1
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
2
|
Geist D, Hönes GS, Grund SC, Pape J, Siemes D, Spangenberg P, Tolstik E, Dörr S, Spielmann N, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Mittag J, Engel DR, Führer D, Lorenz K, Moeller LC. Canonical and Noncanonical Contribution of Thyroid Hormone Receptor Isoforms Alpha and Beta to Cardiac Hypertrophy and Heart Rate in Male Mice. Thyroid 2024; 34:785-795. [PMID: 38757582 DOI: 10.1089/thy.2023.0683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Background: Stimulation of ventricular hypertrophy and heart rate are two major cardiac effects of thyroid hormone (TH). The aim of this study was to determine in vivo which TH receptor (TR)-α or β-and which mode of TR action-canonical gene expression or DNA-binding independent noncanonical action-mediate these effects. Methods: We compared global TRα and TRβ knockout mice (TRαKO; TRβKO) with wild-type (WT) mice to determine the TR isoform responsible for T3 effects. The relevance of TR DNA binding was studied in mice with a mutation in the DNA-binding domain that selectively abrogates DNA binding and canonical TR action (TRαGS; TRβGS). Hearts were studied with echocardiography at baseline and after 7 weeks of T3 treatment. Gene expression was measured with real-time polymerase chain reaction. Heart rate was recorded with radiotelemetry transmitters for 7 weeks in untreated, hypothyroid, and T3-treated mice. Results: T3 induced ventricular hypertrophy in WT and TRβKO mice, but not in TRαKO mice. Hypertrophy was also induced in TRαGS mice. Thus, hypertrophy is mostly mediated by noncanonical TRα action. Similarly, repression of Mhy7 occurred in WT and TRαGS mice. Basal heart rate was largely dependent on canonical TRα action. But responsiveness to hypothyroidism and T3 treatment as well as expression of pacemaker gene Hcn2 were still preserved in TRαKO mice, demonstrating that TRβ could compensate for absence of TRα. Conclusions: T3-induced cardiac hypertrophy could be attributed to noncanonical TRα action, whereas heart rate regulation was mediated by canonical TRα action. TRβ could substitute for canonical but not noncanonical TRα action.
Collapse
Affiliation(s)
- Daniela Geist
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Susanne Camilla Grund
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Pape
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Devon Siemes
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Philippa Spangenberg
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Elen Tolstik
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany
| | - Stefanie Dörr
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| | - Jens Mittag
- Center of Brain Behavior and Metabolism (CBBM), Institute for Endocrinology and Diabetes, University of Lübeck and Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Daniel Robert Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Department of Cardiovascular Pharmacology, Translational Research, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Amin MF, Zubair MS, Ammar M. A short review on the role of thyroxine in fast wound healing and tissue regeneration. Tissue Cell 2023; 82:102115. [PMID: 37244096 DOI: 10.1016/j.tice.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Wound healing is a multiplex interaction process that involves extracellular matrix, blood vessels, proteases, cytokines, and chemokine. So far, a number of studies have been performed to understand the basis of the wound-healing process and multiple wound-healing products have been designed. However, significant morbidity and mortality incidents still occurred due to poor wound healing. Thus, there is a dire need to understand the effects of topical applications of various therapeutic options that lead to fast wound healing. Thyroxine is one great panacea for wound healing that has been vigorously mooted throughout the years but a conclusive result regarding its effectiveness is still not achieved. This review is intended to find a rational basis for its positive role in wound healing. To accomplish the objective, this review highlights the different aspects of thyroxine's role in wound healing like keratin synthesis, skin thickening, and pro-angiogenesis, the basis of controversy on its wound healing ability and its potential to be used as a wound healing agent. This study will be helpful for researchers and surgeons to assess the importance of thyroxine as a candidate to comprehensively research to develop a potent, effective, and affordable wound healing drug.
