1
|
Effects of iodine excess on serum thyrotropin-releasing hormone levels and type 2 deiodinase in the hypothalamus of Wistar rats. Br J Nutr 2022; 127:1631-1638. [PMID: 34250878 DOI: 10.1017/s0007114521002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iodine is an important element in thyroid hormone biosynthesis. Thyroid function is regulated by the hypothalamic-pituitary-thyroid axis. Excessive iodine leads to elevated thyroid-stimulating hormone (TSH) levels, but the mechanism is not yet clear. Type 2 deiodinase (Dio2) is a Se-containing protease that plays a vital role in thyroid function. The purpose of this study was to explore the role of hypothalamus Dio2 in regulating TSH increase caused by excessive iodine and to determine the effects of iodine excess on thyrotropin-releasing hormone (TRH) levels. Male Wistar rats were randomised into five groups and administered different iodine dosages (folds of physiological dose): normal iodine, 3-fold iodine, 6-fold iodine, 10-fold iodine and 50-fold iodine. Rats were euthanised at 4, 8, 12 or 24 weeks after iodine administration. Serum TRH, TSH, total thyroxine (TT4) and total triiodothyronine (TT3) were determined. Hypothalamus tissues were frozen and sectioned to evaluate the expression of Dio2, Dio2 activity and monocarboxylate transporter 8 (MCT8). Prolonged high iodine intake significantly increased TSH expression (P < 0·05) but did not affect TT3 and TT4 levels. Prolonged high iodine intake decreased serum TRH levels in the hypothalamus (P < 0·05). Dio2 expression and activity in the hypothalamus exhibited an increasing trend compared at each time point with increasing iodine intake (P < 0·05). Hypothalamic MCT8 expression was increased in rats with prolonged high iodine intake (P < 0·05). These results indicate that iodine excess affects the levels of Dio2, TRH and MCT8 in the hypothalamus.
Collapse
|
2
|
Gaouaoui-Azouaou H, L'Homme B, Benadjaoud MA, Sache-Aloui A, Granger R, Voyer F, Lestaevel P, Gruel G, Caire-Maurisier F, Crambes C, Dare-Doyen S, Benderitter M, Souidi M. Protection and safety of a repeated dosage of KI for iodine thyroid blocking during pregnancy. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011512. [PMID: 34700314 DOI: 10.1088/1361-6498/ac336e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In case of nuclear power plant accidents resulting in the release of radioactive iodine (131I) in large amounts, a single intake of stable iodine is recommended in order to prevent131I fixation to the thyroid gland. However, in situations of prolonged exposure to131I (e.g. Fukushima-Daiichi natural and nuclear disaster), repetitive administration of iodine may be necessary to ensure adequate protection, with acceptable safety in vulnerable populations including pregnant women. Here we conducted toxicological studies on adult rats progeny following prolonged exposure to potassium iodide (KI)in utero. Pregnant Wistar rats were treated with 1 mg kg d-1KI or saline water for 2 or 4 d either between gestation days gestational day (GD) GD 9-12, or GD13-16. Plasma samples from the progeny were tested 30 d post-weaning for clinical biochemistry, thyroid hormones, and anti-thyroid antibody levels. Thyroid and brain were collected for gene expression analysis. The hormonal status was similar for the mothers in all experimental conditions. In the offspring, while thyroid-stimulating hormone and anti-thyroid peroxidase (anti-TPO) antibody levels were similar in all groups, a significant increase of FT3 and FT4 levels was observed in GD9-GD10 and in GD13-GD14 animals treated for 2 d, respectively. In addition, FT4 levels were mildly decreased in 4 d treated GD13-16 individuals. Moreover, a significant decrease in the expression level of thyroid genes involved in iodide metabolism, TPO and apical iodide transporter, was observed in GD13-GD14 animals treated for 2 d. We conclude that repeated KI administration for 2-4 d during gestation did not induce strong thyroid toxicity.
