1
|
Levene I, Fewtrell M, Quigley MA, O'Brien F. The relationship of milk expression pattern and lactation outcomes after very premature birth: A cohort study. PLoS One 2024; 19:e0307522. [PMID: 39074108 DOI: 10.1371/journal.pone.0307522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION Mothers of very premature infants often have difficulties expressing breastmilk, which can cause distress and potential negative impact on infant health. Clinical recommendations on breastmilk expression are extrapolated from term infants' breastfeeding patterns. This study's objective was to analyse the association of expressing pattern with lactation outcomes after very premature birth. METHODS 132 participants were recruited after birth between 23+0 and 31+6 weeks' gestation. Participants recorded the milk expressed in several 24-hour periods in the three weeks after birth. RESULTS Expressing frequency was positively associated with 24-hour milk yield, with an adjusted 30.5g increase per expressing session on day four (95% CI 15.7 to 45.3) and 94.4g on day 21 (95% CI 62.7 to 126.2). Expressing ≥8 times per day was associated with higher adjusted milk yield than expressing <6 times (on day four, 146.8g, 95% CI 47.4 to 246.1), but not in comparison to expressing 6-7 times (on day four, 82.1g, 95% CI -25.9 to 190.1). Participants with six months or more prior breastmilk feeding experience had a higher adjusted milk yield than others (on day four, 204.3g, 95% CI 125.2 to 283.3). Night-time (2300-0700 hours) expressing sessions were not associated with increased milk yield after adjustment for time since the prior session. On average, participants who had a longest gap between expressions of less than six hours achieved the UK target of 750g breastmilk, whereas those with a longer gap did not. CONCLUSION Expressing frequency was an important determinant of milk yield. Clinical recommendations to express ≥8 times per day were supported but for some, 6-7 times was sufficient. This was particularly likely for those with six months or more of prior breastmilk feeding experience. A need to express during the night-time hours appeared to be related to minimising the gap between expressions rather than an inherent value of night-time expression.
Collapse
Affiliation(s)
- Ilana Levene
- Nuffield Department of Public Health, National Perinatal Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Mary Fewtrell
- Institute of Child Health, University College London, London, United Kingdom
| | - Maria A Quigley
- Nuffield Department of Public Health, National Perinatal Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Frances O'Brien
- Newborn Care, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
2
|
Banks CM, Trott JF, Hovey RC. The prolactin receptor: A cross-species comparison of gene structure, transcriptional regulation, tissue-specificity, and genetic variation. J Neuroendocrinol 2024; 36:e13385. [PMID: 38586906 DOI: 10.1111/jne.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/25/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
The conserved and multifaceted functions of prolactin (PRL) are coordinated through varied distribution and expression of its cell-surface receptor (PRLR) across a range of tissues and physiological states. The resultant heterogeneous expression of PRLR mRNA and protein across different organs and cell types supports a wide range of PRL-regulated processes including reproduction, lactation, development, and homeostasis. Genetic variation within the PRLR gene also accounts for several phenotypes impacting agricultural production and human pathology. The goal of this review is to highlight the many elements that control differential expression of the PRLR across tissues, and the various phenotypes that exist across species due to variation in the PRLR gene.
Collapse
Affiliation(s)
- Carmen M Banks
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Josephine F Trott
- Department of Animal Science, University of California, Davis, Davis, California, USA
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Farrar VS, Morales Gallardo J, Calisi RM. Prior parental experience attenuates hormonal stress responses and alters hippocampal glucocorticoid receptors in biparental rock doves. J Exp Biol 2022; 225:285344. [PMID: 36448917 DOI: 10.1242/jeb.244820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
In the face of challenges, animals must balance investments in reproductive effort versus their own survival. Physiologically, this trade-off may be mediated by glucocorticoid release by the hypothalamic-pituitary-adrenal axis and prolactin release from the pituitary to maintain parental care. The degree to which animals react to and recover from stressors likely affects maintenance of parental behavior and, ultimately, fitness. However, less is known about how gaining parental experience may alter hormonal stress responses and their underlying neuroendocrine mechanisms. To address this gap, we measured the corticosterone (CORT) and prolactin (PRL) stress response in individuals of both sexes of the biparental rock dove (Columba livia) that had never raised chicks versus birds that had fledged at least one chick. We measured both CORT and PRL at baseline and after an acute stressor (30 min restraint). We also measured negative feedback ability by administering dexamethasone, a synthetic glucocorticoid that suppresses CORT release, and measured CORT and PRL after 60 min. All hormones were measured when birds were not actively nesting to assess whether effects of parental experience extend beyond the breeding bout. Experienced birds had lower stress-induced and negative-feedback CORT, and higher stress-induced PRL than inexperienced birds. In a separate experiment, we measured glucocorticoid receptor subtype expression in the hippocampus, a key site of negative feedback regulation. Experienced birds showed higher glucocorticoid receptor expression than inexperienced controls, which may mediate their ability to attenuate CORT release. Together, these results shed light on potential mechanisms by which gaining experience may improve parental performance and fitness.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Jaime Morales Gallardo
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Farrar VS, Ramirez AV, Calisi RM. Effects of Parental Experience and Age On Expression of Prolactin, Vasoactive Intestinal Peptide and Their Receptors in a Biparental Bird (Columba Livia). Integr Comp Biol 2022; 62:30-40. [PMID: 35438167 DOI: 10.1093/icb/icac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As animals gain parental experience, they often show more rapid and efficient parental care responses that likely improve offspring survival and fitness. Changes in circulating hormones that underlie reproductive behaviors, including prolactin, have been found to correlate with parental experience in birds and mammals. Altered responsiveness to prolactin in key behavioral centers of the brain may also underlie the effects of experience on parental behaviors. Further, experience may also affect responsiveness to prolactin stimulatory hormones, such as hypothalamic vasoactive intestinal peptide (VIP). While experience has been shown to upregulate neural prolactin receptors and responsiveness in rodents, its effects on prolactin receptor gene expression remain unstudied in birds. To address this, we examined gene expression of pituitary prolactin, hypothalamic prolactin receptors in the preoptic area, hypothalamic VIP, and pituitary VIP receptors in both sexes of the biparental rock dove (Columba livia) when birds were not actively nesting. As age and parental experience are often confounded (i.e.,experienced parents tend to be older than their inexperienced counterparts), we measured gene expression in birds of varying combinations of age (0.6-3 years) and prior reproductive experience (0-12 chicks raised). We found that increasing experience with chicks correlated with lower PRLR expression in the preoptic area, and age correlated with lower VIP expression in birds of both sexes. Pituitary PRL and VIPR expression was not associated with parental experience or age. These results suggest there may be persistent effects of experience and age on neural responsiveness to, and regulation of, prolactin in birds.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Alison V Ramirez
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| |
Collapse
|
5
|
Decoding signaling pathways involved in prolactin-induced neuroprotection: A review. Front Neuroendocrinol 2021; 61:100913. [PMID: 33766566 DOI: 10.1016/j.yfrne.2021.100913] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022]
Abstract
It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.