Collapse
Affiliation(s)
| | | | - Muhammad Ammar
- Princess Royal University Hospital, King College Hospital Trust, United Kingdom.
| |
Collapse
|
5
|
Mishra P, Tandon G, Kumar M, Paital B, Swain SS, Kumar S, Samanta L. Promoter sequence interaction and structure based multi-targeted (redox regulatory genes) molecular docking analysis of vitamin E and curcumin in T4 induced oxidative stress model using H9C2 cardiac cell line. J Biomol Struct Dyn 2022; 40:12316-12335. [PMID: 34463220 DOI: 10.1080/07391102.2021.1970624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A positive association between oxidative stress and hyper-thyroid conditions is well established. Vitamin E (VIT-E) and curcumin (CRM) are considered as potent antioxidant small molecules. Nuclear factor erythroid 2-related factor 2(NRF-2) is known to bind with antioxidant response element and subsequently activate expression of antioxidant enzymes. However, the activation of NRF-2 depends on removal of its regulator Kelch-like ECH-associated protein 1(NRF-2). In the current study, an attempt is made to demonstrate whether effects of VIT-E and CRM are due to direct interaction with the target proteins (i.e. NRF-2, NRF-2, SOD, catalase and LDH) or by possible interaction with the flanking region of their promoters by in silico analysis. Further, these results were corroborated by pretreatment of H9C2 cells (1 x 106 cells per mL of media) with VIT-E (50 μM) and/or CRM (20 μM) for 24 h followed by induction of oxidative stress via T4 (100 nm) administration and assaying the active oxygen metabolism. Discriminant function analyses (DFA) indicated that T4 has a definite role in increasing oxidative stress as evidenced by induction of ROS generation, increase in mitochondrial membrane potential and elevated lipid peroxidation (LPx). Pretreatment with the two antioxidants have ameliorative effects more so when given in combination. The decline in biological activities of the principal antioxidant enzymes SOD and CAT with respect to T4 treatment and its restoration in antioxidant pretreated group further validated our in silico data. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pallavi Mishra
- Redox Biology & Proteomics Laboratory, Center of Excellence in Environment and Public Health, Department of Zoology, Ravenshaw University, Cuttack, Odisha, India
| | - Gitanjali Tandon
- School of Biosciences, IMS University Courses Campus, Ghaziabad, Uttar Pradesh, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Shasanka Sekhar Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre Bhubaneswar, Bhubaneswar, Odisha, India
| | - Sunil Kumar
- Computer Building, Centre for Agricultural Bioinformatics (CABIN), ICAR-Indian Agricultural Statistics Research Institute (IASRI), New Delhi, Delhi, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Center of Excellence in Environment and Public Health, Department of Zoology, Ravenshaw University, Cuttack, Odisha, India
| |
Collapse
|
6
|
Signaling Pathways in Inflammation and Cardiovascular Diseases: An Update of Therapeutic Strategies. IMMUNO 2022. [DOI: 10.3390/immuno2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory processes represent a pivotal element in the development and complications of cardiovascular diseases (CVDs). Targeting these processes can lead to the alleviation of cardiomyocyte (CM) injury and the increase of reparative mechanisms. Loss of CMs from inflammation-associated cardiac diseases often results in heart failure (HF). Evidence of the crosstalk between nuclear factor-kappa B (NF-κB), Hippo, and mechanistic/mammalian target of rapamycin (mTOR) has been reported in manifold immune responses and cardiac pathologies. Since these signaling cascades regulate a broad array of biological tasks in diverse cell types, their misregulation is responsible for the pathogenesis of many cardiac and vascular disorders, including cardiomyopathies and atherosclerosis. In response to a myriad of proinflammatory cytokines, which induce reactive oxygen species (ROS) production, several molecular mechanisms are activated within the heart to inaugurate the structural remodeling of the organ. This review provides a global landscape of intricate protein–protein interaction (PPI) networks between key constituents of NF-κB, Hippo, and mTOR signaling pathways as quintessential targetable candidates for the therapy of cardiovascular and inflammation-related diseases.
