. RESULTS The age of children and duration of treatment did not differ among the two treatment groups. After a mean of 6 years of treatment, the Ht-SDS and BMI did not differ between the three groups of children. The equivalent hydrocortisone dose of children on prednisone was significantly higher than the dose for the hydrocortisone group. Both systolic and diastolic blood pressures (BP) of children on PD was slightly higher compared to those on hydrocortisone group. However, the BP of the 2 treatment groups was not different compared to control children. Fasting blood glucose, homeostatic model assessment insulin resistance (HOMA-IR), plasma TG, HDL, and cholesterol did not differ among the two treatment groups. LDL levels were significantly higher in the PD group versus the HC group. The mean CIMT did not differ among the two treatment groups but was significantly higher in the treated groups versus controls. There was a significant linear correlation between BMI-SDS and CIMT (r=0.37, p=0.047). CONCLUSIONS Children with CAH-21OHD who were kept on PD therapy for 6.4±2.7 years, since the beginning of diagnosis, have maintained normal linear growth. No difference in BMI, HOMA-IR, or CIMT was detected among the two treated groups. The efficiency, safety and convenience of a single daily dose of PD could be a good and relatively safe alternative to HC for the continuing medical treatment of patients with CAH-21OHD. However, more prospective studies across childhood and adolescence are necessary to draw definitive conclusions.
Collapse
|
16
|
Human Embryonic Stem Cell-Derived Neural Lineages as In Vitro Models for Screening the Neuroprotective Properties of Lignosus rhinocerus (Cooke) Ryvarden. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3126376. [PMID: 33204680 PMCID: PMC7658738 DOI: 10.1155/2019/3126376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In the biomedical field, there is growing interest in using human stem cell-derived neurons as in vitro models for pharmacological and toxicological screening of bioactive compounds extracted from natural products. Lignosus rhinocerus (Tiger Milk Mushroom) is used by indigenous communities in Malaysia as a traditional medicine to treat various diseases. The sclerotium of L. rhinocerus has been reported to have medicinal properties, including various bioactivities such as neuritogenic, anti-inflammatory, and anticancer effects. This study aims to investigate the neuroprotective activities of L. rhinocerus sclerotial extracts. Human embryonic stem cell (hESC)-derived neural lineages exposed to the synthetic glucocorticoid, dexamethasone (DEX), were used as the in vitro models. Excess glucocorticoids have been shown to adversely affect fetal brain development and impair differentiation of neural progenitor cells. Screening of different L. rhinocerus sclerotial extracts and DEX on the hESC-derived neural lineages was conducted using cell viability and neurite outgrowth assays. The neuroprotective effects of L. rhinocerus sclerotial extracts against DEX were further evaluated using apoptosis assays and Western blot analysis. Hot aqueous and methanol extracts of L. rhinocerus sclerotium promoted neurite outgrowth of hESC-derived neural stem cells (NSCs) with negligible cytotoxicity. Treatment with DEX decreased viability of NSCs by inducing apoptosis. Coincubation of L. rhinocerus methanol extract with DEX attenuated the DEX-induced apoptosis and reduction in phospho-Akt (pAkt) level in NSCs. These results suggest the involvement of Akt signaling in the neuroprotection of L. rhinocerus methanol extract against DEX-induced apoptosis in NSCs. Methanol extract of L. rhinocerus sclerotium exhibited potential neuroprotective activities against DEX-induced toxicity in hESC-derived NSCs. This study thus validates the use of human stem cell-derived neural lineages as potential in vitro models for screening of natural products with neuroprotective properties.
Collapse
|
17
|
El Sheikh M, Mesalam A, Mesalam AA, Idrees M, Lee KL, Kong IK. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int J Mol Sci 2019; 20:ijms20122956. [PMID: 31212969 PMCID: PMC6627520 DOI: 10.3390/ijms20122956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin, a nighttime-secreted antioxidant hormone produced by the pineal gland, and AKT, a serine/threonine-specific protein kinase, have been identified as regulators for several cellular processes essential for reproduction. The current study aimed to investigate the potential interplay between melatonin and AKT in bovine oocytes in the context of embryo development. Results showed that the inclusion of SH6, a specific AKT inhibitor, during in vitro maturation (IVM) significantly reduced oocyte maturation, cumulus cell expansion, cleavage, and blastocyst development that were rescued upon addition of melatonin. Oocytes treated with SH6 in the presence of melatonin showed lower levels of reactive oxygen species (ROS) and blastocysts developed exhibited low apoptosis while the mitochondrial profile was significantly improved compared to the SH6-treated group. The RT-qPCR results showed up-regulation of the mRNA of maturation-, mitochondrial-, and cumulus expansion-related genes including GDF-9, BMP-15, MARF1, ATPase, ATP5F1E, POLG2, HAS2, TNFAIP6, and PTGS2 and down-regulation of Bcl-2 associated X apoptosis regulator (BAX), caspase 3, and p21 involved in apoptosis and cell cycle arrest in melatonin-SH6 co-treated group compared to SH6 sole treatment. The immunofluorescence showed high levels of caspase 3 and caspase 9, and low AKT phosphorylation in the SH6-treated group compared to the control and melatonin-SH6 co-treatment. Taken together, our results showed the importance of both melatonin and AKT for overall embryonic developmental processes and, for the first time, we report that melatonin could neutralize the deleterious consequences of AKT inhibition, suggesting a potential role in regulation of AKT signaling in bovine oocytes.
Collapse
Affiliation(s)
- Marwa El Sheikh
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Ahmed Atef Mesalam
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
| | | | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea.
- The King Kong Corp Ltd., Jinju 52828, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
18
|
Ramírez JP, Bonati-Richardson F, García MP, Hidalgo C, Stoore C, Liendo R, Soza F, Landerer E, Paredes R. Intra-articular treatment with corticosteroids increases apoptosis in human rotator cuff tears. Connect Tissue Res 2019; 60:283-290. [PMID: 30091643 DOI: 10.1080/03008207.2018.1501040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The aim of this study is to evaluate in vivo the level of apoptosis in human rotator cuff tears and the relationship it might have with tendon degeneration. METHODS Rotator cuff biopsies from 19 male and female patients, ages between 38 and 68 years, with and without previous corticosteroid infiltrations were collected via arthroscopy. Biopsies from seven patients with healthy rotator cuffs were used as a control group. An in situ terminal deoxynucleotidyl transferase dUTP nick end labeling assay was performed to detect the level of apoptosis, which was expressed as a percentage of apoptotic cells (PAC). RESULTS PAC in patients with corticosteroid infiltrations was 76.97 ± 16.99 in all tendon rupture zones, in non-infiltrated patients was 35.89 ± 22.96, whereas in control patients was 14.48 ± 8.15. Likewise, the tendency of PAC reveals that apoptosis in control and non-infiltrated groups was different and dispersed in all tear zones; while in corticosteroid treated patients, the tendency was similar in all rupture sites. CONCLUSIONS This investigation leads us to conclude that the administration of corticosteroid is associated with a higher amount of apoptosis at the insertion site of the rotator cuff (rupture edge).