Collapse
Affiliation(s)
- Hayat Gaouaoui-Azouaou
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Bruno L'Homme
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Mohamed Amine Benadjaoud
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Amandine Sache-Aloui
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Romain Granger
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Frederic Voyer
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Gaëtan Gruel
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - François Caire-Maurisier
- Pharmacie Centrale des Armées, Direction des Approvisionnement en produits de santé des armées, 45404 Fleury-les Aubrais, France
| | - Caroline Crambes
- Pharmacie Centrale des Armées, Direction des Approvisionnement en produits de santé des armées, 45404 Fleury-les Aubrais, France
| | - Stephanie Dare-Doyen
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de radioprotection et de sûreté Nucléaire (IRSN), PSE-SANTE, 92290 Fontenay-aux-Roses, France
| |
Collapse
|
3
|
Li L, Ying YX, Liang J, Geng HF, Zhang QY, Zhang CR, Chen FX, Li Y, Feng Y, Wang Y, Song HD. Urinary Iodine and Genetic Predisposition to Hashimoto's Thyroiditis in a Chinese Han Population: A Case-Control Study. Thyroid 2020; 30:1820-1830. [PMID: 32746755 DOI: 10.1089/thy.2020.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: We aimed to examine the association of urinary iodine concentration with Hashimoto's thyroiditis (HT) risk, and particularly, to investigate whether the HT-related genetic variations might modify the effects of urinary iodine on HT in the Chinese Han population. Methods: We conducted a case-control study with 1723 Chinese (731 cases, 992 controls). The associations between urinary iodine concentration and HT risk were analyzed using logistic regression models. The effects of interactions between the genetic risk scores (GRSs) and urinary iodine on HT risk were assessed by including the respective interaction terms in the models. We also applied restricted cubic spline regression to estimate the possible nonlinear relationship. The multinomial logistic regression models were performed to determine the associations of urinary iodine with euthyroid-HT and hypothyroidism-HT. Results: After controlling for potential confounders, the odds of HT increased with increasing quartiles of urinary iodine concentration: adjusted odds ratios (ORs) and 95% confidence intervals [CIs] were 1.45 [1.06-1.99], 1.66 [1.17-2.34], and 2.07 [1.38-3.10] for the quartiles 2, 3, and 4, respectively, compared with the first quartile (p for trend <0.001). Multivariable restricted cubic spline regression analysis further demonstrated that there was a near-linear association between urinary iodine concentration and HT risk (p-overall <0.001; p-nonlinear = 0.074). However, we did not find significant interactions between urinary iodine and GRSs on the risk of HT (all p for interaction >0.05). Interestingly, we found that each increment of urinary iodine was associated with a more than twofold increase in the odds of hypothyroidism-HT (adjusted OR = 2.64 [CI = 1.73-4.05]), but not with euthyroid-HT (p > 0.05). Conclusions: Higher urinary iodine concentration was associated with increased risk of HT, and this association was near linear, indicating that increased urinary iodine has a continuous and graded impact on HT risk. Moreover, the iodine-HT association was not modified by genetic predisposition to HT. Interestingly, urinary iodine concentration was significantly associated with increased risk of hypothyroidism.
Collapse
Affiliation(s)
- Lu Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Ying-Xia Ying
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, the Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Hou-Fa Geng
- Department of Endocrinology, the Central Hospital of Xuzhou, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Chang-Run Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Fu-Xiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Yan Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Lebsir D, Manens L, Grison S, Lestaevel P, Ebrahimian T, Suhard D, Phan G, Dublineau I, Tack K, Benderitter M, Pech A, Jourdain JR, Souidi M. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat. Mol Cell Endocrinol 2018; 474:119-126. [PMID: 29496566 DOI: 10.1016/j.mce.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. METHODS Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. RESULTS hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). CONCLUSION we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones.
Collapse
Affiliation(s)
- Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Line Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Stephane Grison
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Teni Ebrahimian
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Isabelle Dublineau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Annick Pech
- Pharmacie centrale des armées, Direction des Approvisionnement en produits de Santé des Armées, 45000 Orléans, France
| | - Jean-Rene Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France.
| |
Collapse
|
5
|
Rong S, Gao Y, Yang Y, Shao H, Okekunle AP, Lv C, Du Y, Sun H, Jiang Y, Darko GM, Sun D. Nitric oxide is involved in the hypothyroidism with significant morphology changes in female Wistar rats induced by chronic exposure to high water iodine from potassium iodate. CHEMOSPHERE 2018; 206:320-329. [PMID: 29754056 DOI: 10.1016/j.chemosphere.2018.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies indicated that chronic exposure to high water iodine is associated with primary hypothyroidism (PH) and subclinical hypothyroidism (SCH). However, the mechanism is not well understood. In this study, we explored whether chronic exposure to high water iodine from potassium iodate (KIO3) can induce hypothyroidism in addition to determining if nitric oxide (NO) is involved in the pathogenesis. 96 female Wistar rats were divided into six groups: control, I1000μg/L, I3000μg/L, I6000μg/L, N-nitro-L-arginine methylester (L-NAME) and L-NAME+I6000μg/L. After 3 months, urine iodine concentration, thyroid hormone, NO and nitric oxide synthase (NOS) serum levels were determined. Additionally, thyroid expression of inducible nitric oxide synthase (iNOS) was also investigated. Thyroid morphology was observed under light microscopy and transmission electron microscope. SCH as indicated by elevated serum thyrotropin (TSH) was induced among rats exposed to 3000 μg/L I-, while rats treated with 6000 μg/L I- presented PH characterized by elevated TSH and lowered total thyroxine in serum. Moreover, serum NO, NOS and iNOS expression in the thyroid were significantly increased in I3000μg/L and I6000μg/L groups. Changes in thyroid function and morphology in the L-NAME+I6000μg/L group were extenuated compared to I6000μg/L group. These findings suggested that chronic exposure to high water iodine from KIO3 likely induces hypothyroidism with significant morphology changes in female Wistar rats and NO appears to be involved in the pathogenesis.