Collapse
|
7
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
8
|
Pinto AP, da Rocha AL, Teixeira GR, Rovina RL, Veras ASC, Frantz F, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, Quadrilatero J, da Silva ASR. Rapamycin did not prevent the excessive exercise-induced hepatic fat accumulation. Life Sci 2022; 306:120800. [PMID: 35839860 DOI: 10.1016/j.lfs.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil; Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Allice S C Veras
- Multicentric Program of Postgraduate in Physiological Sciences, São Paulo State University (UNESP), School of Dentistry of Araçatuba, Araçatuba, São Paulo, Brazil
| | - Fabiani Frantz
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Clinical, Toxicological, and Bromatological Analysis, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Joe Quadrilatero
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
9
|
Zhang Y, Ding Y, Li M, Yuan J, Yu Y, Bi X, Hong H, Ye J, Liu P. MicroRNA-34c-5p provokes isoprenaline-induced cardiac hypertrophy by modulating autophagy via targeting ATG4B. Acta Pharm Sin B 2022; 12:2374-2390. [PMID: 35646533 PMCID: PMC9136534 DOI: 10.1016/j.apsb.2021.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and β-myosin heavy chain (β-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 3′ UTR, 3′ untranslated region
- ANF, atrial natriuretic factor
- ATG4B
- ATG4B, autophagy related gene 4B
- Autophagic flux
- Autophagy
- BNP, brain natriuretic polypeptide
- Baf A1, bafilomycin A1
- CQ, Chloroquine
- EF, ejection fraction
- FS, fractional shortening
- GFP, green fluorescent protein
- HE, hematoxylin–eosin
- ISO, isoprenaline
- IVS,d: interventricular septal wall dimension at end-diastole, IVS,s: interventricular septal well dimension at end-systole
- Isoprenaline
- LC3
- LC3, microtubule-associated protein 1 light chain 3
- LV Vol,d, left ventricular end-diastolic volume
- LV Vol,s, left ventricular end-systolic volume
- LVID,d, left ventricular end-diastolic internal diameter
- LVID,s, left ventricular end-systolic internal diameter
- LVPW,d, left ventricular end-diastolic posterior wall thickness
- LVPW,s, left ventricular end-systolic posterior wall thickness
- Mice
- NS, normal saline
- Neonatal rat cardiomyocytes
- PSR, Picric–Sirius red
- Pathological cardiac hypertrophy
- mTOR, mammalian target of rapamycin
- miR-34c-5p
- miRNA, microRNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- β-AR, β-adrenergic receptor
- β-MHC, beta-myosin heavy chain
Collapse
|
10
|
Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J, Liu P. MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int 2021; 46:288-299. [PMID: 34854520 DOI: 10.1002/cbin.11731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) regulate multiple biological processes and participate in various cardiovascular diseases. This study aims to investigate the role of miR-339-5p in cardiomyocyte hypertrophy and the involved mechanism. Neonatal rat cardiomyocytes (NRCMs) were cultured and stimulated with isoproterenol (ISO). The hypertrophic responses were monitored by measuring the cell surface area and expression of hypertrophic markers including β-myosin heavy chain (β-MHC) and atrial natriuretic factor (ANF). Bioinformatic prediction tools and dual-luciferase reporter assay were performed to identify the target gene of miR-339-5p. Quantitative real-time polymerase chain reaction and western blot analysis were used to determine the levels of miR-339-5p and its downstream effectors. Our data showed that miR-339-5p was upregulated during cardiomyocyte hypertrophy triggered by ISO. MiR-339-5p overexpression resulted in enlargement of cell size and increased the levels of hypertrophic markers. In contrast, inhibition of miR-339-5p significantly attenuated ISO-induced hypertrophic responses of NRCMs. Valosin-containing protein (VCP), a suppressor of cardiac hypertrophy via inhibiting mechanistic target of rapamycin (mTOR) signaling, was validated as a target of miR-339-5p. MiR-339-5p suppressed VCP protein expression, leading to elevated phosphorylation of mTOR and ribosomal protein S6 kinase (S6K). VCP depletion activated the mTOR/S6K cascade and could compromise the anti-hypertrophic effects of miR-339-5p inhibitor. Additionally, the hypertrophic responses caused by miR-339-5p was alleviated in the presence of mTOR inhibitor rapamycin. In conclusion, our research revealed that miR-339-5p promoted ISO-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling, suggesting a promising therapeutic intervention by interfering miR-339-5p.