Collapse
Affiliation(s)
- Juan Pablo Ramírez
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| | - Francesca Bonati-Richardson
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| | - María Pía García
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| | - Christian Hidalgo
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| | - Caroll Stoore
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| | - Rodrigo Liendo
- b Departamento Traumatología y Ortopedia, Facultad de Medicina , Pontificia Universidad Catolica de Chile , Santiago , Chile
| | - Francisco Soza
- b Departamento Traumatología y Ortopedia, Facultad de Medicina , Pontificia Universidad Catolica de Chile , Santiago , Chile
| | - Eduardo Landerer
- c Escuela de Medicina, Facultad de Medicina , Universidad Andres Bello , Santiago , Chile
| | - Rodolfo Paredes
- a Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida , Universidad Andres Bello , Santiago , Chile
| |
Collapse
|
19
|
Deng J, Chalhoub NE, Sherwin CM, Li C, Brunner HI. Glucocorticoids pharmacology and their application in the treatment of childhood-onset systemic lupus erythematosus. Semin Arthritis Rheum 2019; 49:251-259. [PMID: 30987856 DOI: 10.1016/j.semarthrit.2019.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are potent anti-inflammatory and immunosuppressant medications and remain the mainstay of systemic lupus erythematosus (SLE) therapy. The potency of a specific glucocorticoid, i.e., the dose of glucocorticoid that is required to produce a specific effect, is dependent on its pharmacokinetic (PK) and pharmacodynamic (PD) properties. In this review, we summarize the PK/PD properties of commonly used glucocorticoids in an attempt to better delineate their role in the management of children with childhood-onset SLE (cSLE). We also address glucocorticoid side effects as these play a major role when deciding on the dose, frequency, and duration of use. A better understanding of the pharmacology of glucocorticoids appears useful to achieve improved outcomes in the management of cSLE.
Collapse
Affiliation(s)
- Jianghong Deng
- Department of Rheumatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Xicheng District, Beijing 100045, China; Division of Rheumatology, Cincinnati Children's Hospital Medical Center, MLC 4010, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nathalie E Chalhoub
- Division of Immunology, Allergy, and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Catherine M Sherwin
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Caifeng Li
- Department of Rheumatology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, No. 56 Nanlishi Road, Xicheng District, Beijing 100045, China.
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, MLC 4010, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
20
|
Zaman F, Zhao Y, Celvin B, Mehta HH, Wan J, Chrysis D, Ohlsson C, Fadeel B, Cohen P, Sävendahl L. Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment. FASEB J 2019; 33:4962-4974. [PMID: 30657335 DOI: 10.1096/fj.201801741r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GCs) are frequently used to treat chronic disorders in children, including inflammation and cancer. Prolonged treatment with GCs is well known to impair bone growth, an effect linked to increased apoptosis and suppressed proliferation in growth plate chondrocytes. We hypothesized that the endogenous antiapoptotic protein humanin (HN) may prevent these effects. Interestingly, GC-induced bone growth impairment and chondrocyte apoptosis was prevented in HN overexpressing mice, HN-treated wild-type mice, and in HN-treated cultured rat metatarsal bones. GC-induced suppression of chondrocyte proliferation was also prevented by HN. Furthermore, GC treatment reduced Indian Hedgehog expression in growth plates of wild-type mice but not in HN overexpressing mice or HN-treated wild-type animals. A Hedgehog (Hh) antagonist, vismodegib, was found to suppress the growth of cultured rat metatarsal bones, and this effect was also prevented by HN. Importantly, HN did not interfere with the desired anti-inflammatory effects of GCs. We conclude that HN is a novel regulator of Hh signaling preventing GC-induced bone growth impairment without interfering with desired effects of GCs. Our data may open for clinical studies exploring a new possible strategy to prevent GC-induced bone growth impairment by cotreating with HN.-Zaman, F., Zhao, Y., Celvin, B., Mehta, H. H., Wan, J., Chrysis, D., Ohlsson, C., Fadeel, B., Cohen, P., Sävendahl, L. Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment.
Collapse
Affiliation(s)
- Farasat Zaman
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Yunhan Zhao
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Bettina Celvin
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Dionisios Chrysis
- Division of Endocrinology, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; and
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
21
|
Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed Pharmacother 2018; 110:602-608. [PMID: 30537677 DOI: 10.1016/j.biopha.2018.11.103] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteoblasts play important roles in the process of osteogenesis and prevention of osteonecrosis. Dexamethasone (Dex), a type of glucocorticoids (GCs), induces apoptosis of osteoblasts and leads to the occurrence of non-traumatic osteonecrosis. This study aimed to explore the effects of phosphatidylinositol 3-kinase/Protein kinase 3 (PI3K/AKT) and glycogen synthase kinase 3β (GSK3β) on Dex-induced osteoblasts apoptosis. METHODS Viabilities, proliferation, and apoptosis of primary osteoblasts and pre-osteoblast MC3T3-E1 cells after Dex treatment were detected using cell counting kit-8 (CCK-8) assay, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, FITC-Annexin V/PI staining and western blotting, respectively. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure the intracellular reactive oxygen species (ROS) levels after Dex treatment. N-acetyl-l-cysteine (NAC) was used as ROS scavenger in this research. The expressions of PI3K/AKT and GSK3β in osteoblasts and MC3T3-E1 cells after Dex treatment were analyzed using western blotting and qRT-PCR, respectively. Then the effects of GSK3β knockdown on Dex-induced apoptosis of osteoblasts were explored. Alkaline phosphatase (ALP) activity assay was used to detect the role of Dex in regulating ALP activity. RESULTS Dex remarkably inhibited proliferation and induced apoptosis of osteoblasts and MC3T3-E1 cells. Dex potentially attenuated the osteoblast differentiation. The intracellular ROS levels were significantly increased after Dex treatment. Dex suppressed the activation of PI3K/AKT pathway in osteoblasts and MC3T3-E1 cells by down-regulating the expressions of p-PI3K and p-AKT. The expressions of GSK3β in osteoblasts and MC3T3-E1 cells were obviously up-regulated after Dex treatment. Knockdown of GSK3β alleviated Dex-induced osteoblast and MC3T3-E1 cell apoptosis by decreasing the expressions of Bax, cleaved-caspase 3, cleaved-caspase 9 and increasing the expression of Bcl-2. CONCLUSION Our research verified that Dex induced osteoblasts apoptosis by ROS-PI3K/AKT/GSK3β signaling pathway.