Collapse
Affiliation(s)
- Shengzhong Rong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hanwen Shao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yang Du
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Gottfried M Darko
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
6
|
Patel U, Gingerich A, Widman L, Sarr D, Tripp RA, Rada B. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PLoS One 2018; 13:e0199167. [PMID: 30044776 PMCID: PMC6059396 DOI: 10.1371/journal.pone.0199167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/03/2022] Open
Abstract
Lactoperoxidase (LPO) is an enzyme found in several exocrine secretions including the airway surface liquid producing antimicrobial substances from mainly halide and pseudohalide substrates. Although the innate immune function of LPO has been documented against several microbes, a detailed characterization of its mechanism of action against influenza viruses is still missing. Our aim was to study the antiviral effect and substrate specificity of LPO to inactivate influenza viruses using a cell-free experimental system. Inactivation of different influenza virus strains was measured in vitro system containing LPO, its substrates, thiocyanate (SCN-) or iodide (I-), and the hydrogen peroxide (H2O2)-producing system, glucose and glucose oxidase (GO). Physiologically relevant concentrations of the components of the LPO/H2O2/(SCN-/I-) antimicrobial system were exposed to twelve different strains of influenza A and B viruses in vitro and viral inactivation was assessed by determining plaque-forming units of non-inactivated viruses using Madin-Darby canine kidney cells (MDCK) cells. Our data show that LPO is capable of inactivating all influenza virus strains tested: H1N1, H1N2 and H3N2 influenza A viruses (IAV) and influenza B viruses (IBV) of both, Yamagata and Victoria lineages. The extent of viral inactivation, however, varied among the strains and was in part dependent on the LPO substrate. Inactivation of H1N1 and H1N2 viruses by LPO showed no substrate preference, whereas H3N2 influenza strains were inactivated significantly more efficiently when iodide, not thiocyanate, was the LPO substrate. Although LPO-mediated inactivation of the influenza B strains tested was strain-dependent, it showed slight preference towards thiocyanate as the substrate. The results presented here show that the LPO/H2O2/(SCN-/I-) cell-free, in vitro experimental system is a functional tool to study the specificity, efficiency and the molecular mechanism of action of influenza inactivation by LPO. These studies tested the hypothesis that influenza strains are all susceptible to the LPO-based antiviral system but exhibit differences in their substrate specificities. We propose that a LPO-based antiviral system is an important contributor to anti-influenza virus defense of the airways.
Collapse
Affiliation(s)
- Urmi Patel
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Aaron Gingerich
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Lauren Widman
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Demba Sarr
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Balázs Rada
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
McLachlan SM, Aliesky HA, Rapoport B. Aberrant Iodine Autoregulation Induces Hypothyroidism in a Mouse Strain in the Absence of Thyroid Autoimmunity. J Endocr Soc 2018; 2:63-76. [PMID: 29379895 PMCID: PMC5779109 DOI: 10.1210/js.2017-00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 11/19/2022] Open
Abstract
We investigated factors underlying the varying effects of a high dietary iodide intake on serum T4 levels in a wide spectrum of mouse strains, including thyroiditis-susceptible NOD.H2h4, NOD.H2k, and NOD mice, as well as other strains (BALB/c, C57BL/6, NOD.Lc7, and B10.A4R) not previously investigated. Mice were maintained for up to 8 months on control or iodide-supplemented water (NaI 0.05%). On iodized water, serum T4 was reduced in BALB/c (males and females) in association with colloid goiters but was not significantly changed in mice that developed thyroiditis, namely NOD.H2h4 (males and females) or male NOD.H2k mice. Neither goiters nor decreased T4 developed in C57BL/6, NOD, NOD.Lc7, or B10.A4R female mice. In further studies, we focused on males in the BALB/c and NOD.H2h4 strains that demonstrated a large divergence in the T4 response to excess iodide. Excess iodide ingestion increased serum TSH levels to the same extent in both strains, yet thyroidal sodium iodide symporter (NIS) messenger RNA (mRNA) levels (quantitative polymerase chain reaction) revealed greatly divergent responses. NOD.H2h4 mice that remained euthyroid displayed a physiological NIS iodine autoregulatory response, whereas NIS mRNA was inappropriately elevated in BALB/c mice that became hypothyroid. Thus, autoimmune thyroiditis-prone NOD.H2h4 mice adapted normally to a high iodide intake, presumably by escape from the Wolff-Chaikoff block. In contrast, BALB/c mice that did not spontaneously develop thyroiditis failed to escape from this block and became hypothyroid. These data in mice may provide insight into the mechanism by which iodide-induced hypothyroidism occurs in some humans without an underlying thyroid disorder.