Collapse
|
6
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
7
|
Salais-López H, Abellán-Álvaro M, Bellés M, Lanuza E, Agustin-Pavon C, Martínez-García F. Maternal Motivation: Exploring the Roles of Prolactin and Pup Stimuli. Neuroendocrinology 2021; 111:805-830. [PMID: 32645699 DOI: 10.1159/000510038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022]
Abstract
Motherhood entails increased motivation for pups, which become strong reinforcers and guide maternal behaviours. This depends on steroids and lactogens acting on the brain of females during pregnancy and postpartum. Since virgin female mice exposed to pups are nearly spontaneously maternal, the specific roles of endocrine and pup-derived signals in the induction of maternal motivation remain unclear. This work investigates maternal motivation in dams and virgin female mice, using a novel variant of the pup retrieval paradigm, the motivated pup retrieval test. We also analyse the role of prolactin (PRL) and of stimuli derived from a litter of pups and its mother, in the acquisition of maternal motivation. Experimental design included female mice in 3 conditions: lactating dams, comothers (virgins housed and sharing pup care with dams) and pup-naïve virgins. Females underwent 3 motivated-pup-retrieval trials, with pups displaced behind a 10-cm-high wire-mesh barrier. Dams retrieved with significantly lower latencies than comothers or virgins, indicating that full maternal motivation appears only after pregnancy. Although initially comothers and virgins showed no retrieval, comothers significantly improved throughout the experiment, suggesting an induced sensitization process. Lengthening exposure of comothers to the dyad pups-dam (from 2 to 5 days at the beginning of testing) had no strong effects on maternal sensitization. PRL responsiveness was analysed in these animals using immunohistochemical detection of phosphorylated signal transducer and activator of transcription 5 (pSTAT5, PRL-derived signalling marker). As expected, dams showed significantly higher pSTAT5 expression in most of the analysed nuclei. Moreover, comothers displayed significantly higher PRL responsiveness than pup-naïve virgins in the medial preoptic nucleus, even if they display similar circulating PRL levels, which are significantly lower than those of dams. Given the instrumental role of this nucleus in the relay and integration of pup-derived stimuli to facilitate proactive maternal responses, this increase in PRL responsiveness likely reflects the mechanism underlying the maternal sensitization process reported in this work. Since the analyses of maternal motivation and PRL signalling in the brain were performed in the same animals, we were able to explore correlation between both set of data. The results shed light on the neuroendocrine mechanisms underlying maternal motivation and other aspects of maternal behaviour.
Collapse
Affiliation(s)
- Hugo Salais-López
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - María Abellán-Álvaro
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - María Bellés
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain
| | - Enrique Lanuza
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Carmen Agustin-Pavon
- Research Unit in Functional Neuroanatomy, Departament de Biologia Cellular, Funcional i Antropologia Física, Universitat de València, Burjassot, Spain
| | - Fernando Martínez-García
- Research Unit in Functional Neuroanatomy, Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain,
| |
Collapse
|
8
|
Mating in the absence of fertilization promotes a growth-reproduction versus lifespan trade-off in female mice. Proc Natl Acad Sci U S A 2020; 117:15748-15754. [PMID: 32571943 DOI: 10.1073/pnas.2003159117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trade-offs between growth, reproduction, and lifespan constrain animal life histories, leading to evolutionary diversification of life history cycles in different environments. In female mammals, gestation and lactation are expected to impose the major costs of reproduction, driving reproductive trade-offs, although mating also requires interactions with males that could themselves influence life history. Here we show that a male's presence by itself leads to lifelong alterations in life history in female mice. Housing C57BL/6J female mice with sterilized males early in life led to an increase in body weight, an effect that persisted across life even when females were later allowed to produce pups. We found that those females previously housed with sterile males also showed enhanced late-life offspring production when allowed to reproduce, indicating that earlier mating can influence subsequent fecundity. This effect was the opposite to that seen in females previously housed with intact males, which showed the expected trade-off between early-life and late-life reproduction. However, housing with a sterile male early in life came at a cost to lifespan, which was observed in the absence of females ever undergoing fertilization. Endocrinologically, mating also permanently reduced the concentration of circulating prolactin, a pituitary hormone influencing maternal care. Changes in hormone axes that influence reproduction could therefore help alter life history allocation in response to opposite-sex stimuli. Our results demonstrate that mating itself can increase growth and subsequent fecundity in mammals, and that responses to sexual stimuli could account for some lifespan trade-offs normally attributed to pregnancy and lactation.
Collapse
|
9
|
Bridges RS. The behavioral neuroendocrinology of maternal behavior: Past accomplishments and future directions. Horm Behav 2020; 120:104662. [PMID: 31927023 PMCID: PMC7117973 DOI: 10.1016/j.yhbeh.2019.104662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
Research on the neuroendocrine-endocrine-neural regulation of maternal behavior has made significant progress the past 50 years. In this mini-review progress during this period has been divided into five stages. These stages consist of advances in the identification of endocrine factors that mediate maternal care, the characterization of the neural basis of maternal behavior with reference to endocrine actions, the impact of developmental and experiential states on maternal care, the dynamic neuroplastic maternal brain, and genes and motherhood. A final section concludes with a discussion of future directions in the field of the neurobiology/neuroendocrinology of motherhood.