Collapse
Affiliation(s)
- Xueying Bi
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Yuhong Zhang
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Youhui Yu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jing Yuan
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Siting Xu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, Sun Yat-Sen University, Guangdong, Guangzhou, China
| |
Collapse
|
11
|
Xu R, Kang L, Wei S, Yang C, Fu Y, Ding Z, Zou Y. Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent Mitophagy Signaling in Neonatal Cardiomyocytes. Front Cardiovasc Med 2021; 8:748156. [PMID: 34631840 PMCID: PMC8493082 DOI: 10.3389/fcvm.2021.748156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Pathological cardiac hypertrophy, the adaptive response of the myocardium to various pathological stimuli, is one of the primary predictors and predisposing factors of heart failure. However, its molecular mechanisms underlying pathogenesis remain poorly understood. Here, we studied the function of Samm50 in mitophagy during Ang II-induced cardiomyocyte hypertrophy via lentiviruses mediated knockdown and overexpression of Samm50 protein. We first found that Samm50 is a key positive regulator of cardiac hypertrophy, for western blot and real-time quantitative PCR detection revealed Samm50 was downregulated both in pressure-overload-induced hypertrophic hearts and Ang II-induced cardiomyocyte hypertrophy. Then, Samm50 overexpression exhibits enhanced induction of cardiac hypertrophy marker genes and cell enlargement in primary mouse cardiomyocytes by qPCR and immunofluorescence analysis, respectively. Meanwhile, Samm50 remarkably reduced Ang II-induced autophagy as indicated by decreased mitophagy protein levels and autophagic flux, whereas the opposite phenotype was observed in Samm50 knockdown cardiomyocytes. However, the protective role of Samm50 deficiency against cardiac hypertrophy was abolished by inhibiting mitophagy through Vps34 inhibitor or Pink1 knockdown. Moreover, we further demonstrated that Samm50 interacted with Pink1 and stimulated the accumulation of Parkin on mitochondria to initiate mitophagy by co-immunoprecipitation analysis and immunofluorescence. Thus, these results suggest that Samm50 regulates Pink1-Parkin-mediated mitophagy to promote cardiac hypertrophy, and targeting mitophagy may provide new insights into the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Kang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siang Wei
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanfeng Fu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Kerp H, Hönes GS, Tolstik E, Hönes-Wendland J, Gassen J, Moeller LC, Lorenz K, Führer D. Protective Effects of Thyroid Hormone Deprivation on Progression of Maladaptive Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2021; 8:683522. [PMID: 34395557 PMCID: PMC8363198 DOI: 10.3389/fcvm.2021.683522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: Thyroid hormones (TH) play a central role for cardiac function. TH influence heart rate and cardiac contractility, and altered thyroid function is associated with increased cardiovascular morbidity and mortality. The precise role of TH in onset and progression of heart failure still requires clarification. Methods: Chronic left ventricular pressure overload was induced in mouse hearts by transverse aortic constriction (TAC). One week after TAC, alteration of TH status was induced and the impact on cardiac disease progression was studied longitudinally over 4 weeks in mice with hypo- or hyperthyroidism and was compared to euthyroid TAC controls. Serial assessment was performed for heart function (2D M-mode echocardiography), heart morphology (weight, fibrosis, and cardiomyocyte cross-sectional area), and molecular changes in heart tissues (TH target gene expression, apoptosis, and mTOR activation) at 2 and 4 weeks. Results: In diseased heart, subsequent TH restriction stopped progression of maladaptive cardiac hypertrophy and improved cardiac function. In contrast and compared to euthyroid TAC controls, increased TH availability after TAC propelled maladaptive cardiac growth and development of heart failure. This was accompanied by a rise in cardiomyocyte apoptosis and mTOR pathway activation. Conclusion: This study shows, for the first time, a protective effect of TH deprivation against progression of pathological cardiac hypertrophy and development of congestive heart failure in mice with left ventricular pressure overload. Whether this also applies to the human situation needs to be determined in clinical studies and would infer a critical re-thinking of management of TH status in patients with hypertensive heart disease.