Collapse
Affiliation(s)
- Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California 90048
- UCLA School of Medicine, Los Angeles, California 90095
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California 90048
| | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, California 90048
- UCLA School of Medicine, Los Angeles, California 90095
| |
Collapse
|
8
|
Serrano-Nascimento C, Salgueiro RB, Vitzel KF, Pantaleão T, Corrêa da Costa VM, Nunes MT. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocr Connect 2017; 6:510-521. [PMID: 28814477 PMCID: PMC5597975 DOI: 10.1530/ec-17-0106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus-pituitary-thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Pantaleão
- Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Tereza Nunes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Calil-Silveira J, Serrano-Nascimento C, Laconca RC, Schmiedecke L, Salgueiro RB, Kondo AK, Nunes MT. Underlying Mechanisms of Pituitary-Thyroid Axis Function Disruption by Chronic Iodine Excess in Rats. Thyroid 2016; 26:1488-1498. [PMID: 27461375 DOI: 10.1089/thy.2015.0338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Iodine is essential for thyroid hormone synthesis and is an important regulator of thyroid function. Chronic iodine deficiency leads to hypothyroidism, but iodine excess also impairs thyroid function causing hyperthyroidism, hypothyroidism, and/or thyroiditis. This study aimed to investigate the underlying mechanisms by which exposure to chronic iodine excess impairs pituitary-thyroid axis function. METHODS Male Wistar rats were treated for two months with NaI (0.05% and 0.005%) or NaI+NaClO4 (0.05%) dissolved in drinking water. Hormone levels, gene expression, and thyroid morphology were analyzed later. RESULTS NaI-treated rats presented high levels of iodine in urine, increased serum thyrotropin levels, slightly decreased serum thyroxine/triiodothyronine levels, and a decreased expression of the sodium-iodide symporter, thyrotropin receptor, and thyroperoxidase mRNA and protein, suggesting a primary thyroid dysfunction. In contrast, thyroglobulin and pendrin mRNA and protein content were increased. Kidney and liver deiodinase type 1 mRNA expression was decreased in iodine-treated rats. Morphological studies showed larger thyroid follicles with higher amounts of colloid and increased amounts of connective tissue in the thyroid of iodine-treated animals. All these effects were prevented when perchlorate treatment was combined with iodine excess. CONCLUSIONS The present data reinforce and add novel findings about the disruption of thyroid gland function and the compensatory action of increased thyrotropin levels in iodine-exposed animals. Moreover, they draw attention to the fact that iodine intake should be carefully monitored, since both deficient and excessive ingestion of this trace element may induce pituitary-thyroid axis dysfunction.
Collapse
Affiliation(s)
- Jamile Calil-Silveira
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Caroline Serrano-Nascimento
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Raquel Cardoso Laconca
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Letícia Schmiedecke
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Ayrton Kimidi Kondo
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Maria Tereza Nunes
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
10
|
Kayes TD, Weisman GA, Camden JM, Woods LT, Bredehoeft C, Downey EF, Cole J, Braley-Mullen H. New Murine Model of Early Onset Autoimmune Thyroid Disease/Hypothyroidism and Autoimmune Exocrinopathy of the Salivary Gland. THE JOURNAL OF IMMUNOLOGY 2016; 197:2119-30. [PMID: 27521344 DOI: 10.4049/jimmunol.1600133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sixty to seventy percent of IFN-γ(-/-) NOD.H-2h4 mice given sodium iodide (NaI)-supplemented water develop a slow onset autoimmune thyroid disease, characterized by thyrocyte epithelial cell (TEC) hyperplasia and proliferation (H/P). TEC H/P develops much earlier in CD28(-/-) mice and nearly 100% (both sexes) have severe TEC H/P at 4 mo of age. Without NaI supplementation, 50% of 5- to 6-mo-old CD28(-/-)IFN-γ(-/-) mice develop severe TEC H/P, and 2-3 wk of NaI is sufficient for optimal development of severe TEC H/P. Mice with severe TEC H/P are hypothyroid, and normalization of serum thyroxine levels does not reduce TEC H/P. Activated CD4(+) T cells are sufficient to transfer TEC H/P to SCID recipients. Thyroids of mice with TEC H/P have infiltrating T cells and expanded numbers of proliferating thyrocytes that highly express CD40. CD40 facilitates, but is not required for, development of severe TEC H/P, as CD40(-/-)IFN-γ(-/-)CD28(-/-) mice develop severe TEC H/P. Accelerated development of TEC H/P in IFN-γ(-/-)CD28(-/-) mice is a result of reduced regulatory T cell (Treg) numbers, as CD28(-/-) mice have significantly fewer Tregs, and transfer of CD28(+) Tregs inhibits TEC H/P. Essentially all female IFN-γ(-/-)CD28(-/-) NOD.H-2h4 mice have substantial lymphocytic infiltration of salivary glands and reduced salivary flow by 6 mo of age, thereby providing an excellent new model of autoimmune exocrinopathy of the salivary gland. This is one of very few models where autoimmune thyroid disease and hypothyroidism develop in most mice by 4 mo of age. This model will be useful for studying the effects of hypothyroidism on multiple organ systems.
Collapse
Affiliation(s)
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO 65211; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; and
| | - Cole Bredehoeft
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Edward F Downey
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - James Cole
- Department of Medicine, University of Missouri, Columbia, MO 65212
| | - Helen Braley-Mullen
- Department of Medicine, University of Missouri, Columbia, MO 65212; Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
11
|
Kolypetri P, King J, Larijani M, Carayanniotis G. Genes and environment as predisposing factors in autoimmunity: acceleration of spontaneous thyroiditis by dietary iodide in NOD.H2(h4) mice. Int Rev Immunol 2015; 34:542-56. [PMID: 26287317 DOI: 10.3109/08830185.2015.1065828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the field of autoimmune thyroiditis, NOD.H2(h4) mice have attracted significant and increasing attention since they not only develop spontaneous disease but they present thyroiditis with accelerated incidence and severity if they ingest iodide through their drinking water. This animal model highlights the interplay between genetic and dietary factors in the triggering of autoimmune disease and offers new opportunities to study immunoregulatory parameters influenced by both genes and environment. Here, we review experimental findings with this mouse model of thyroiditis.