Collapse
Affiliation(s)
- Robert S Bridges
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
10
|
Teixeira PDS, Wasinski F, Lima LB, Frazão R, Bittencourt JC, Donato J. Regulation and neurochemical identity of melanin-concentrating hormone neurones in the preoptic area of lactating mice. J Neuroendocrinol 2020; 32:e12818. [PMID: 31782183 DOI: 10.1111/jne.12818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Neurones expressing the melanin-concentrating hormone (MCH) can be found in the medial preoptic area (mPOA) and ventral aspects of the periventricular preoptic nucleus of rats by mid-to-late lactation and this expression disappears after weaning. The transitory expression of MCH in the preoptic area suggests a role for these neurones in the control of the end of lactation. However, the neurochemical identity of mPOA MCH neurones and the regulatory factors that control the transient MCH expression remain largely unknown, especially in the mouse. In the present study, we showed that mice also present the transitory expression of MCH in the mPOA at late lactation. mPOA MCH cells did not colocalise significantly with markers of GABAergic (VGAT), glutamatergic (VGLUT2 and VGLUT3) or dopaminergic (tyrosine hydroxylase) neurones. mPOA MCH cells also did not express Kiss1 or oxytocin. By contrast, approximately 70% and 90% of mPOA MCH neurones colocalised with oestrogen receptor α and prolactin-induced phosphorylated signal transducer and activator of transcription 5 (STAT5), respectively. Finally, we demonstrated that the number of MCH neurones in the mPOA is significantly higher in females during the first lactation, compared to mice on the second lactation or pregnant mice during the first lactation or brain-specific STAT5 knockout mice during the first lactation. In summary, our findings indicate that MCH neurones in the mPOA of lactating mice are sensitive to oestrogens and prolactin. Thus, mPOA MCH expression is possibly influenced by hormonal variations. Furthermore, the STAT5 signalling pathway is likely involved in the regulation of MCH expression in the mPOA of lactating mice.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro B Lima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Frazão
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Ladyman SR, Hackwell ECR, Brown RSE. The role of prolactin in co-ordinating fertility and metabolic adaptations during reproduction. Neuropharmacology 2019; 167:107911. [PMID: 32058177 DOI: 10.1016/j.neuropharm.2019.107911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
Mammalian pregnancy and lactation is accompanied by a period of infertility that takes place in the midst of a sustained increase in food intake. Indeed, successful reproduction in females is dependent on co-ordination of the distinct systems that regulate reproduction and metabolism. Rather than arising from different mechanisms during pregnancy and lactation, we propose that elevations in lactogenic hormones (predominant among these being prolactin and the placental lactogens), are ideally placed to influence both of these systems at the appropriate time. We review the literature examining the impacts of lactogens on fertility and energy homeostasis in the virgin state, during pregnancy and lactation and potential long-term impacts of reproductive experience. Taken together, the literature indicates that duration and pattern of lactogen exposure is a vital factor in the ability of these hormones to alter reproduction and food intake. Transient increases in prolactin, as typically seen in healthy virgin females and males, are unable to exert lasting impacts. Importantly, both suppression of fertility and increased food intake are only observed following exposure to chronically-elevated levels of lactogens. Physiologically, the only time this pattern of lactogenic secretion is maintained in the healthy female is during pregnancy and lactation, when co-ordination between these regulatory systems emerges. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Eleni C R Hackwell
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
12
|
Teixeira PDS, Ramos-Lobo AM, Furigo IC, Donato J. Brain STAT5 Modulates Long-Term Metabolic and Epigenetic Changes Induced by Pregnancy and Lactation in Female Mice. Endocrinology 2019; 160:2903-2917. [PMID: 31599926 DOI: 10.1210/en.2019-00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Several metabolic and behavioral adaptations that emerge during pregnancy remain present after weaning. Thus, reproductive experience causes long-lasting metabolic programming, particularly in the brain. However, the isolate effects of pregnancy or lactation and the molecular mechanisms involved in these long-term modifications are currently unknown. In the current study, we investigated the role of brain signal transducer and activator of transcription-5 (STAT5), a key transcription factor recruited by hormones highly secreted during gestation or lactation, for the long-term adaptations induced by reproductive experience. In control mice, pregnancy followed by lactation led to increased body adiposity and reduced ambulatory activity later in life. Additionally, pregnancy+lactation induced long-term epigenetic modifications in the brain: we observed upregulation in hypothalamic expression of histone deacetylases and reduced numbers of neurons with histone H3 acetylation in the paraventricular, arcuate, and ventromedial nuclei. Remarkably, brain-specific STAT5 ablation prevented all metabolic and epigenetic changes observed in reproductively experienced control female mice. Nonetheless, brain-specific STAT5 knockout (KO) mice that had the experience of pregnancy but did not lactate showed increased body weight and reduced energy expenditure later in life, whereas pregnancy KO and pregnancy+lactation KO mice exhibited improved insulin sensitivity compared with virgin KO mice. In summary, lactation is necessary for the long-lasting metabolic effects observed in reproductively experienced female mice. In addition, epigenetic mechanisms involving histone acetylation in neuronal populations related to energy balance regulation are possibly associated with these long-term consequences. Finally, our findings highlighted the key role played by brain STAT5 signaling for the chronic metabolic and epigenetic changes induced by pregnancy and lactation.
Collapse
Affiliation(s)
- Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Angela M Ramos-Lobo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Isadora C Furigo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Yonekura S, Ohata M, Tsuchiya M, Tokita H, Mizusawa M, Tokutake Y. Peg1/Mest, an imprinted gene, is involved in mammary gland maturation. J Cell Physiol 2019; 234:1080-1087. [PMID: 30144363 DOI: 10.1002/jcp.27219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
Imprinted genes, which are specific to mammals, play important roles in cell proliferation, differentiation, ontogeny, and other phenomena. Moreover, these genes are considered crucial in the research of mammalian evolution. In the current study, we investigated the association between the expression of paternally imprinted gene paternally expressed 1/mesoderm-specific transcript (Peg1/Mest) and the maturation of the mammary gland. Quantitative real-time polymerase chain reaction analysis of Peg1/Mest gene expression at different stages of mouse mammary gland maturation revealed that its expression increased during gestation but decreased during lactation. Immunohistochemical staining demonstrated that Peg1/Mest was expressed in mammary epithelial cells. We measured expression levels of Peg1/Mest and E-cadherin during mammary alveoli formation using immunofluorescence staining a cell model for mammary alveoli formation in a 3D culture system. We found that the onset of E-cadherin expression roughly coincided with the peak of Peg1/Mest expression. Moreover, we discovered that the formation and proliferation of alveoli were suppressed in Peg1/Mest knockdown mammary epithelial cells. These results suggest that Peg1/Mest plays a certain role in mammary alveoli formation. To clarify the role of Peg1/Mest in the lactogenic differentiation of mammary epithelial cells, we examined the lactogenic differentiation capability of Peg1/Mest-overexpressing HC11 cells. Application of a differentiation-inducing stimulus did not increase β-casein expression in Peg1/Mest-overexpressing HC11 cells. The current study for the first time reports the involvement of an imprinted gene in mammary gland maturation.
Collapse
Affiliation(s)
- Shinichi Yonekura
- Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Masaki Ohata
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Megumi Tsuchiya
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Hitomi Tokita
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Moeko Mizusawa
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| | - Yukako Tokutake
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
14
|
Takabatake M, Daino K, Imaoka T, Blyth BJ, Kokubo T, Nishimura Y, Showler K, Hosoki A, Moriyama H, Nishimura M, Kakinuma S, Fukushi M, Shimada Y. Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Sci Rep 2018; 8:14325. [PMID: 30254198 PMCID: PMC6156598 DOI: 10.1038/s41598-018-32406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
Radiation exposure during the peri-pubertal period is a proven risk factor for breast cancer, whereas parity is an established protective factor. The present study investigated whether parity imposes differential protective effects against radiation-induced rat mammary carcinoma depending on the age at exposure. Pre- and post-pubertal female rats, irradiated or left unirradiated, were mated and allowed to nurse until weaning or left unmated. Appearance of mammary tumors was monitored, and serum concentrations of estradiol and progesterone were measured following weaning. Carcinomas were evaluated by immunohistochemistry for estrogen receptor, progesterone receptor, and the cell proliferation marker Ki-67. Parity reduced the risk of carcinoma in unirradiated and pre-pubertally irradiated rats but not post-pubertally irradiated rats. Although radiation exposure increased serum progesterone level, parity after pre-pubertal exposure significantly decreased the elevated progesterone to a normal level, reflecting a protective effect. Moreover, parity significantly decreased the proportion of hormone receptor-positive carcinomas after pre-pubertal exposure. Parity was also related to the observed positive association between progesterone receptor and Ki-67 indices in cancer tissue, implying progesterone receptor-dependent cell proliferation. Thus, parity protects against radiation-induced rat mammary carcinogenesis depending on the age at exposure; the mechanisms may involve changes in hormone levels and cancer tissue.