Collapse
Affiliation(s)
- Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Judith Hönes-Wendland
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Elblehi SS, El-Sayed YS, Soliman MM, Shukry M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals (Basel) 2021; 11:ani11030886. [PMID: 33804672 PMCID: PMC8003775 DOI: 10.3390/ani11030886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of date palm pollen ethanolic extract (DPPE) is a conventional approach in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition, serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic (Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating inflammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative stress injuries and other detrimental effects, a combined treatment of DPPE is advocated. Abstract Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Samar S. Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Edfina 22758, Egypt
- Correspondence: (S.S.E.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.S.E.); (M.S.)
| |
Collapse
|
14
|
Pereyra AS, Harris KL, Soepriatna AH, Waterbury QA, Bharathi SS, Zhang Y, Fisher-Wellman KH, Goergen CJ, Goetzman ES, Ellis JM. Octanoate is differentially metabolized in liver and muscle and fails to rescue cardiomyopathy in CPT2 deficiency. J Lipid Res 2021; 62:100069. [PMID: 33757734 PMCID: PMC8082564 DOI: 10.1016/j.jlr.2021.100069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Long-chain fatty acid oxidation is frequently impaired in primary and systemic metabolic diseases affecting the heart; thus, therapeutically increasing reliance on normally minor energetic substrates, such as ketones and medium-chain fatty acids, could benefit cardiac health. However, the molecular fundamentals of this therapy are not fully known. Here, we explored the ability of octanoate, an eight-carbon medium-chain fatty acid known as an unregulated mitochondrial energetic substrate, to ameliorate cardiac hypertrophy in long-chain fatty acid oxidation-deficient hearts because of carnitine palmitoyltransferase 2 deletion (Cpt2M-/-). CPT2 converts acylcarnitines to acyl-CoAs in the mitochondrial matrix for oxidative bioenergetic metabolism. In Cpt2M-/- mice, high octanoate-ketogenic diet failed to alleviate myocardial hypertrophy, dysfunction, and acylcarnitine accumulation suggesting that this alternative substrate is not sufficiently compensatory for energy provision. Aligning this outcome, we identified a major metabolic distinction between muscles and liver, wherein heart and skeletal muscle mitochondria were unable to oxidize free octanoate, but liver was able to oxidize free octanoate. Liver mitochondria, but not heart or muscle, highly expressed medium-chain acyl-CoA synthetases, potentially enabling octanoate activation for oxidation and circumventing acylcarnitine shuttling. Conversely, octanoylcarnitine was oxidized by liver, skeletal muscle, and heart, with rates in heart 4-fold greater than liver and, in muscles, was not dependent upon CPT2. Together, these data suggest that dietary octanoate cannot rescue CPT2-deficient cardiac disease. These data also suggest the existence of tissue-specific mechanisms for octanoate oxidative metabolism, with liver being independent of free carnitine availability, whereas cardiac and skeletal muscles depend on carnitine but not on CPT2.
Collapse
Affiliation(s)
- Andrea S Pereyra
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Kate L Harris
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Arvin H Soepriatna
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Quin A Waterbury
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kelsey H Fisher-Wellman
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica M Ellis
- Brody School of Medicine at East Carolina University, Department of Physiology, and East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.