Collapse
Affiliation(s)
- Panayota Kolypetri
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Justin King
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - Mani Larijani
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada
| | - George Carayanniotis
- a Division of Biomedical Sciences , Memorial University of Newfoundland , St. John's , NL , Canada.,b Division of Endocrinology, Faculty of Medicine , Memorial University of Newfoundland , St. John's , NL , Canada
| |
Collapse
|
12
|
Kolypetri P, Carayanniotis G. Apoptosis of NOD.H2 h4 thyrocytes by low concentrations of iodide is associated with impaired control of oxidative stress. Thyroid 2014; 24:1170-8. [PMID: 24660772 PMCID: PMC4080865 DOI: 10.1089/thy.2013.0676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Enhanced iodide intake in NOD.H2(h4) mice accelerates the incidence and severity of spontaneous autoimmune thyroiditis (SAT) via an unknown mechanism. A plausible hypothesis is that iodide-induced apoptosis of thyrocytes can create imbalances in antigenic load and/or disruption of immunoregulatory mechanisms that facilitate activation of autoreactive T cells in cervical lymph nodes draining the thyroid. METHODS We examined whether NOD.H2(h4) thyrocytes, exposed to low NaI concentrations in vitro, are more susceptible to apoptosis compared to thyrocytes from CBA/J mice, which are resistant to iodide-accelerated SAT (ISAT). We also looked, at the transcriptional level, for differential activation of genes involved in apoptosis or oxidative stress pathways that may account for potential differences in iodide-mediated apoptosis between NOD.H2(h4) and CBA/J thyrocytes. RESULTS We report that NOD.H2(h4) thyrocytes, cultured for 24 h at very low (4-8 μM) concentrations of NaI, exhibit high levels (40-55%) of apoptosis, as assessed microscopically following staining with fluorescent caspase inhibitors. Similar treatment of thyrocytes from CBA/J mice, which are resistant to ISAT, yielded significantly lower (10-20%) apoptotic rates. Expression analysis by real-time polymerase chain reaction using arrays of apoptosis- and oxidative stress-related genes showed that NaI intake upregulates the expression of 22 genes involved in ROS metabolism and/or antioxidant function in CBA/J thyrocytes, whereas only two of these genes were upregulated in NOD.H2(h4) thyrocytes. Among the set of overexpressed genes were those encoding thyroid peroxidase (Tpo; 5.77-fold), glutathione peroxidases (Gpx2, Gpx4, Gpx7; 2.03-3.14-fold), peroxiredoxins (Prdx1, Prdx2, Prdx5; 2.27-2.97-fold), superoxide dismutase 1 (Sod1; 3.57-fold), thioredoxin 1 (Txn1; 2.13-fold), and the uncoupling proteins 2 and 3 (Ucp2, Ucp3; 2.01-2.15-fold). CONCLUSIONS The results demonstrate that an impaired control of oxidative stress mechanisms is associated with the observed high susceptibility of NOD.H2(h4) thyrocytes to NaI-mediated apoptosis, and suggest a contributing factor for the development of ISAT in this strain.
Collapse
Affiliation(s)
- Panayota Kolypetri
- Divisions of Endocrinology and Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland , St. John's, Canada
| | | |
Collapse
|
13
|
Wang SH, Fan Y, Baker JR. Overexpression of BID in thyroids of transgenic mice increases sensitivity to iodine-induced autoimmune thyroiditis. J Transl Med 2014; 12:180. [PMID: 24957380 PMCID: PMC4083877 DOI: 10.1186/1479-5876-12-180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/12/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND BID functions as a bridge molecule between death-receptor and mitochondrial related apoptotic pathways to amplify apoptotic signaling. Our previous studies have demonstrated a substantial increase in BID expression in primary normal thyroid epithelia cells treated with inflammatory cytokines, including the combination of IFNγ and IL-1β or IFNγ and TNFα. The aim of this study was to determine whether an increase in BID expression in thyroid can induce autoimmune thyroiditis. METHODS A transgenic mouse line that expresses human BID in thyroid cells was established by fusing a mouse thyroglobulin (Tg) promoter upstream of human BID (Tg-BID). We tested whether the increased expression of pro-apoptotic BID in thyroid would induce autoimmune thyroiditis, both in the presence and absence of 0.3% iodine water. RESULTS Our data show that Tg-BID mice in a CBA/J (H-2 k) background do not spontaneously develop autoimmune thyroiditis for over a year. However, upon ingestion of iodine in the drinking water, autoimmune thyroiditis does develop in Tg-BID transgenic mice, as shown by a significant increase in anti-Tg antibody and mononuclear cell infiltration in the thyroid glands in 30% of mice tested. Serum T4 levels, however, were similar between iodine-treated Tg-BID transgenic mice and the wild type mice. CONCLUSIONS Our data demonstrate that increased thyroid expression of BID facilitates the development of autoimmune thyroiditis induced by iodine uptake. However, the overexpression of BID itself is not sufficient to initiate thyroiditis in CBA/J (H-2 k) mice.