Collapse
Affiliation(s)
- Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan.
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan.
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan
| | - Benjamin J Blyth
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Toshiaki Kokubo
- Department of Engineering and Safety, NIRS, QST, Chiba, 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
| | - Kaye Showler
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan
- Department of Radiology, The Jikei University Hospital, Tokyo, 105-8471, Japan
| | - Ayaka Hosoki
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
- Healios K.K. Kobe Research Institute, Kobe, 650-0047, Japan
| | - Hitomi Moriyama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, 263-8555, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan
| | - Yoshiya Shimada
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, 116-8551, Japan.
- Executive Director, QST, Chiba, 263-8555, Japan.
| |
Collapse
|
15
|
Cabrera-Reyes EA, Limón-Morales O, Rivero-Segura NA, Camacho-Arroyo I, Cerbón M. Prolactin function and putative expression in the brain. Endocrine 2017. [PMID: 28634745 DOI: 10.1007/s12020-017-1346-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Prolactin is a peptide hormone mainly synthetized and secreted by the anterior pituitary gland, but also by extrapituitary tissues, such as mammary gland, decidua, prostate, skin, and possibly the brain. Similarly, prolactin receptor is expressed in the pituitary gland, many peripheral tissues, and in contrast to prolactin, its receptor has been consistently detected in several brain regions, such as cerebral cortex, olfactory bulb, hypothalamus, hippocampus, amygdala, among others. Classically, prolactin function has been related to the stimulation of lactogenesis and galactopoiesis, however, it is well known that prolactin induces a wide range of functions in different brain areas. PURPOSE The aim of this review is to summarize recent reports on prolactin and prolactin receptor synthesis and localization, as well as recapitulate both the classic functions attributed to this hormone in the brain and the recently described functions such as neurogenesis, neurodevelopment, sleep, learning and memory, and neuroprotection. CONCLUSION The distribution and putative expression of prolactin and its receptors in several neuronal tissues suggests that this hormone has pleiotropic functions in the brain.
Collapse
Affiliation(s)
- Erika Alejandra Cabrera-Reyes
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ofelia Limón-Morales
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Nadia Alejandra Rivero-Segura
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico.
| |
Collapse
|
16
|
Pennacchio GE, Neira FJ, Soaje M, Jahn GA, Valdez SR. Effect of hyperthyroidism on circulating prolactin and hypothalamic expression of tyrosine hydroxylase, prolactin signaling cascade members and estrogen and progesterone receptors during late pregnancy and lactation in the rat. Mol Cell Endocrinol 2017; 442:40-50. [PMID: 27919641 DOI: 10.1016/j.mce.2016.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 11/18/2022]
Abstract
Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth.
Collapse
Affiliation(s)
- Gisela E Pennacchio
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Flavia J Neira
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina
| | - Marta Soaje
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Graciela A Jahn
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina
| | - Susana R Valdez
- Laboratorio de Reproducción y Lactancia, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
17
|
González-Mariscal G, Melo AI. Bidirectional Effects of Mother-Young Contact on the Maternal and Neonatal Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:97-116. [PMID: 29080023 DOI: 10.1007/978-3-319-62817-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptive plasticity occurs intensely during the early postnatal period through processes like proliferation, migration, differentiation, synaptogenesis, myelination and apoptosis. Exposure to particular stimuli during this critical period has long-lasting effects on cognition, stress reactivity and behavior. Maternal care is the main source of social, sensory and chemical stimulation to the young and is, therefore, critical to "fine-tune" the offspring's neural development. Mothers providing a low quantity or quality of stimulation produce offspring that will exhibit reduced cognitive performance, impaired social affiliation and increased agonistic behaviors. Transgenerational transmission of such traits occurs epigenetically, i.e., through mechanisms like DNA methylation and post-translational modification of nucleosomal histones, processes that silence or increase gene expression without affecting the DNA sequence. Reciprocally, providing maternal care profoundly affects the behavior, learning, memory and fine neuroanatomy of the adult female. Such effects are in many cases permanent and sometimes they involve the hormones of pregnancy and lactation. The above evidence supports the idea that the mother-young dyad exerts profound and permanent effects on the brains of both adult and developing organisms, respectively. Effects on the latter can be explained by the neural developmental processes taking place during the early postnatal period. In contrast, little is known about the mechanisms mediating the plasticity of the adult maternal brain. The bidirectional effects that mother and young exert on each other's brains exemplify a remarkable plasticity of this organ for organizing itself and provide an immense source of variability for adaptation and evolution in mammals.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico.
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico
| |
Collapse
|
18
|
Furigo IC, Ramos-Lobo AM, Frazão R, Donato J. Brain STAT5 signaling and behavioral control. Mol Cell Endocrinol 2016; 438:70-76. [PMID: 27118133 DOI: 10.1016/j.mce.2016.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
Several growth factors and cytokines recruit the signal transducer and activator of transcription 5 (STAT5) signaling pathway to control cell proliferation, differentiation and apoptosis. Nonetheless, the importance of this transcription factor for brain functions is still poorly understood. Because some STAT5-inducing hormones, such as prolactin and leptin, act in the brain to regulate the expression of motivated behaviors, this signaling pathway is likely involved in behavioral modulation. Therefore, the objective of the present review was to summarize and discuss the available data regarding the possible role of central STAT5 signaling in the regulation of brain functions, especially on behavioral control. We discussed studies that investigated the importance of STAT5 signaling in the regulation of maternal and feeding behaviors. Additionally, we highlighted other behaviors that could be potentially affected by STAT5 signaling. This knowledge may help to understand how motivated behaviors are regulated at the cellular level.
Collapse
Affiliation(s)
- Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - J Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
19
|
Buonfiglio DC, Ramos-Lobo AM, Freitas VM, Zampieri TT, Nagaishi VS, Magalhães M, Cipolla-Neto J, Cella N, Donato J. Obesity impairs lactation performance in mice by inducing prolactin resistance. Sci Rep 2016; 6:22421. [PMID: 26926925 PMCID: PMC4772384 DOI: 10.1038/srep22421] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/15/2016] [Indexed: 12/30/2022] Open
Abstract
Obesity reduces breastfeeding success and lactation performance in women. However, the mechanisms involved are not entirely understood. In the present study, female C57BL/6 mice were chronically exposed to a high-fat diet to induce obesity and subsequently exhibited impaired offspring viability (only 15% survival rate), milk production (33% reduction), mammopoiesis (one-third of the glandular area compared to control animals) and postpartum maternal behaviors (higher latency to retrieving and grouping the pups). Reproductive experience attenuated these defects. Diet-induced obese mice exhibited high basal pSTAT5 levels in the mammary tissue and hypothalamus, and an acute prolactin stimulus was unable to further increase pSTAT5 levels above basal levels. In contrast, genetically obese leptin-deficient females showed normal prolactin responsiveness. Additionally, we identified the expression of leptin receptors specifically in basal/myoepithelial cells of the mouse mammary gland. Finally, high-fat diet females exhibited altered mRNA levels of ERBB4 and NRG1, suggesting that obesity may involve disturbances to mammary gland paracrine circuits that are critical in the control of luminal progenitor function and lactation. In summary, our findings indicate that high leptin levels are a possible cause of the peripheral and central prolactin resistance observed in obese mice which leads to impaired lactation performance.