| |
Collapse
|
15
|
Zeng B, Liao X, Liu L, Zhang C, Ruan H, Yang B. Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway. Life Sci 2020; 267:118977. [PMID: 33383053 DOI: 10.1016/j.lfs.2020.118977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/29/2022]
Abstract
AIMS Severe cardiovascular diseases, such as myocardial infarction or heart failure, can alter thyroid hormone (TH) secretion and peripheral conversion, leading to low triiodothyronine (T3) syndrome. Accumulating evidence suggests that TH has protective properties against cardiovascular diseases and that treatment with TH can effectively reduce myocardial damage after myocardial infarction (MI). Our aim is to investigate the effect of T3 pretreatment on cardiac function and pathological changes in mice subjected to MI and the underlying mechanisms. MAIN METHODS Adult male C57BL/6 mice underwent surgical ligation of the left anterior descending coronary artery (LAD) (or sham operation) to establish MI model. T3, BMS-754807 (inhibitor of insulin-like growth factor-1 receptor (IGF-1R)) or vehicle was administered before surgery. KEY FINDINGS Compared with the MI group, the T3 pretreatment group exhibited significant attenuation of the myocardial infarct area, inhibition of cardiomyocyte apoptosis and fibrosis, and improved left ventricular function after MI. In addition, T3 exhibited an enhanced potency to stimulate angiogenesis and exert anti-inflammatory effects by reducing the levels of serum inflammatory cytokines after MI. However, all of these protective effects were inhibited by the IGF-1R inhibitor BMS-754807. Moreover, the protein expression of IGF-1/PI3K/AKT signaling-related proteins, such as IGF-1, IGF-1R, phosphorylated PI3K (p-PI3K) and p-AKT was significantly upregulated in MI mice that received T3 pretreatment, and BMS-754807 pretreatment blocked the upregulation of the expression of these signaling-related proteins. SIGNIFICANCE T3 pretreatment can protect the heart against dysfunction post-MI, which may be mediated by the activation of the IGF-1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Xiaoting Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China; Department of Cardiology, Tianyou Hospital Affiliated to Wuhan University of Science & Technology, Wuhan 430060, PR China
| | - Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Caixia Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Huaiyu Ruan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Bo Yang
- Department of Cardiology, Xianfeng County People's Hospital, Enshi 445000, PR China
| |
Collapse
|
16
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
George SA, Kiss A, Obaid SN, Venegas A, Talapatra T, Wei C, Efimova T, Efimov IR. p38δ genetic ablation protects female mice from anthracycline cardiotoxicity. Am J Physiol Heart Circ Physiol 2020; 319:H775-H786. [PMID: 32822209 PMCID: PMC11018268 DOI: 10.1152/ajpheart.00415.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in p38δ-/- female mice post-DOX relative to WT females, but not in p38γ-/- or p38γ-/-δ-/- male or female mice. The improved survival in DOX-treated p38δ-/- females was associated with decreased fibrosis, increased cardiac output and LV diameter relative to DOX-treated WT females, and similar to saline-treated controls. Structural and echocardiographic parameters were either unchanged or worsened in all other groups. Increased autophagy, as suggested by increased LC3-II level, and decreased mammalian target of rapamycin activation was also observed in DOX-treated p38δ-/- females. p38δ plays a crucial role in promoting DOX-induced cardiotoxicity in female mice by inhibiting autophagy. Therefore, p38δ targeting could be a potential cardioprotective strategy in anthracycline chemotherapy.NEW & NOTEWORTHY This study for the first time identifies the sex-specific roles of the alternative p38γ and p38δ MAPK isoforms in promoting doxorubicin (DOX) cardiotoxicity. We show that p38δ and p38γ/δ systemic deletion was cardioprotective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
| | - Sofian N Obaid
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Aileen Venegas
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Trisha Talapatra
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Chapman Wei
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
- The George Washington Cancer Center, Washington, District of Columbia
| |
Collapse
|
18
|
Gyongyosi A, Zilinyi R, Czegledi A, Tosaki A, Tosaki A, Lekli I. The Role of Autophagy and Death Pathways in Dose-dependent Isoproterenolinduced Cardiotoxicity. Curr Pharm Des 2020; 25:2192-2198. [PMID: 31258063 PMCID: PMC6806536 DOI: 10.2174/1381612825666190619145025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022]
Abstract
Background: Isoproterenol (ISO) is a non-selective β-adrenergic agonist. Our aims were to investigate the autophagy and cell death pathways including apoptosis and necrosis in ISO-induced car-diac injury in a dose-dependent manner. Methods: Male Sprague-Dawley rats were treated for 24 hours with I. vehicle (saline); II. 0.005 mg/kg ISO; III. 0.05 mg/kg ISO; IV. 0.5 mg/kg ISO; V. 5 mg/kg ISO; VI. 50 mg/kg ISO, respectively. Hearts were isolated and infarct size was measured. Serum levels of Troponin T (TrT), lactate dehydrogenase (LDH), creatine kinase iso-enzyme MB (CK-MB) were measured. TUNEL assay was carried out to monitor apoptotic cell death and Western blot was performed to evaluate the level of autophagic and apoptotic markers. Results: Survival rate of animals was dose-dependently decreased by ISO. Serum markers and infarct size revealed the development of cardiac toxicity. Level of Caspase-3, and results of TUNEL assay, demonstrated that the level of apoptosis was dose-dependently increased. They reached the highest level in ISO 5 and it decreased slightly in ISO 50 group. Focusing on autophagic proteins, we found that level of Beclin-1 was increased in a dose-dependent manner, but significantly increased in ISO 50 treated group. Level of LC3B-II and p62 showed the same manner, but the elevated level of p62 indicated that autophagy was impaired in both ISO 5 and ISO 50 groups. Conclusion: Taken together these results suggest that at smaller dose of ISO autophagy may cope with the toxic effect of ISO; however, at higher dose apoptosis is initiated and at the highest dose substantial necrosis occurs.