Collapse
Affiliation(s)
- Su He Wang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan, USA.
| | | | | |
Collapse
|
14
|
McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 2014; 35:59-105. [PMID: 24091783 PMCID: PMC3895862 DOI: 10.1210/er.2013-1055] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023]
Abstract
Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties ("immunogenicity") that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) "reveal," but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen-specific, not blanket, therapeutic approach.
Collapse
Affiliation(s)
- Sandra M McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, and University of California-Los Angeles School of Medicine, Los Angeles, California 90048
| | | |
Collapse
|
15
|
Vecchiatti SMP, Guzzo ML, Caldini EG, Bisi H, Longatto-Filho A, Lin CJ. Iodine increases and predicts incidence of thyroiditis in NOD mice: Histopathological and ultrastructural study. Exp Ther Med 2012; 5:603-607. [PMID: 23408765 PMCID: PMC3570204 DOI: 10.3892/etm.2012.826] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/23/2012] [Indexed: 11/15/2022] Open
Abstract
Prolonged intake of large amounts of iodine has been reported to increase the incidence of hypothyroidism in humans, as well as in animals which are prone to spontaneously developing autoimmune thyroiditis. We sought to investigate the histopathological consequences of large amounts of dietary iodine on the thyroid gland and observe the occurrence of lymphocytic infiltration associated with the time of exposure to iodine. An experimental model using non-obese diabetic (NOD) mice was analyzed. A potassium iodide intake of 0.2 mg/animal/day was administered via drinking water, in experimental groups of 60 and 90 days (EG60 and EG90). Distended rough endoplasmic reticulum, degenerated mitochondria, debris and amorphous spaces or ‘ill-defined’ spaces were observed with electron microscopy (EM). Lymphocyte infiltration was observed in the two groups and the time of exposure to iodine did not increase the appearance of lymphocyte infiltration but significantly associated with the development of necrosis. The results of the present study demonstrated that the NOD mouse is a feasible experimental model for thyroiditis induced by iodine administration and may represent an opportunity to analyze the steps and factors associated with genetic autoimmune thyroiditis. High doses of ingested iodine were observed to precdict and increase the incidence of the thyroiditis process.
Collapse
Affiliation(s)
- Stella Maria Pedrossian Vecchiatti
- Department of Pathology, University of São Paulo School of Medicine, University of São Paulo, São Paulo, Brazil ; ; Endocrinology Service of Municipal Hospital of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Hussein AEAM, Abbas AM, El Wakil GA, Elsamanoudy AZ, El Aziz AA. Effect of chronic excess iodine intake on thyroid function and oxidative stress in hypothyroid rats. Can J Physiol Pharmacol 2012; 90:617-625. [DOI: 10.1139/y2012-046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Our objective was to investigate the effects of chronic excess iodine intake on thyroid functions and thyroid oxidative stress state in hypothyroid rats. Sixty rats were divided into euthyroid and hypothyroid (thiocyanate-induced) groups with or without administration of excess iodine (3000 or 6000 μg/L) for 8 weeks. Serum thyroxine (T4), triiodothyronine (T3), thyroid-stimulating hormone (TSH), thyroid antioxidants (catalase, superoxide dismutase enzymes, and total antioxidants), and lipid peroxide (malondialdehyde; MDA) were measured. Reverse transcription – PCR gene expression for thyroidal Na+/I– symporter (NIS), D1 deiodinase, and thyroid peroxidase (TPO) were performed. Thiocyanate significantly decreased thyroid hormones (T3, T4), increased lipid peroxides and antioxidants, and increased gene expression of NIS, D1 deiodinase, and TPO. Excess iodine intake in hypothyroid rats increased T3 and T4. Also, high iodine intake by hypothyroid rats significantly decreased NIS, D1 deiodinase, and TPO genes expression. Excess iodine significantly increased MDA and antioxidants in euthyroid and hypothyroid rats. In conclusion, thiocyanate-hypothyroidism increases gene expression of NIS, TPO, and TPO and induces oxidative stress. High iodine intake decreases NIS and D1 deiodinase gene expression in hypothyroid rats. Moreover, excess iodine increase thyroid hormones, lipid peroxides, and antioxidants in hypothyroid rats.