Collapse
Affiliation(s)
- Daniella C Buonfiglio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Thais T Zampieri
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vanessa S Nagaishi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Magna Magalhães
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Nathalie Cella
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
20
|
Wonch KE, de Medeiros CB, Barrett JA, Dudin A, Cunningham WA, Hall GB, Steiner M, Fleming AS. Postpartum depression and brain response to infants: Differential amygdala response and connectivity. Soc Neurosci 2016; 11:600-17. [DOI: 10.1080/17470919.2015.1131193] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Pereira M, Ferreira A. Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Horm Behav 2016; 77:72-85. [PMID: 26296592 DOI: 10.1016/j.yhbeh.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Parental Care". Becoming a parent is arguably the most profound transforming experience in life. It is also inherently very emotionally and physically demanding, such that the reciprocal interaction with the young changes the brain and behavior of the parents. In this review, we examine the neurobiological mechanisms of parenting primarily discussing recent research findings in rodents and primates, especially humans. We argue that it is essential to consider parenting within a conceptual framework that recognizes the dynamics of the reciprocal mother-young relationship, including both the complexity and neuroplasticity of its underlying mechanisms. Converging research suggests that the concerted activity of a distributed network of subcortical and cortical brain structures regulates different key aspects of parenting, including the sensory analysis of infant stimuli as well as motivational, affective and cognitive processes. The interplay among these processes depends on the action of various neurotransmitters and hormones that modulate the timely and coordinated execution of caregiving responses of the maternal circuitry exquisitely attuned to the young's affect, needs and developmental stage. We conclude with a summary and a set of questions that may guide future research.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, USA.
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
22
|
Bridges RS. Long-term alterations in neural and endocrine processes induced by motherhood in mammals. Horm Behav 2016; 77:193-203. [PMID: 26388065 PMCID: PMC4724454 DOI: 10.1016/j.yhbeh.2015.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 01/23/2023]
Abstract
This article is part of a Special Issue "Parental Care". The reproductive experience of pregnancy, lactation and motherhood can significantly remodel the female's biological state, affecting endocrine, neuroendocrine, neural, and immunological processes. The brain, pituitary gland, liver, thymus, and mammary tissue are among the structures that are modified by reproductive experience. The present review that focuses on rodent research, but also includes pertinent studies in sheep and other species, identifies specific changes in these processes brought about by the biological states of pregnancy, parturition, and lactation and how the components of reproductive experience contribute to the remodeling of the maternal brain and organ systems. Findings indicate that prior parity alters key circulating hormone levels and neural receptor gene expression. Moreover, reproductive experience results in modifications in neural processes and glial support. The possible role of pregnancy-induced neurogenesis is considered in the context of neuroplasticity and behavior, and the effects of reproductive experience on maternal memory, i.e. the retention of maternal behavior, together with anxiety and learning are presented. Together, these sets of findings support the concept that the neural and biological state of the adult female is significantly and dramatically altered on a long-term basis by the experiences of parity and motherhood. Remodeling of the maternal brain and other biological systems is posited to help facilitate adaptations to environmental/ecological challenges as the female raises young and ages.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA.
| |
Collapse
|
23
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
24
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
25
|
Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 2015; 36:178-96. [PMID: 25500107 PMCID: PMC4342279 DOI: 10.1016/j.yfrne.2014.11.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/31/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The expression of maternal behavior in mammals is regulated by the developmental and experiential events over a female's lifetime. In this review the relationships between the endocrine and neural systems that play key roles in these developmental and experiential processes that affect both the establishment and maintenance of maternal care are presented. The involvement of the hormones estrogen, progesterone, and lactogens are discussed in the context of ligand, receptor, and gene activity in rodents and to a lesser extent in higher mammals. The roles of neuroendocrine factors, including oxytocin, vasopressin, classical neurotransmitters, and other neural gene products that regulate aspects of maternal care are set forth, and the interactions of hormones with central nervous system mediators of maternal behavior are discussed. The impact of prior developmental factors, including epigenetic events, and maternal experience on subsequent maternal care are assessed over the course of the female's lifespan. It is proposed that common neuroendocrine mechanisms underlie the regulation of maternal care in mammals.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Neuroscience and Reproductive Biology Section, Tufts University - Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
26
|
Dobolyi A, Grattan DR, Stolzenberg DS. Preoptic inputs and mechanisms that regulate maternal responsiveness. J Neuroendocrinol 2014; 26:627-40. [PMID: 25059569 DOI: 10.1111/jne.12185] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/16/2022]
Abstract
The preoptic area is a well-established centre for the control of maternal behaviour. An intact medial preoptic area (mPOA) is required for maternal responsiveness because lesion of the area abolishes maternal behaviours. Although hormonal changes in the peripartum period contribute to the initiation of maternal responsiveness, inputs from pups are required for its maintenance. Neurones are activated in different parts of the mPOA in response to pup exposure. In the present review, we summarise the potential inputs to the mPOA of rodent dams from the litter that can activate mPOA neurones. The roles of potential indirect effects through increased prolactin levels, as well as neuronal inputs to the preoptic area, are described. Recent results on the pathway mediating the effects of suckling to the mPOA suggest that neurones containing the neuropeptide tuberoinfundibular peptide of 39 residues in the posterior thalamus are candidates for conveying the suckling information to the mPOA. Although the molecular mechanism through which these inputs alter mPOA neurones to support the maintenance of maternal responding is not yet known, altered gene expression is a likely candidate. Here, we summarise gene expression changes in the mPOA that have been linked to maternal behaviour and explore the idea that chromatin remodelling during mother-infant interactions mediates the long-term alterations in gene expression that sustain maternal responding.
Collapse
Affiliation(s)
- A Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, NAP-Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
27
|
|
28
|
Byrnes EM, Casey K, Carini LM, Bridges RS. Reproductive experience alters neural and behavioural responses to acute oestrogen receptor α activation. J Neuroendocrinol 2013; 25:1280-1289. [PMID: 24118285 PMCID: PMC4269101 DOI: 10.1111/jne.12113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/04/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023]
Abstract
Reproductive experience (i.e. parturition and lactation) leads to persistent alterations in anxiety-like behaviour that are influenced by the oestrous cycle. We recently found that repeated administration of the selective oestrogen receptors (ER)α agonist propyl-pyrazole triol (PPT) results in anxiolytic-like behaviours on the elevated plus maze (EPM) in primiparous (but not nulliparous) female rats. The present study examined the effects of the acute administration of PPT on EPM behaviour in primiparous and aged-matched, nulliparous female rats. In addition, corticosterone secretion, corticotrophin-releasing hormone (CRH) gene expression and expression of the immediate early gene product Fos in the paraventricular nucleus (PVN) and amygdala were measured either after EPM testing or in home cage controls. Acute PPT administration significantly modified EPM behaviour as a function of reproductive experience, with nulliparous females tending toward increased anxiety-like behaviours and primiparous females tending toward decreased anxiety-like behaviours. In home cage controls, PPT increased corticosterone secretion in all females; however, both vehicle- and PPT-treated, primiparous females had reduced corticosterone levels compared to their nulliparous counterparts. Significant effects of PPT on CRH mRNA within the PVN were observed after the administration of PPT but only in primiparous females tested on the EPM. PPT also increased Fos expression within the PVN of EPM-exposed females; however, both vehicle- and PPT-treated primiparous females had reduced Fos expression compared to nulliparous females. In the amygdala, PPT increased Fos immunoreactivity in the central but not the medial or basolateral amygdala, although these effects were only observed in home cage females. Additionally, both vehicle- and PPT-treated home cage, primiparous females had increased Fos in the central nucleus of the amygdala compared to nulliparous controls. Overall, these data demonstrate that reproductive experience alters the behavioural response to acute ERα activation. Moreover, the findings suggest that central regulation of the hypothalamic-adrenal-pituitary axis is modified as a consequence of reproductive experience.