Collapse
|
22
|
Huang Y, Cai GQ, Peng JP, Shen C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J Steroid Biochem Mol Biol 2018. [PMID: 29526705 DOI: 10.1016/j.jsbmb.2018.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the results from our previous study, dexamethasone (Dex) increases reactive oxygen species (ROS) levels and subsequently induces cell death and matrix catabolism in chondrocytes. Nevertheless, the mechanism underlying this phenomenon remains unclear. Nicotinamide adenine dinucleotide (phosphate) (NADPH) oxidase 4 (NOX4) is one of the major enzymes responsible for intracellular ROS production during the inflammatory process. The objective of the current study was to investigate the role of NOX4 in Dex-induced ROS over-production. Healthy chondrocytes were harvested from the cartilage debris from 6 female patients. NOX4 and p38 mitogen-activated protein kinase (MAPK) expression levels in these cells were evaluated in the presence of Dex. Changes in the number of apoptotic and viable Dex-treated chondrocytes were recorded after the cells were treated with NOX and p38 MAPK inhibitors. Changes in matrix metalloproteinase 13 (MMP-13) expression levels in Dex-treated chondrocytes were also investigated. The Dex treatment increased NOX4 expression via the glucocorticoid receptor (GR). Treatment of cells with apocynin, a NOX inhibitor, decreased intracellular ROS levels and inhibited p38 MAPK activation. Treatment of cells with a ROS scavenger also reduced p38 MAPK expression. Treatment of cells with a NOX inhibitor, ROS scavenger and p38 MAPK inhibitor rescued chondrocytes from Dex-induced apoptosis. Moreover, treatment of cells with these agents blocked MMP-13 expression in Dex-treated chondrocytes. NOX4 silencing also suppressed p38 MAPK and MMP-13 expression. Dex triggered apoptosis and MMP-13 expression through the NOX4/ROS/p38 MAPK signaling pathway. NOX4 may be a therapeutic target in the management of Dex-induced complications.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Gui-Quan Cai
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jian-Ping Peng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Chao Shen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
23
|
Prenatal caffeine exprosure increases adult female offspring rat's susceptibility to osteoarthritis via low-functional programming of cartilage IGF-1 with histone acetylation. Toxicol Lett 2018; 295:229-236. [PMID: 29966748 DOI: 10.1016/j.toxlet.2018.06.1221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 02/04/2023]
Abstract
Our previous in vivo studies showed that prenatal caffeine exposure (PCE) could restrain the development of chondrogenesis, which may delay fetal articular cartilage development and increase susceptibility to osteoarthritis in adults. So, the goal of the current study is to clarify theincreasing susceptibility to adult osteoarthritis in caffeine-exposed female offspring and its'mechanism. Pregnant rats were treated with 120 mg/kg·d caffeine or equal volumes of saline from gestational day (GD) 9 to 20. knee joints were collected from GD20 female fetuses and 18-week old female offspring which was treated with strenuous running for 6 weeks (55 min/day at 20 m/min) load to induce osteoarthritis. Knee joints from GD20 fetuses and adult offspring were collected for histochemistry and immunohistochemistry. Next, chondrocytes were isolated from 1-day-old newborn rats and in vitro studies were conducted where the cells in primary culture were exposed to 1, 10, and 100 μM caffeine and 250, 500, and 1,250 nM corticosterone. Insulin-like growth factor 1 (IGF-1) signal pathway genes' expression levels in fetal chondrocytes were studied, and IGF-1 histone acetylation was detected in vitro. Immunohistochemical results showed low expression levels of IGF-1 signaling genes (IGF-1, IRS-1, AKT, and COL2A1) both in fetal and adult cartilage with PCE. For adult offspring, histological results and Mankin score revealed increased cartilage destruction and accelerated osteoarthritis progression in PCE group with strenuous running exercise. Analysis in vitro revealed that caffeine and corticosterone impeded the expression of IGF-1 signaling pathway aggrecan and COL2A1 genes, but only corticosterone decreased H3K9 and H3K27 acetylation in the IGF-1 promoter region. In concluson, PCE low functional programmed cartilage IGF-1 by histone acetylation modification via overexposure to corticosterone and delayed articular cartilage development from fetus to adults. Then, the delayed cartilage development increased susceptibility to osteoarthritis in offsprings.
Collapse
|
24
|
Franco D, Trusso S, Fazio E, Allegra A, Musolino C, Speciale A, Cimino F, Saija A, Neri F, Nicolò MS, Guglielmino SPP. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 187:15-22. [PMID: 28645097 DOI: 10.1016/j.saa.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/22/2017] [Accepted: 06/15/2017] [Indexed: 05/25/2023]
Abstract
Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Sebastiano Trusso
- Institute of Chemical-Physical Processes (IPCF)-CNR, Messina, Italy.
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computational Sciences, Physical Science and Earth Science, University of Messina, Italy
| | - Marco S Nicolò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Salvatore P P Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
25
|
Euppayo T, Punyapornwithaya V, Chomdej S, Ongchai S, Nganvongpanit K. Effects of hyaluronic acid combined with anti-inflammatory drugs compared with hyaluronic acid alone, in clinical trials and experiments in osteoarthritis: a systematic review and meta-analysis. BMC Musculoskelet Disord 2017; 18:387. [PMID: 28877688 PMCID: PMC5585914 DOI: 10.1186/s12891-017-1743-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
Background The objectives are to compare the efficacy of intra-articular hyaluronic acid (IA-HA) alone and in combination with anti-inflammatory drugs (IA-HA + AI), corticosteroids (CS) or non-steroidal anti-inflammatory drugs (NSAIDs) in clinical trials and in vivo and in vitro studies of osteoarthritis (OA). Methods Data in the BIOSIS, CINAHL, Cochrane Library, EMBASE and Medline databases were collected and analyzed. Random effects models were used to compute the effect size (ES) of the mean difference in pain reduction scores from baseline and the relative risk (RR) of adverse events. The ES of histological scores in vivo and cartilage metabolism in vitro were also calculated. We conducted sensitivity analysis of blinding and intention-to-treat (ITT), compared IA-HA combined with CS vs. IA-HA alone in trials, and compared the effects of HA + AI vs. AI alone in vitro, including anabolic and catabolic gene expression. Results Thirteen out of 382 papers were included for data analysis. In clinical trials, the ES of pain reduction scores within the 1st month was −4.24 (−6.19, −2.29); 2nd–12th month, −1.39 (−1.95, −0.82); and within one year, −1.63 (−2.19, −1.08), favoring IA-HA + AI (P < 0.001). The ES of RR was 1.08 (0.59, 1.98), and histological scores was 1.38 (−0.55, 3.31). The ES of anabolic gene expression was 1.22 (0.18, 2.25), favoring HA alone (P < 0.05); catabolic gene expression was 0.74 (−0.44, 1.53), favoring HA alone; and glycosaminoglycans remaining was −2.45 (−5.94, 1.03). Conclusions IA-HA + AI had greater efficacy for pain relief than IA-HA alone within a one-year period. However, HA + AI down-regulated the ACAN gene when compared with HA alone in vitro.