Collapse
Affiliation(s)
| | - Amr M. Abbas
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Gehan A. El Wakil
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Ayman Z. Elsamanoudy
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Egypt
| | - Azza Abd El Aziz
- Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
17
|
Wallace K, Cowie DE, Konstantinou DK, Hill SJ, Tjelle TE, Axon A, Koruth M, White SA, Carlsen H, Mann DA, Wright MC. The PXR is a drug target for chronic inflammatory liver disease. J Steroid Biochem Mol Biol 2010; 120:137-48. [PMID: 20416375 PMCID: PMC2937210 DOI: 10.1016/j.jsbmb.2010.04.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/13/2010] [Accepted: 04/16/2010] [Indexed: 12/17/2022]
Abstract
UNLABELLED PXR activators are used to treat pruritus in chronic inflammatory liver diseases such as primary biliary cirrhosis (PBC). The aims of this study were to determine whether PXR activators could have an additional benefit of inhibiting inflammation in the liver, and determine whether cyclosporin A - which more effectively prevents PBC recurrence in transplanted patients than FK506 - is a PXR activator. In SJL/J mice (which have constitutively high levels of hepatic portal tract inflammatory cell recruitment), feeding a PXR activator inhibited inflammation, TNFalpha and Il-1alpha mRNA expression in SJL/J-PXR(+/+), but not SJL/J-PXR(-/-). Monocytic cells - a major source of inflammatory mediators such as TNFalpha - expressed the PXR and PXR activators inhibited endotoxin-induced NF-kappaB activation and TNFalpha expression. PXR activation also inhibited endotoxin-stimulated TNFalpha secretion from liver monocytes/macrophages isolated from PXR(+/+) mice, but not from cells isolated from PXR(-/-) mice. To confirm that PXR activation inhibits NF-kappaB in vivo, 3x-kappaB-luc fibrotic mice (which express a luciferase gene regulated by NF-kappaB) were imaged after treatment with the hepatotoxin CCl(4). PXR activator inhibited the induction of hepatic NF-kappaB activity without affecting CCl(4) toxicity/hepatic damage. Using a PXR reporter gene assay, cyclosporin A - but not FK506 - was shown to be a direct PXR activator, and also to induce expression of the classic PXR-regulated CYP3A4 gene in human hepatocytes and in a cell line null for the FXR, a nuclear receptor with similar properties to the PXR. CONCLUSION PXR activation is anti-inflammatory in the liver and the effects of cyclosporin A in PBC disease recurrence may be mediated in part via the PXR. Since PXR activation promotes hepatocyte growth and is also anti-fibrogenic, the PXR may be an excellent drug target for the treatment of chronic inflammatory liver disease.
Collapse
Key Words
- alt, alanine aminotransferase
- csa, cyclosporin a
- gt, gliotoxin
- gapdh, glyceradehyde 3 phosphate dehydrogenase
- hyp, hyperforin
- ikk2-in, iκb kinase 2 inhibitor
- lps, lipopolysaccharide
- metyr, metyrapone
- mts, ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium salt
- pbc, primary biliary cirrhosis
- pcn, pregnenolone 16α carbonitrile
- pti, portal tract inflammation
- pparγ, peroxiome proliferator activated receptor γ
- pxr, pregnane x receptor
- rif, rifampicin
- sulf, sulfasalazine
- tlr4, toll-like receptor 4
- tnfα, tumour necrosis factor-α
- pregnane x receptor
- sxr
- nf-κb
- rifampicin
- hyperforin
- tnfα
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclosporine/therapeutic use
- Female
- Gene Expression Regulation
- Hepatitis, Chronic/drug therapy
- Hepatitis, Chronic/genetics
- Hepatitis, Chronic/metabolism
- Humans
- Liver Cirrhosis, Biliary/drug therapy
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/metabolism
- Mice
- Mice, Knockout
- NF-kappa B/metabolism
- Pregnane X Receptor
- Receptors, Steroid/deficiency
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | - David E. Cowie
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | | | - Stephen J. Hill
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | | | - Andrew Axon
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | - Matthew Koruth
- Institute Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Steven A. White
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | | | - Derek A. Mann
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
| | - Matthew C. Wright
- Institute of Cellular Medicine, University of Newcastle, Newcastle, Upon Tyne, UK
- Corresponding author at: Institute of Cellular Medicine, Level 2 William Leech Building (M2.125), Medical School, Framlington Place, University of Newcastle Upon Tyne NE2 4HH. Tel.: +44 191 222 7094.
| |
Collapse
|
18
|
Dose and time-dependent hypercholesterolemic effects of iodine excess via TRbeta1-mediated down regulation of hepatic LDLr gene expression. Eur J Nutr 2009; 49:257-65. [PMID: 19916081 DOI: 10.1007/s00394-009-0081-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND With the global improvement of iodine nutrition, iodine excess is emerging as a new concern. AIM OF STUDY The aim of this study is to illustrate the physiological effects and potential molecular mechanisms of excessive iodine intake on lipid metabolism. METHODS Balb/c mice were given drinking water containing different levels of iodine for 1 month and treated with 1.2 microg/mL iodine for different periods of time, respectively. Plasma lipid parameters and serum thyroid hormones were measured. Expressions of hepatic genes were detected by real-time polymerase chain reactions and Western blot. RESULTS Dose-dependent hypercholesterolemic effects were detected in mice (TC, r = 0.615; p < 0.01). Drinking 1.2 microg/mL iodine water for 1 month had no significant effect on serum lipid metabolism, while prolonged exposure induced an increase of serum cholesterol. Serum thyroid hormones were not affected by iodine throughout the study. At the molecular level, we detected a dose-dependent attenuation of hepatic low density lipoprotein receptor (LDLr) and thyroid hormone receptor beta1 (TRbeta1) expression in parallel to the change of serum cholesterol. Treatment with 1.2 microg/mL iodine water for 1 month did not affect LDLr and TRbeta1 expression, while 3 or 6 months exposure resulted in a decrease of their expression. CONCLUSION Present findings demonstrated dose- and time-dependent hypercholesterolemic effects of iodine excess. Furthermore, our data suggests that TRbeta1-mediated down regulation of hepatic LDLr gene may play a critical role in iodine excess-induced hypercholesterolemic effects.