Collapse
Affiliation(s)
- E M Byrnes
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - K Casey
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - L M Carini
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - R S Bridges
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA, USA
| |
Collapse
|
29
|
Carvalho-Freitas MIR, Anselmo-Franci JA, Palermo-Neto J, Felicio LF. Prior reproductive experience alters prolactin-induced macrophage responses in pregnant rats. J Reprod Immunol 2013; 99:54-61. [DOI: 10.1016/j.jri.2013.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/26/2022]
|
30
|
Woller MJ, Sosa ME, Chiang Y, Prudom SL, Keelty P, Moore JE, Ziegler TE. Differential hypothalamic secretion of neurocrines in male common marmosets: parental experience effects? J Neuroendocrinol 2012; 24:413-21. [PMID: 22070606 PMCID: PMC3288632 DOI: 10.1111/j.1365-2826.2011.02252.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pregnancy and lactation produce a plethora of hormonal changes in females that promote maternal care of offspring. Males in the biparental marmoset species (Callithrix jacchus) demonstrate high levels of parenting behaviour and express enhanced circulating reproductive hormones. Furthermore, these hormonal changes are influenced by paternal experience. To determine whether the paternally experienced male marmoset has altered neurocrine hypothalamic release, as the maternal females does, we examined the release of several reproductive neurocrines, dopamine (DA), oxytocin (OT), vasopressin (AVP) and prolactin (PRL), in cultured explants of the hypothalamus of paternally experienced male marmosets compared to naïve, paternally inexperienced males. DA levels secreted from the isolated hypothalamus were significantly lower in the experienced males, whereas OT and PRL levels were significantly higher than levels found in inexperienced males. PRL levels decreased rapidly in the hypothalamic media, suggesting that PRL production occurs elsewhere. AVP levels did not change. Stimulation of the cultured explants with oestradiol significantly decreased DA levels in the inexperienced males but did not alter the other neurocrines, suggesting a direct effect of oestradiol on DA suppression in the hypothalamus. Although other factors such as age and rearing experience with siblings may play a role in hypothalamic neurocrine levels, these results demonstrate that paternal experience may impact upon the secretion of neurocrines in a male biparental primate.
Collapse
Affiliation(s)
- Michael J. Woller
- Department of Biology, University of Wisconsin-Whitewater, Madison WI, 53715, USA
| | - Megan E. Sosa
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison WI, 53715, USA
| | - Yun Chiang
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison WI, 53715, USA
| | - Shelley L. Prudom
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison WI, 53715, USA
| | | | - Jason E. Moore
- Department of Biology, University of Wisconsin-Whitewater, Madison WI, 53715, USA
| | - Toni E. Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison WI, 53715, USA
| |
Collapse
|
31
|
Hodson DJ, Schaeffer M, Romanò N, Fontanaud P, Lafont C, Birkenstock J, Molino F, Christian H, Lockey J, Carmignac D, Fernandez-Fuente M, Le Tissier P, Mollard P. Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat Commun 2012; 3:605. [PMID: 22215080 PMCID: PMC3272579 DOI: 10.1038/ncomms1612] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 11/24/2011] [Indexed: 11/09/2022] Open
Abstract
Experience-dependent plasticity of cell and tissue function is critical for survival by allowing organisms to dynamically adjust physiological processes in response to changing or harsh environmental conditions. Despite the conferred evolutionary advantage, it remains unknown whether emergent experience-dependent properties are present in cell populations organized as networks within endocrine tissues involved in regulating body-wide homeostasis. Here we show, using lactation to repeatedly activate a specific endocrine cell network in situ in the mammalian pituitary, that templates of prior demand are permanently stored through stimulus-evoked alterations to the extent and strength of cell–cell connectivity. Strikingly, following repeat stimulation, evolved population behaviour leads to improved tissue output. As such, long-lasting experience-dependent plasticity is an important feature of endocrine cell networks and underlies functional adaptation of hormone release. Experience-dependent plasticity and functional adaptation are thought to be restricted to the central nervous and immune systems. This study shows that long-lasting experience-dependent plasticity is a key feature of endocrine cell networks, allowing improved tissue function and hormone output following repeat demand.
Collapse
Affiliation(s)
- David J Hodson
- CNRS, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier F-34000, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Franssen CL, Bardi M, Shea EA, Hampton JE, Franssen RA, Kinsley CH, Lambert KG. Fatherhood alters behavioural and neural responsiveness in a spatial task. J Neuroendocrinol 2011; 23:1177-87. [PMID: 21933288 DOI: 10.1111/j.1365-2826.2011.02225.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hormones and experiences of pregnancy, parturition and lactation have been shown to dramatically remodel the female rat's hippocampus, potentially enhancing behaviours critical for meeting the increased demands of motherhood. Previous work in our laboratory has also suggested that pup exposure, apart from pregnancy and lactation, constitutes an important influence on ancillary maternal behaviour (e.g. foraging behaviour). In the present study, we press the parental model further by examining the effect of pup exposure on the hippocampus of males from a biparental mouse species, the California mice (Peromyscus californicus). Males were either Fathers (i.e. first-time fathers housed with a female from mating until 7 days after parturition), pup-exposed virgins (PEV; i.e. sexually naïve males briefly exposed to pups daily for 7 days) or Virgins (i.e. never exposed to females or pups). A dry-land maze (DLM), as used for assessing spatial learning, was employed to determine the foraging abilities of the males. The results indicated that, on the most challenging day of testing (i.e. acquisition day), California mouse Fathers demonstrated superior memory for the task compared to PEVs and Virgins. In addition to the behavioural data, significantly more fos-immunoreactivity was observed in the CA1, CA3 and dentate gyrus regions of the hippocampi of Fathers than PEVs or Virgins in response to the probe trial. Additionally, a trend for altered performance on the DLM was observed in the PEVs on the last day of testing, which was accompanied by the highest levels of nestin-immunoreactivity, an indicant of neuroplasticity, of the three groups. In summary, these data suggest that, in accordance with previous observations of maternal rats, the paternal brain is similarly influenced by parental experience, as demonstrated by accompanying modifications to relevant neurobiological and behavioural responses.