Collapse
Affiliation(s)
- Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriwan Ongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
26
|
Kleine SA, Budsberg SC. Synovial membrane receptors as therapeutic targets: A review of receptor localization, structure, and function. J Orthop Res 2017; 35:1589-1605. [PMID: 28374922 DOI: 10.1002/jor.23568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023]
Abstract
Joint pathology and degeneration is a significant cause of pain. The synovial membrane plays an important role in maintenance of the joint, contributes to the pathology of many arthropathies and may be adversely affected in joint disease. Improving knowledge of the receptors present within the synovium will aid in a better understanding of joint pathology and the development of new treatments for diseases such as osteoarthritis and rheumatoid arthritis. Knowledge of the location and function of synovial membrane receptors (both in healthy and diseased synovium) may provide important targets in the treatment of various arthropathies. Classic pain receptors such as opioid receptors in the synovium are a mainstay in local and systemic management of chronic pain in many species. In addition to these, many other receptors such as bradykinin, neurokinin, transient receptor potential vanilloid, and inflammatory receptors, such as prostanoid and interleukin receptors have been discovered within the synovial membrane. These receptors are important in pain, inflammation, and in maintenance of normal joint function and may serve as targets for pharmacologic intervention in pathologic states. The goal of this review is to outline synovial membrane receptor localization and local therapeutic modulation of these receptors, in order to stimulate further research into pharmacological management of arthropathies at the local level. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1589-1605, 2017.
Collapse
Affiliation(s)
- Stephanie A Kleine
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| | - Steven C Budsberg
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, 2200 College Station Road, Athens 30602, Georgia
| |
Collapse
|
27
|
Conde J, Lazzaro V, Scotece M, Abella V, Villar R, López V, Gonzalez-Gay MÁ, Pino J, Gómez R, Mera A, Gualillo O. Corticoids synergize with IL-1 in the induction of LCN2. Osteoarthritis Cartilage 2017; 25:1172-1178. [PMID: 28185846 DOI: 10.1016/j.joca.2017.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/10/2017] [Accepted: 01/29/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Lipocalin-2 (LCN2) is an adipokine that was first identified in neutrophil granules. In the last years it was recognized as a factor that could impair chondrocyte phenotype, cartilage homeostasis as well as growth plate development. Both pro-inflammatory cytokines and glucocorticoids (GCs) modulate LCN2 expression. Actually, GCs were found to be LCN2 inducers, suggesting that part of the negative actions exerted by these anti-inflammatory drugs at cartilage level could be mediated by this adipokine. So, in this study we wanted to investigate whether corticoids were able to act in synergy with IL-1 in the induction of LCN2 and the signaling pathway involved in this process. MATERIALS AND METHODS For the realization of this work, ATDC5 mouse chondrogenic cell line was used. We determined the mRNA and protein expression of LCN2 by real-time reverse transcription-polymerase chain reaction (RT-qPCR) and western blot respectively, after GC or mineralcorticoid treatment. Different signaling pathways inhibitors were also used. RESULTS GC and mineralcorticoid were able to induce the expression of LCN2 in ATDC5 cells. Interestingly, both corticoids synergized with IL-1 in the induction of LCN2. The effect of these corticoids on the expression of LCN2 occurred through GC or mineralcorticoid receptors and the kinases PI3K, ERK1/2 and JAK2. CONCLUSIONS Prolonged use of corticoids may have detrimental effects on cartilage homeostasis. Based on our results, we conclude that corticoids could increase the negative actions exerted by IL-1 by increasing the expression of LCN2.
Collapse
Affiliation(s)
- J Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| | - V Lazzaro
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - M Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - V Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - R Villar
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - V López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - M Á Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - J Pino
- SERGAS (Servizo Galego de Saude), Division of Orthopaedics Surgery and Traumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - R Gómez
- Musculoskeletal Pathology Laboratory, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - A Mera
- SERGAS (Servizo Galego de Saude), Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - O Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
28
|
Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 2017; 33:361-371. [DOI: 10.1007/s10565-017-9393-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/18/2017] [Indexed: 12/16/2022]
|
29
|
Nutrition, infection and stunting: the roles of deficiencies of individual nutrients and foods, and of inflammation, as determinants of reduced linear growth of children. Nutr Res Rev 2017; 30:50-72. [PMID: 28112064 DOI: 10.1017/s0954422416000238] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of linear growth by nutritional and inflammatory influences is examined in terms of growth-plate endochondral ossification, in order to better understand stunted growth in children. Linear growth is controlled by complex genetic, physiological, and nutrient-sensitive endocrine/paracrine/autocrine mediated molecular signalling mechanisms, possibly including sleep adequacy through its influence on growth hormone secretion. Inflammation, which accompanies most infections and environmental enteric dysfunction, inhibits endochondral ossification through the action of mediators including proinflammatory cytokines, the activin A-follistatin system, glucocorticoids and fibroblast growth factor 21 (FGF21). In animal models linear growth is particularly sensitive to dietary protein as well as Zn intake, which act through insulin, insulin-like growth factor-1 (IGF-1) and its binding proteins, triiodothyronine, amino acids and Zn2+ to stimulate growth-plate protein and proteoglycan synthesis and cell cycle progression, actions which are blocked by corticosteroids and inflammatory cytokines. Observational human studies indicate stunting to be associated with nutritionally poor, mainly plant-based diets. Intervention studies provide some support for deficiencies of energy, protein, Zn and iodine and for multiple micronutrient deficiencies, at least during pregnancy. Of the animal-source foods, only milk has been specifically and repeatedly shown to exert an important influence on linear growth in both undernourished and well-nourished children. However, inflammation, caused by infections, environmental enteric dysfunction, which may be widespread in the absence of clean water, adequate sanitation and hygiene (WASH), and endogenous inflammation associated with excess adiposity, in each case contributes to stunting, and may explain why nutritional interventions are often unsuccessful. Current interventions to reduce stunting are targeting WASH as well as nutrition.
Collapse
|
30
|
Parathyroid hormone 1-34 reduces dexamethasone-induced terminal differentiation in human articular chondrocytes. Toxicology 2016; 368-369:116-128. [PMID: 27608943 DOI: 10.1016/j.tox.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/04/2016] [Indexed: 11/24/2022]
Abstract
Intra-articular injection of dexamethasone (Dex) is occasionally used to relieve pain and inflammation in osteoarthritis (OA) patients. Dex induces terminal differentiation of chondrogenic mesenchymal stem cells in vitro and causes impaired longitudinal skeletal growth in vivo. Parathyroid hormone 1-34 (PTH 1-34) has been shown to reverse terminal differentiation of osteoarthritic articular chondrocytes. We hypothesized that Dex induces terminal differentiation of articular chondrocytes and that this effect can be mitigated by PTH 1-34 treatment. We tested the effect of Dex on terminal differentiation in human articular chondrocytes and further tested if PTH 1-34 reverses the effects. We found that Dex treatment downregulated chondrogenic-induced expressions of SOX-9, collagen type IIa1 (Col2a1), and aggrecan and reduced synthesis of cartilaginous matrix (Col2a1 and sulfated glycosaminoglycan) synthesis. Dex treatment upregulated chondrocyte hypertrophic markers of collagen type X and alkaline phosphatase at mRNA and protein levels, and it increased the cell size of articular chondrocytes and induced cell death. These results indicated that Dex induces terminal differentiation of articular chondrocytes. To test whether PTH 1-34 treatment reverses Dex-induced terminal differentiation of articular chondrocytes, PTH 1-34 was co-administered with Dex. Results showed that PTH 1-34 treatment reversed both changes of chondrogenic and hypertrophic markers in chondrocytes induced by Dex. PTH 1-34 also decreased Dex-induced cell death. PTH 1-34 treatment reduces Dex-induced terminal differentiation and apoptosis of articular chondrocytes, and PTH 1-34 treatment may protect articular cartilage from further damage when received Dex administration.