Collapse
|
19
|
Martin AP, Marinkovic T, Canasto-Chibuque C, Latif R, Unkeless JC, Davies TF, Takahama Y, Furtado GC, Lira SA. CCR7 deficiency in NOD mice leads to thyroiditis and primary hypothyroidism. THE JOURNAL OF IMMUNOLOGY 2009; 183:3073-80. [PMID: 19675158 DOI: 10.4049/jimmunol.0900275] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CCR7 is involved in the initiation of immune responses and has been recently implicated in the control of tolerance. To analyze the role of CCR7 in autoimmunity, we backcrossed CCR7(ko/ko) mice (in which ko signifies deficient) onto the autoimmune-prone NOD background. Surprisingly, NODCCR7(ko/ko) mice never developed diabetes, but showed severe inflammation in multiple tissues including thyroid, lung, stomach, intestine, uterus, and testis. NODCCR7(ko/ko) mice had a marked enlargement of the thyroid gland (goiter) that was associated with circulating autoantibodies against thyroglobulin, and development of primary hypothyroidism (decreased levels of serum thyroxin, and augmented levels of thyroid-stimulating hormone in the pituitary gland), features found in Hashimoto's thyroiditis. Cells isolated from diseased thyroids and activated splenocytes from NODCCR7(ko/ko) animals induced goiter in NOD.SCID recipients, demonstrating that autoreactive cells were generated in the absence of CCR7. Moreover, thyroid disease could be accelerated in young NODCCR7(ko/ko) mice by immunization with thyroglobulin. These results demonstrate the complexity in the generation of multiple autoimmune phenotypes in NOD mice and indicate that CCR7 is a key molecule in their development.
Collapse
Affiliation(s)
- Andrea P Martin
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fang Y, Sharp GC, Yagita H, Braley-Mullen H. A critical role for TRAIL in resolution of granulomatous experimental autoimmune thyroiditis. J Pathol 2008; 216:505-13. [PMID: 18810759 DOI: 10.1002/path.2428] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Granulomatous experimental autoimmune thyroiditis (G-EAT) is induced by mouse thyroglobulin (MTG)-sensitized splenocytes activated in vitro with MTG and IL-12. Thyroid lesions reach maximal severity 20 days after cell transfer, and usually resolve or progress to fibrosis by day 60 depending on the extent of thyroid damage at day 20. Our previous studies indicated that neutralization of TNF-alpha or FasL had no effect on G-EAT induction, but neutralization of TNF-alpha promoted, while neutralization of FasL inhibited, G-EAT resolution. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. This study was undertaken to define the role of endogenous TRAIL in G-EAT development and/or resolution. Neutralization of endogenous TRAIL had little effect on G-EAT induction, but significantly inhibited G-EAT resolution and increased thyroid fibrosis. This correlated with higher expression of pro-inflammatory cytokines and preferential expression of the pro-apoptotic molecule TRAIL, and anti-apoptotic molecules FLIP and Bcl-xL on inflammatory cells in thyroids of anti-TRAIL-treated recipients. The results suggest that endogenous TRAIL is not required for G-EAT development in recipients, but is critical for G-EAT resolution. Endogenous TRAIL might promote resolution, at least in part, through modulation of the balance between pro- and anti-inflammatory cytokines, and the expression pattern of pro- and anti-apoptotic molecules of thyroid epithelial cells (TECs) and inflammatory cells.
Collapse
Affiliation(s)
- Y Fang
- Research Service, Harry S Truman Memorial VA Hospital, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | |
Collapse
|
21
|
Teng X, Shan Z, Teng W, Fan C, Wang H, Guo R. Experimental study on the effects of chronic iodine excess on thyroid function, structure, and autoimmunity in autoimmune-prone NOD.H-2h4 mice. Clin Exp Med 2008; 9:51-9. [DOI: 10.1007/s10238-008-0014-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/04/2008] [Indexed: 11/30/2022]
|
22
|
Abstract
Among known autoantigens, thyroglobulin (Tg) is unique in its capacity to store iodine, an element provided in our daily diet. Evolutionary pressure has sculpted Tg into a large molecular scaffolding to allow organification of iodide and its incorporation into thyroid hormones. The increase in molecular size and the posttranslational modification by iodine had to exact immunological consequences. Over the last 15 years, numerous Tg peptides-targets of thyroiditogenic T cells-have been mapped, raising questions regarding the mechanisms that maintain or abrogate immune tolerance against this large autoantigen. This review summarizes the work in this area and discusses the role iodine may play in these processes.
Collapse
Affiliation(s)
- George Carayanniotis
- Divisions of Endocrinology and Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|