Collapse
Affiliation(s)
- C L Franssen
- Department of Psychology, Randolph-Macon College, Ashland, VA 23005, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Wong JHK, Brummelte S, Galea LAM. Elevated corticosterone levels during the first postpartum period influence subsequent pregnancy outcomes and behaviours of the dam. J Neuroendocrinol 2011; 23:1156-65. [PMID: 21623960 DOI: 10.1111/j.1365-2826.2011.02169.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Postpartum depression affects 15% of new mothers and previous depressive episodes increase the risk for postpartum depression. Chronic administration of corticosterone (CORT) to dams during the postpartum period causes depressive-like behaviour and has been used as a model of postpartum depression. To better understand the subsequent progress of this model, we examined whether there were persistent effects of CORT treatment during the dam's first postpartum period on maternal care and mood following a subsequent pregnancy. Sprague-Dawley female rats received either sesame oil (control) or CORT (40 mg/kg) injections for 22 days during their first postpartum period. Subsequently, all females were re-mated for a second time and neither group received treatment during the second postpartum period. Maternal care was observed from days 2-8 of each postpartum period and dams were tested in the forced-swim test on days 21 and 22 of the first and days 4 and 21 of the second postpartum period. As expected, the amount of time spent immobile in the forced-swim test was increased in CORT dams at the end of the first postpartum period; however, the amount of time spent immobile was decreased at the end of the second postpartum period relative to oil dams. Furthermore, dams treated with CORT in first postpartum period gave birth to a smaller litter with a larger male/female sex ratio after their second pregnancy. This implies that elevated stress hormone levels during the first postpartum period have a substantial influence on subsequent postpartum behaviour and litter characteristics. Further investigations are necessary to fully understand the effect of parity, experience during first motherhood, and hypothalamic-pituitary-adrenal axis regulation on postpartum depression.
Collapse
Affiliation(s)
- J H K Wong
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
34
|
Lambert KG, Franssen CL, Bardi M, Hampton JE, Hainley L, Karsner S, Tu EB, Hyer MM, Crockett A, Baranova A, Ferguson T, Ferguson T, Kinsley CH. Characteristic neurobiological patterns differentiate paternal responsiveness in two Peromyscus species. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:159-75. [PMID: 21546770 DOI: 10.1159/000326054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022]
Abstract
Rodent paternal models provide unique opportunities to investigate the emergence of affiliative social behavior in mammals. Using biparental and uniparental Peromyscus species (californicus and maniculatus, respectively) we assessed paternal responsiveness by exposing males to biological offspring, unrelated conspecific pups, or familiar brothers following a 24-hour separation. The putative paternal circuit we investigated included brain areas involved in fear/anxiety [cingulate cortex (Cg), medial amygdala (MeA), paraventricular nucleus of the hypothalamus (PVN), and lateral septum (LS)], parental motivation [medial preoptic area (MPOA)], learning/behavioral plasticity (hippocampus), olfaction [pyriform cortex (PC)], and social rewards (nucleus accumbens). Paternal experience in californicus males reduced fos immunoreactivity (ir) in several fear/anxiety areas; additionally, all californicus groups exhibited decreased fos-ir in the PC. Enhanced arginine vasopressin (AVP) and oxytocin (OT)-ir cell bodies and fibers, as well as increased neuronal restructuring in the hippocampus, were also observed in californicus mice. Multidimensional scaling analyses revealed distinct brain activation profiles differentiating californicus biological fathers, pup-exposed virgins, and pup-naïve virgins. Specifically, associations among MPOA fos, CA1 fos, dentate gyrus GFAP, CA2 nestin-, and PVN OT-ir characterized biological fathers; LS fos-, Cg fos-, and AVP-ir characterized pup-exposed virgins, and PC-, PVN-, and MeA fos-ir characterized pup-naïve virgins. Thus, whereas fear/anxiety areas characterized pup-naïve males, neurobiological factors involved in more diverse functions such as learning, motivation, and nurturing responses characterized fatherhood in biparental californicus mice. Less distinct paternal-dependent activation patterns were observed in uniparental maniculatus mice. These data suggest that dual neurobiological circuits, leading to the inhibition of social-dependent anxiety as well as the activation of affiliative responses, characterize the transition from nonpaternal to paternal status in californicus mice.
Collapse
Affiliation(s)
- Kelly G Lambert
- Department of Psychology, Randolph-Macon College, Ashland, Va., USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sjoeholm A, Bridges RS, Grattan DR, Anderson GM. Region-, neuron-, and signaling pathway-specific increases in prolactin responsiveness in reproductively experienced female rats. Endocrinology 2011; 152:1979-88. [PMID: 21363933 PMCID: PMC3075931 DOI: 10.1210/en.2010-1220] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pregnancy and lactation cause long-lasting enhancements in maternal behavior and other physiological functions, along with increased hypothalamic prolactin receptor expression. To directly test whether reproductive experience increases prolactin responsiveness in the arcuate, paraventricular, and supraoptic nuclei and the medial preoptic area, female rats experienced a full pregnancy and lactation or remained as age-matched virgin controls. At 5 wk after weaning, rats received 2.5, 100, or 4000 ng ovine prolactin or vehicle intracerebroventricularly. The brains underwent immunohistochemistry for the phosphorylated forms of signal transducer and activator of transcription 5 (pSTAT5) or ERK1/2 (pERK1/2). There was a marked increase in pSTAT5 and pERK1/2 in response to prolactin in the regions examined in both virgin and primiparous rats. Primiparous rats exhibited approximately double the number of prolactin-induced pSTAT5-immunoreactive cells as virgins, this effect being most apparent at the higher prolactin doses in the medial preoptic area and paraventricular and supraoptic nuclei and at the lowest prolactin dose in the arcuate nucleus. Dual-label immunohistochemistry showed that arcuate kisspeptin (but not oxytocin or dopamine) neurons displayed increased sensitivity to prolactin in reproductively experienced animals; these neurons may contribute to the reduction in prolactin concentration observed after reproductive experience. There was no effect of reproductive experience on prolactin-induced pERK1/2, indicating a selective effect on the STAT5 pathway. These data show that STAT5 responsiveness to prolactin is enhanced by reproductive experience in multiple hypothalamic regions. The findings may have significant implications for understanding postpartum disorders affecting maternal care and other prolactin-associated pathologies.