Collapse
|
31
|
Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev 2016; 96:409-47. [PMID: 26842265 DOI: 10.1152/physrev.00011.2015] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cartilage and bone are severely affected by glucocorticoids (GCs), steroid hormones that are frequently used to treat inflammatory diseases. Major complications associated with long-term steroid therapy include impairment of cartilaginous bone growth and GC-induced osteoporosis. Particularly in arthritis, GC application can increase joint and bone damage. Contrarily, endogenous GC release supports cartilage and bone integrity. In the last decade, substantial progress in the understanding of the molecular mechanisms of GC action has been gained through genome-wide binding studies of the GC receptor. These genomic approaches have revolutionized our understanding of gene regulation by ligand-induced transcription factors in general. Furthermore, specific inactivation of GC signaling and the GC receptor in bone and cartilage cells of rodent models has enabled the cell-specific effects of GCs in normal tissue homeostasis, inflammatory bone diseases, and GC-induced osteoporosis to be dissected. In this review, we summarize the current view of GC action in cartilage and bone. We further discuss future research directions in the context of new concepts for optimized steroid therapies with less detrimental effects on bone.
Collapse
Affiliation(s)
- Kerstin Hartmann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mascha Koenen
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schauer
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Wittig-Blaich
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Mubashir Ahmad
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; and Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
32
|
A novel role for the mineralocorticoid receptor in glucocorticoid driven vascular calcification. Vascul Pharmacol 2016; 86:87-93. [PMID: 27153999 PMCID: PMC5111541 DOI: 10.1016/j.vph.2016.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
Vascular calcification, which is common in the elderly and in patients with atherosclerosis, diabetes and chronic renal disease, increases the risk of cardiovascular morbidity and mortality. It is a complex, active and highly regulated cellular process that resembles physiological bone formation. It has previously been established that pharmacological doses of glucocorticoids facilitate arterial calcification. However, the consequences for vascular calcification of endogenous glucocorticoid elevation have yet to be established. Glucocorticoids (cortisol, corticosterone) are released from the adrenal gland, but can also be generated within cells from 11-keto metabolites of glucocorticoids (cortisone, 11-dehydrocorticosterone [11-DHC]) by the enzyme, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). In the current study we hypothesized that endogenous glucocorticoids facilitate vascular smooth muscle cell (VSMC) calcification and investigated the receptor-mediated mechanism underpinning this process. In vitro studies revealed increased phosphate-induced calcification in mouse VSMCs following treatment for 7 days with corticosterone (100 nM; 7.98 fold; P < 0.01), 11-DHC (100 nM; 7.14 fold; P < 0.05) and dexamethasone (10 nM; 7.16 fold; P < 0.05), a synthetic glucocorticoid used as a positive control. Inhibition of 11β-HSD isoenzymes by 10 μM carbenoxolone reduced the calcification induced by 11-DHC (0.37 fold compared to treatment with 11-DHC alone; P < 0.05). The glucocorticoid receptor (GR) antagonist mifepristone (10 μM) had no effect on VSMC calcification in response to corticosterone or 11-DHC. In contrast, the mineralocorticoid receptor (MR) antagonist eplerenone (10 μM) significantly decreased corticosterone- (0.81 fold compared to treatment with corticosterone alone; P < 0.01) and 11-DHC-driven (0.64 fold compared to treatment with 11-DHC alone; P < 0.01) VSMC calcification, suggesting this glucocorticoid effect is MR-driven and not GR-driven. Neither corticosterone nor 11-DHC altered the mRNA levels of the osteogenic markers PiT-1, Osx and Bmp2. However, DAPI staining of pyknotic nuclei and flow cytometry analysis of surface Annexin V expression showed that corticosterone induced apoptosis in VSMCs. This study suggests that in mouse VSMCs, corticosterone acts through the MR to induce pro-calcification effects, and identifies 11β-HSD-inhibition as a novel potential treatment for vascular calcification.
Collapse
|
33
|
Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr Rev 2016; 37:62-110. [PMID: 26720129 DOI: 10.1210/er.2015-1026] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt are often seen during adolescence. The underlying inflammatory state mediated by proinflammatory cytokines, prolonged use of glucocorticoid, and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the GH-IGF axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biological therapy may lead to improvement of growth in some of these children, but approximately one-third continue to grow slowly. There is increasing evidence that the use of relatively high-dose recombinant human GH may lead to partial catch-up growth in chronic inflammatory conditions, although long-term follow-up data are currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis, systemic abnormalities of the GH-IGF axis, and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human GH in these conditions and discussed the role of recombinant human IGF-1.
Collapse
Affiliation(s)
- S C Wong
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - R Dobie
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - M A Altowati
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - G A Werther
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - C Farquharson
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - S F Ahmed
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
34
|
Siengdee P, Radeerom T, Kuanoon S, Euppayo T, Pradit W, Chomdej S, Ongchai S, Nganvongpanit K. Effects of corticosteroids and their combinations with hyaluronanon on the biochemical properties of porcine cartilage explants. BMC Vet Res 2015; 11:298. [PMID: 26637428 PMCID: PMC4669618 DOI: 10.1186/s12917-015-0611-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 11/28/2015] [Indexed: 01/01/2023] Open
Abstract
Background Intra-articular injection of corticosteroids is used to treat the inflammatory pain of arthritis and osteoarthritis (OA), but our previous study found a deleterious effect of these steroids on chondrocyte cells. Hyaluronic acid (HA) injection has been suggested as a means to counteract negative side effects through replenishment of synovial fluid that can decrease pain in affected joints. To better understand the effects of corticosteroids on these processes, dexamethasone (Dex) and prednisolone (Pred) were administered to porcine cartilage explants at several concentrations with and without HA. We examined corticoid effects by determining sulfate-glycosaminoglycan (s-GAG) and uronic acid (UA) content of the explant media, and safranin-O staining of the cells. Analysis of lactate dehydrogenase (LDH) activity was conducted to assess cell cytotoxicity. Results Dex treatment significantly reduced cellular cytotoxicity compared to the other treatment groups, especially with regards to the release of s-GAG, and protects against superficial proteoglycan damage. However, there was no difference between Pred and Dex, with and without HA, in the UA content remaining in porcine cartilage explants. Conclusions The data suggest that combinations of Dex and Pred with HA did not have a significant effect on protection or enhancement of the articular cartilage matrix under the current conditions.
Collapse
Affiliation(s)
- Puntita Siengdee
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Tiwaporn Radeerom
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Similan Kuanoon
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Thippaporn Euppayo
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| | - Waranee Pradit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Siriwadee Chomdej
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Siriwan Ongchai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, and Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Korakot Nganvongpanit
- Animal Bone and Joint Research Laboratory, Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Excellence Center in Osteology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
35
|
Ni Q, Tan Y, Zhang X, Luo H, Deng Y, Magdalou J, Chen L, Wang H. Prenatal ethanol exposure increases osteoarthritis susceptibility in female rat offspring by programming a low-functioning IGF-1 signaling pathway. Sci Rep 2015; 5:14711. [PMID: 26434683 PMCID: PMC4592973 DOI: 10.1038/srep14711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
Epidemiological evidence indicates that osteoarthritis (OA) and prenatal ethanol exposure (PEE) are both associated with low birth weight but possible causal interrelationships have not been investigated. To investigate the effects of PEE on the susceptibility to OA in adult rats that experienced intrauterine growth retardation (IUGR), and to explore potential intrauterine mechanisms, we established the rat model of IUGR by PEE and dexamethasone, and the female fetus and 24-week-old adult offspring subjected to strenuous running for 6 weeks were sacrificed. Knee joints were collected from fetuses and adult offspring for histochemistry, immunohistochemistry and qPCR assays. Histological analyses and the Mankin score revealed increased cartilage destruction and accelerated OA progression in adult offspring from the PEE group compared to the control group. Immunohistochemistry showed reduced expression of insulin-like growth factor-1 (IGF-1) signaling pathway components. Furthermore, fetuses in the PEE group experienced IUGR but exhibited a higher postnatal growth rate. The expression of many IGF-1 signaling components was downregulated, which coincided with reduced amounts of type II collagen in the epiphyseal cartilage of fetuses in the PEE group. These results suggest that PEE enhances the susceptibility to OA in female adult rat offspring by down-regulating IGF-1 signaling and retarding articular cartilage development.
Collapse
Affiliation(s)
- Qubo Ni
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.,Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yang Tan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianrong Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hanwen Luo
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Deng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jacques Magdalou
- Université de Lorraine, Ingénierie Moléculaire, Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS, Biopôle, F-54505 Vandœuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
36
|
Moon PD, Kim MH, Oh HA, Nam SY, Han NR, Jeong HJ, Kim HM. Cysteine induces longitudinal bone growth in mice by upregulating IGF-I. Int J Mol Med 2015; 36:571-6. [PMID: 26101100 DOI: 10.3892/ijmm.2015.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/16/2015] [Indexed: 11/06/2022] Open
Abstract
Cysteine (Cys) is known to exert various effects, such as antioxidant, antipancreatitic and antidiabetic effects. However, the effects of Cys on longitudinal bone growth have not been elucidate to date. Thus, the aim of the present study was to evaluate the effects of Cys on bone growth. Growth-plate thickness and bone parameters, such as bone volume/tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), connectivity density (Conn.D) and total porosity were analyzed by means of micro-computed tomography (μCT). The levels of serum insulin-like growth factor-I (IGF-I) were measured by enzyme-linked immunosorbent assay (ELISA). Hepatic IGF-I mRNA expression was analyzed by quantitative polymerase chain reaction (qPCR). The phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) was investigated by western blot analysis. Our results revealed that Cys increased IGF-I mRNA expression in HepG2 cells. The thickness of the growth plates was increased following treatment with Cys. Moreover, BV/TV, Tb.Th, TbN, Conn.D and total porosity were improved following treatment with Cys. Hepatic IGF-I mRNA expression and serum IGF-I levels were increased by Cys. The levels of phosphorylated JAK2 and STAT5 were elevated by Cys. The findings of our study indicate that Cys increases the thickness of growth plates through the upregulation of IGF-I, which results from the phosphorylation of JAK2-STAT5. Thus, our data suggest that Cys may have potential for use as a growth-promoting agent.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, Chungnam 336‑795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130‑701, Republic of Korea
| |
Collapse
|
37
|
Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23:266-74. [PMID: 25450855 PMCID: PMC4304966 DOI: 10.1016/j.joca.2014.11.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Interleukin-1 is one of the inflammatory cytokines elevated after traumatic joint injury that plays a critical role in mediating cartilage tissue degradation, suppressing matrix biosynthesis, and inducing chondrocyte apoptosis, events associated with progression to post-traumatic osteoarthritis (PTOA). We studied the combined use of insulin-like growth factor-1 (IGF-1) and dexamethasone (Dex) to block these multiple degradative effects of cytokine challenge to articular cartilage. METHODS Young bovine and adult human articular cartilage explants were treated with IL-1α in the presence or absence of IGF-1, Dex, or their combination. Loss of sulfated glycosaminoglycans (sGAG) and collagen were evaluated by the DMMB and hydroxyproline assays, respectively. Matrix biosynthesis was measured via radiolabel incorporation, chondrocyte gene expression by qRT-PCR, and cell viability by fluorescence staining. RESULTS In young bovine cartilage, the combination of IGF-1 and Dex significantly inhibited the loss of sGAG and collagen, rescued the suppression of matrix biosynthesis, and inhibited the loss of chondrocyte viability caused by IL-1α treatment. In adult human cartilage, only IGF-1 rescued matrix biosynthesis and only Dex inhibited sGAG loss and improved cell viability. Thus, the combination of IGF-1 + Dex together showed combined beneficial effects in human cartilage. CONCLUSIONS Our findings suggest that the combination of IGF-1 and Dex has greater beneficial effects than either molecule alone in preventing cytokine-mediated cartilage degradation in adult human and young bovine cartilage. Our results support the use of such a combined approach as a potential treatment relevant to early cartilage degradative changes associated with joint injury.
Collapse
|
38
|
Sundström K, Cedervall T, Ohlsson C, Camacho-Hübner C, Sävendahl L. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats. Endocrinology 2014; 155:4798-807. [PMID: 25243853 DOI: 10.1210/en.2014-1160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth-promoting effect of combined therapy with GH and IGF-I in normal rats is not known. We therefore investigated the efficacy of treatment with recombinant human (rh)GH and/or rhIGF-I on longitudinal bone growth and bone mass in intact, prepubertal, female Sprague-Dawley rats. rhGH was injected twice daily sc (5 mg/kg·d) and rhIGF-I continuously infused sc (2.2 or 4.4 mg/kg·d) for 28 days. Longitudinal bone growth was monitored by weekly x-rays of tibiae and nose-anus length measurements, and tibial growth plate histomorphology was analyzed. Bone mass was evaluated by peripheral quantitative computed tomography. In addition, serum levels of IGF-I, rat GH, acid labile subunit, IGF binding protein-3, 150-kDa ternary complex formation, and markers of bone formation and degradation were measured. Monotherapy with rhGH was more effective than rhIGF-I (4.4 mg/kg·d) to increase tibia and nose-anus length, whereas combined therapy did not further increase tibia, or nose-anus, lengths or growth plate height. In contrast, combined rhGH and rhIGF-I (4.4 mg/kg·d) therapy had an additive stimulatory effect on cortical bone mass vs rhGH alone. Combined treatment with rhGH and rhIGF-I resulted in markedly higher serum IGF-I concentrations vs rhGH alone but did not compromise the endogenous secretion of GH. We conclude that rhIGF-I treatment augments cortical bone mass but does not further improve bone growth in rhGH-treated young, intact, female rats.