Collapse
Affiliation(s)
- Annika Sjoeholm
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | |
Collapse
|
36
|
Bridges RS, Scanlan VF, Lee JO, Byrnes EM. Reproductive experience alters prolactin receptor expression in mammary and hepatic tissues in female rats. Biol Reprod 2011; 85:340-6. [PMID: 21508351 DOI: 10.1095/biolreprod.111.091918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Recent studies have reported that reproductive experience in female rats alters prolactin (PRL) receptor gene expression in the brain as well as neural sensitivity to PRL. Given PRL's actions in nonneural tissues, that is, mammary tissue and liver, it was asked whether reproductive experience may also alter prolactin receptor (Prlr) gene expression in these tissues. Groups of age-matched female rats were generated with varying reproductive histories. Separate groups of primiparous (first lactation) and multiparous (second lactation) had mammary tissue and liver samples collected on Day 3 or 10 of lactation. A fifth group raised one litter to weaning and then resumed estrous cyclicity. This group and a final group of age-matched, virgin controls were killed on diestrus. Tissue was processed by quantitative PCR for expression rates of the long and short forms of Prlr mRNA as well as casein beta mRNA (mammary tissue only). Western blots were performed to quantify receptor protein content. Multiple lactations as well as lactation itself resulted in alterations in Prlr expression. Prlr gene expression in mammary tissue was increased in primiparous mothers compared with that in multiparous dams, whereas in the liver, Prlr expression was reduced during an initial lactation. In contrast, PRLR protein levels declined during lactation in mammary, but not hepatic, tissues. Overall, the results demonstrate that the prolactin receptor system is altered in nonneural tissues as a result of the female's reproductive history. The findings are discussed in the context of milk and bile production and PRL's possible role in breast cancer.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | | | | | | |
Collapse
|
37
|
Carvalho-Freitas MIR, Anselmo-Franci JA, Maiorka PC, Palermo-Neto J, Felicio LF. Prolactin differentially modulates the macrophage activity of lactating rats: possible role of reproductive experience. J Reprod Immunol 2011; 89:38-45. [DOI: 10.1016/j.jri.2010.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/17/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
|
38
|
Heidinger BJ, Chastel O, Nisbet ICT, Ketterson ED. Mellowing with age: older parents are less responsive to a stressor in a long-lived seabird. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01733.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Brown RS, Kokay IC, Herbison AE, Grattan DR. Distribution of prolactin-responsive neurons in the mouse forebrain. J Comp Neurol 2010; 518:92-102. [DOI: 10.1002/cne.22208] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Circulating prolactin, MPOA prolactin receptor expression and maternal aggression in lactating rats. Behav Brain Res 2008; 197:97-102. [PMID: 18765257 DOI: 10.1016/j.bbr.2008.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 08/04/2008] [Accepted: 08/06/2008] [Indexed: 11/24/2022]
Abstract
Maternal aggression is most intense in lactating rats from the 3rd to the 12th day postpartum. The purpose of this study was to determine if plasma prolactin (PRL) and prolactin receptor (PRL-R(L)) mRNA expression in the medial preoptic area (MPOA) of lactating rats are altered in association with maternal aggression. Lactating Sprague Dawley rats were divided into five groups and exposed for 10 min to an intruder male or to an object on postpartum day 8. Trunk blood and the brain of the dams were collected 30 or 240 min after exposure and from a non-exposed group. Lower levels of prolactin were found 30 min after the aggression test. No change was detected in the number of cells expressing PRL-R(L) mRNA by in situ hybridization histochemistry (ISHH) as a function of testing. However, the correlation between plasma PRL and PRL-R(L) mRNA expression in the mothers changed from positive in control females to negative in intruder exposed animals. These data support the concept that a maternal aggressive experience, while acutely altering PRL secretion, fails to affect PRL-R(L) mRNA expression.
Collapse
|
41
|
Sibolboro Mezzacappa E, Endicott J. Parity mediates the association between infant feeding method and maternal depressive symptoms in the postpartum. Arch Womens Ment Health 2008; 10:259-66. [PMID: 18040595 DOI: 10.1007/s00737-007-0207-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 09/16/2007] [Indexed: 01/31/2023]
Abstract
Maternal depression is the most common complication of the postpartum, having devastating and long lasting effects on mother and infant. Lactation is associated with attenuated stress responses, especially that of cortisol, and the lactogenic hormones, oxytocin and prolactin, are associated with anti-depressant and anxiolytic effects. These associations suggest that breast-feeding may decrease maternal depressive symptoms, yet empirical results have been conflicting. Recent findings have indicated that parity may mediate the association between breast-feeding and stress response. Because a decreased stress response is associated with a decreased risk for depression, parity may also mediate the association between infant feeding method and depressive symptoms. Specifically, the benefits of breast-feeding may appear in multiparous but not primiparous mothers. In the present study, data drawn from a national sample of primiparous and multiparous mothers were examined for possible associations between infant feeding method and depressive symptoms, as assessed by the Center for Epidemiological Survey-Depression scale (CES-D). After controlling for several possible confounding variables, breast-feeding by multiparas was associated with significantly decreased odds of having depression compared with bottle-feeders (OR = 0.41, CI 0.19-0.87, p = 0.02); however, no risk reduction from breast-feeding was evident among primiparas. The results support a parity-mediated association between lactation and maternal depressive symptoms. The results provide a reason for earlier conflicting findings, present new research avenues, and suggest possible clinical approaches.
Collapse
Affiliation(s)
- E Sibolboro Mezzacappa
- Behavioral Medicine Program, Department of Psychiatry, Columbia University Medical Center, New York, NY, USA.
| | | |
Collapse
|
42
|
Anderson GM, Kieser DC, Steyn FJ, Grattan DR. Hypothalamic prolactin receptor messenger ribonucleic acid levels, prolactin signaling, and hyperprolactinemic inhibition of pulsatile luteinizing hormone secretion are dependent on estradiol. Endocrinology 2008; 149:1562-70. [PMID: 18162529 DOI: 10.1210/en.2007-0867] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperprolactinemia can reduce fertility and libido. Although central prolactin actions are thought to contribute to this, the mechanisms are poorly understood. We first tested whether chronic hyperprolactinemia inhibited two neuroendocrine parameters necessary for female fertility: pulsatile LH secretion and the estrogen-induced LH surge. Chronic hyperprolactinemia induced by the dopamine antagonist sulpiride caused a 40% reduction LH pulse frequency in ovariectomized rats, but only in the presence of chronic low levels of estradiol. Sulpiride did not affect the magnitude of a steroid-induced LH surge or the percentage of GnRH neurons activated during the surge. Estradiol is known to influence expression of the long form of prolactin receptors (PRL-R) and components of prolactin's signaling pathway. To test the hypothesis that estrogen increases PRL-R expression and sensitivity to prolactin, we next demonstrated that estradiol greatly augments prolactin-induced STAT5 activation. Lastly, we measured PRL-R and suppressor of cytokine signaling (SOCS-1 and -3 and CIS, which reflect the level of prolactin signaling) mRNAs in response to sulpiride and estradiol. Sulpiride induced only SOCS-1 in the medial preoptic area, where GnRH neurons are regulated, but in the arcuate nucleus and choroid plexus, PRL-R, SOCS-3, and CIS mRNA levels were also induced. Estradiol enhanced these effects on SOCS-3 and CIS. Interestingly, estradiol also induced PRL-R, SOCS-3, and CIS mRNA levels independently. These data show that GnRH pulse frequency is inhibited by chronic hyperprolactinemia in a steroid-dependent manner. They also provide evidence for estradiol-dependent and brain region-specific regulation of PRL-R expression and signaling responses by prolactin.
Collapse
Affiliation(s)
- Greg M Anderson
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| | | | | | | |
Collapse
|