Collapse
Affiliation(s)
- Katja Sundström
- Pediatric Endocrinology Unit (K.S., T.C., C.C.-H., L.S.), Department of Women's and Children's Health, Karolinska Institutet, SE-17176 Stockholm, Sweden; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
39
|
Cheng X, Chen JL, Ma ZL, Zhang ZL, Lv S, Mai DM, Liu JJ, Chuai M, Lee KKH, Wan C, Yang X. Biphasic influence of dexamethasone exposure on embryonic vertebrate skeleton development. Toxicol Appl Pharmacol 2014; 281:19-29. [DOI: 10.1016/j.taap.2014.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 08/31/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
|
40
|
Muto T, Kokubu T, Mifune Y, Inui A, Harada Y, Yoshifumi, Takase F, Kuroda R, Kurosaka M. Temporary inductions of matrix metalloprotease-3 (MMP-3) expression and cell apoptosis are associated with tendon degeneration or rupture after corticosteroid injection. J Orthop Res 2014; 32:1297-304. [PMID: 24985902 DOI: 10.1002/jor.22681] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
Corticosteroid injections are widely used to treat enthesopathy and tendinitis, but are also associated with possible side effects, such as tendon degeneration or rupture. However, the mechanism of tendon degeneration or rupture after corticosteroid injection remains controversial. The purpose of this study was to reveal the mechanism of tendon degeneration or rupture after injection of triamcinolone acetonide (TA) or prednisolone (PSL). Forty-two rats were divided into 3 groups: A normal saline injection group (control group), a TA injection group, and a PSL injection group; the normal saline or corticosteroid was injected around the Achilles tendon. One or 3 weeks after injection, the tendons were subjected to biomechanical testing and histological analysis. At 1 week, the biomechanical strength was significantly lower in the corticosteroid groups. Histological analysis, at 1-week post-injection, showed collagen attenuation, increased expression of MMP-3 and apoptotic cells in the corticosteroid groups. The histological changes and biomechanical weaknesses of the tendon were not seen at 3 weeks. These alterations appeared to be involved in tendon degeneration or rupture after corticosteroid injection.
Collapse
Affiliation(s)
- Tomoyuki Muto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sederquist B, Fernandez-Vojvodich P, Zaman F, Sävendahl L. Recent research on the growth plate: Impact of inflammatory cytokines on longitudinal bone growth. J Mol Endocrinol 2014; 53:T35-44. [PMID: 24711646 DOI: 10.1530/jme-14-0006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Children with inflammatory diseases usually display abnormal growth patterns as well as delayed puberty. This is a result of several factors related to the disease itself, such as malnutrition, hypercortisolism, and elevated levels of pro-inflammatory cytokines. These factors in combination with glucocorticoid treatment contribute to growth retardation during chronic inflammation by systemically affecting the major regulator of growth, the GH/IGF1 axis. However, recent studies have also shown evidence of a direct effect of these factors at the growth plate level. In conditions of chronic inflammation, pro-inflammatory cytokines are upregulated and released into the circulation. The most abundant of these, tumor necrosis factor α, interleukin 1β (IL1β), and IL6, are all known to directly act on growth plate cartilage to induce apoptosis and thereby suppress bone growth. Both clinical and experimental studies have shown that growth retardation can partly be rescued when these cytokines are blocked. Therefore, therapy modulating the local actions of these cytokines may be effective for preventing growth failure in patients with chronic inflammatory disorders. In this review, we report the current knowledge of inflammatory cytokines and their role in regulating bone growth.
Collapse
Affiliation(s)
- Bettina Sederquist
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Paola Fernandez-Vojvodich
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Farasat Zaman
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, CanadaPediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lars Sävendahl
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Xing W, Hao L, Yang X, Li F, Huo H. Glucocorticoids induce apoptosis by inhibiting microRNA cluster miR‑17‑92 expression in chondrocytic cells. Mol Med Rep 2014; 10:881-6. [PMID: 24859019 DOI: 10.3892/mmr.2014.2253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/06/2014] [Indexed: 11/05/2022] Open
Abstract
Sustained treatment with glucocorticoids (GCs) has frequently been observed to impair skeletal development. However, the influence of GCs on chondrocytes, which have a key role in skeletal development, has been rarely reported. HCS‑2/8 cells were selected as an in vitro model of human chondrocytes to assess the apoptosis induced by GCs and determine the role of the microRNA‑17‑92 (miR‑17‑92) cluster in the regulation of apoptosis. It was demonstrated that dexamethasone (Dex) was able to induce apoptosis and high levels of expression of apoptosis‑associated molecules in HCS‑2/8 chondrocytic cells, and that expression of the miR‑17‑92 cluster was inhibited during Dex‑induced apoptosis. In conclusion, the present study suggested that inhibition of the expression of the miR‑17‑92 cluster contributed to the Dex‑induced apoptosis in chondrocytes. The results suggest that microRNAs have an important role in glucocorticoid‑induced impairment to chondrocytes.
Collapse
Affiliation(s)
- Wenhua Xing
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Lixia Hao
- Department of Rehabilitation, First Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Xuejun Yang
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Feng Li
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| | - Hongjun Huo
- Department of Spinal Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia Autonomous Region 010058, P.R. China
| |
Collapse
|
43
|
Abstract
Inflammatory bowel disease, particularly Crohn's disease (CD), can potentially cause growth failure during childhood as well as a reduction in final adult height. The underlying mechanism is multifactorial and includes poor nutrition, chronic inflammation, and the prolonged use of steroids. Despite major advances in the treatment of CD, current cohorts of children continue to display a deficit in linear growth and may qualify for growth-promoting hormonal therapy. However, currently there is limited evidence to support the use of endocrine therapy directed primarily at improving growth. This review is aimed at summarising the current evidence for growth impairment in inflammatory bowel disease and discusses the rationale for using growth promoting therapy.
Collapse
|
44
|
Zaman F, Chrysis D, Huntjens K, Chagin A, Takigawa M, Fadeel B, Sävendahl L. Dexamethasone differentially regulates Bcl-2 family proteins in human proliferative chondrocytes: role of pro-apoptotic Bid. Toxicol Lett 2013; 224:196-200. [PMID: 24172751 DOI: 10.1016/j.toxlet.2013.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/10/2013] [Accepted: 10/19/2013] [Indexed: 12/27/2022]
Abstract
Glucocorticoids (GCs) are widely used to treat inflammatory diseases and cancers. A multitude of undesired side effects have been reported in GC-treated patients including decreased linear bone growth. We have previously reported that GCs activate the caspase cascade and trigger Bax-mediated mitochondrial apoptosis in growth plate chondrocytes causing growth retardation in young mice. To further explore the role of mitochondrial apoptosis in GC-induced bone growth retardation, a number of pro- and anti-apoptotic proteins were studied in ex vivo cultures of human growth plate cartilage and human HCS-2/8 proliferative chondrocytes exposed to dexamethasone. Dexamethasone was found to increase the pro-apoptotic proteins Bcl-xS, Bad, and Bak as well as the proteolysis of Bid. Anti-Bid small interfering RNA partially rescued the chondrocytes from dexamethasone-induced apoptosis. Taken together, our data suggest that GC treatment differentially regulates Bcl-2 family member proteins to facilitate mitochondrial apoptosis in proliferative chondrocytes thereby contributing to GC-induced bone growth impairment. Prevention of this imbalance between pro- and anti-apoptotic Bcl-2 family proteins may provide a new strategy to protect from adverse effects of GCs on bone growth.
Collapse
Affiliation(s)
- Farasat Zaman
- Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Karolinska Institutet, Stockholm 171 76, Sweden.
| | | | | | | | | | | | | |
Collapse
|
45
|
The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. PLoS One 2013; 8:e72973. [PMID: 23977373 PMCID: PMC3745539 DOI: 10.1371/journal.pone.0072973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.
Collapse
|
46
|
Liu T, Fei Z, Gangavarapu KJ, Agbenowu S, Bhushan A, Lai JCK, Daniels CK, Cao S. Interleukin-6 and JAK2/STAT3 signaling mediate the reversion of dexamethasone resistance after dexamethasone withdrawal in 7TD1 multiple myeloma cells. Leuk Res 2013; 37:1322-8. [PMID: 23871159 DOI: 10.1016/j.leukres.2013.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022]
Abstract
We previously reported the establishment and characteristics of a DXM-resistant cell line (7TD1-DXM) generated from the IL6-dependent mouse B cell hybridoma, 7TD1 cell line. After withdrawing DXM from 7TD1-DXM cells over 90 days, DXM significantly inhibited the cell growth and induced apoptosis in the cells (7TD1-WD) compared with 7TD1-DXM cells. Additionally, IL-6 reversed while IL-6 antibody and AG490 enhanced the effects of growth inhibition and apoptosis induced by DXM in 7TD1-WD cells. Our study demonstrates that 7TD1-DXM cells become resensitized to DXM after DXM withdrawal, and IL-6 and JAK2/STAT3 pathways may regulate the phenomenon.
Collapse
Affiliation(s)
- Tuoen Liu
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The cell-cycle regulators that control meiotic divisions also regulate the events that accompany the oocyte-to-zygote transition. Thus, the meiotic machinery functions as an internal pacemaker that propels the oocyte toward embryogenesis. The preimplantation embryo expresses a number of receptors that are important for initial activity of the phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt/PKB) pathway. The complete PI3K-Akt/PKB-CDK1 cascade is implicated as a key regulator of a number of cellular functions. Selective inhibition of protein kinase B (Akt/PKB) with inhibitor SH6 and cyclin-dependent kinase 1 (CDK1) with inhibitor roscovitine arrest development of the 1-cell preimplantation mouse embryo before entry into the first mitosis. The pronuclei of these inhibited embryos migrate to one another, but do not progress to pronuclei envelope breakdown and pronuclear fusion running immediately before the onset of mitosis. SH6-treated 1-cell mouse embryos showed a high occurrence of apoptosis features (nuclear fragmentation, positive terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), active caspase-3 in both cytoplasm and nucleoplasm). In the Akt/PKB-inhibited embryos, the active phosphorylated form Ser473Akt/PKB was not detected in pronuclear areas when compared with inhibitor-free controls. Although CDK1-inhibited 1-cell embryos also failed to enter into the first mitosis, the presence of apoptotic cell death features was not observed. In the roscovitine-treated embryos, Ser473Akt/PKB was detected in the pronuclei independently of CDK1 activity. We conclude that Akt/PKB plays an important role during entry of the 1-cell mouse embryo into the first mitosis, and probably functions as a relay in the cell-cycle stage. We assume that Akt/PKB is the primary target responsible for mediating anti-apoptotic signals in the 1-cell mouse embryo.
Collapse
|
48
|
Musumeci G, Loreto C, Leonardi R, Castorina S, Giunta S, Carnazza ML, Trovato FM, Pichler K, Weinberg AM. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J Bone Miner Metab 2013; 31:274-84. [PMID: 23263781 DOI: 10.1007/s00774-012-0414-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/28/2012] [Indexed: 12/26/2022]
Abstract
Glucocorticoids are considered the most powerful anti-inflammatory and immunomodulating drugs. However, a number of side-effects are well documented in different diseases, including articular cartilage, where increases or decreases in the synthesis of hormone-dependent extracellular matrix components are seen. The objective of this study has been to test the effects of procedures or drugs affecting bone metabolism on articular cartilage in rats with prednisolone-induced osteoporosis and to evaluate the outcomes of physical activity with treadmill and vibration platform training on articular cartilage. The animals were divided into 5 groups, and bone and cartilage evaluations were performed using whole-body scans and histomorphometric analysis. Lubricin and caspase-3 expression were evaluated by immunohistochemistry, Western blot analysis and biochemical analysis. These results confirm the beneficial effect of physical activity on the articular cartilage. The effects of drug therapy with glucocorticoids decrease the expression of lubricin and increase the expression of caspase-3 in the rats, while after physical activity the values return to normal compared to the control group. Our findings suggest that it might be possible that mechanical stimulation in the articular cartilage could induce the expression of lubricin, which is capable of inhibiting caspase-3 activity, preventing chondrocyte death. We can assume that the physiologic balance between lubricin and caspase-3 could maintain the integrity of cartilage. Therefore, in certain diseases such as osteoporosis, mechanical stimulation could be a possible therapeutic treatment. With our results we can propose the hypothesis that physical activity could also be used as a therapeutic treatment for cartilage disease such as osteoarthritis.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Bio-Medical Sciences, Human Anatomy and Histology Section, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells 2013; 2:202-23. [PMID: 24709697 PMCID: PMC3972684 DOI: 10.3390/cells2020202] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022] Open
Abstract
First described for their metabolic and immunosuppressive effects, glucocorticoids are widely prescribed in clinical settings of inflammation. However, glucocorticoids are also potent inducers of apoptosis in many cell types and tissues. This review will focus on the established mechanisms of glucocorticoid-induced apoptosis and outline what is known about the apoptotic response in cells and tissues of the body after exposure to glucocorticoids. Glucocorticoid-induced apoptosis affects the skeletal system, muscular system, circulatory system, nervous system, endocrine system, reproductive system, and the immune system. Interestingly, several cell types have an anti-apoptotic response to glucocorticoids that is cytoprotective. Lastly, we will discuss the pro- and anti-apoptotic effects of glucocorticoids in cancers and their clinical implications.
Collapse
Affiliation(s)
- Amanda L Gruver-Yates
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
50
|
Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats. Toxicol Appl Pharmacol 2013; 269:25-33. [PMID: 23454400 DOI: 10.1016/j.taap.2013.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 02/13/2013] [Accepted: 02/16/2013] [Indexed: 11/21/2022]
Abstract
Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis.
Collapse
|