Collapse
Affiliation(s)
- Alexandra Gyongyosi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Rita Zilinyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Andras Czegledi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Agnes Tosaki
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Istvan Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Sanches-Silva A, Testai L, Nabavi SF, Battino M, Pandima Devi K, Tejada S, Sureda A, Xu S, Yousefi B, Majidinia M, Russo GL, Efferth T, Nabavi SM, Farzaei MH. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res 2020; 152:104626. [PMID: 31904507 DOI: 10.1016/j.phrs.2019.104626] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases comprise of non-communicable disorders that involve the heart and/or blood vessels and have become the leading cause of death worldwide with increased prevalence by age. mTOR is a serine/threonine-specific protein kinase which plays a central role in many physiological processes including cardiovascular diseases, and also integrates various proliferative signals, nutrient and energy abundance and stressful situations. mTOR also acts as central regulator during chronic stress, mitochondrial dysfunction and deregulated autophagy which are associated with senescence. Under oxidative stress, mTOR has been reported to exert protective effects regulating apoptosis and autophagy processes and favoring tissue repair. On the other hand, inhibition of mTOR has been suggested to have beneficial effects against atherosclerosis, cardiac hypertrophy and heart failure, and also in extending the lifespan. In this aspect, the use of drugs or natural compounds, which can target mTOR is an interesting approach in order to reduce the number of deaths caused by cardiovascular disease. In the present review, we intend to shed light on the possible effects and molecular mechanism of natural agents like polyphenols via regulating mTOR.
Collapse
Affiliation(s)
- Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Vairão, Vila do Conde, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno 6 - 56126, Pisa, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Institut d'Investigació Sanitària Illes Balears (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, E-07122, Balearic Islands, Spain
| | - Suowen Xu
- University of Rochester, Aab Cardiovascular Research Institute, Rochester, NY, 14623, USA
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Farzaei
- Pharmaceutical Sciences Research center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
CD47 Deficiency Attenuates Isoproterenol-Induced Cardiac Remodeling in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7121763. [PMID: 31827695 PMCID: PMC6885801 DOI: 10.1155/2019/7121763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
In this study, we investigated whether CD47 deficiency attenuates isoproterenol- (ISO-) induced cardiac remodeling in mice. Cardiac remodeling was induced by intraperitoneal (i.p.) injection of ISO (60 mg·kg−1·d−1 in 100 μl of sterile normal saline) daily for 14 days and was confirmed by increased levels of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB), increased heart weight to body weight (HW/BW) ratios, and visible cardiac fibrosis. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were found to be significantly higher in the ISO group than in the control group, while superoxide dismutase (SOD) levels were suppressed in the ISO group. However, CD47 knockout significantly limited ISO-induced increases in LDH, CK-MB, and HW/BW ratios, cardiac fibrosis, oxidative stress, and apoptosis in the heart. In addition, CD47 deficiency also increased p-AMPK and LAMP2 expression and decreased HDAC3, cleaved Caspase-3, cleaved Caspase-9, LC3II, and p62 expression in cardiac tissues. In conclusion, CD47 deficiency reduced i.p. ISO-induced cardiac remodeling probably by inhibiting the HDAC3 pathway, improving AMPK signaling and autophagy flux, and rescuing autophagic clearance.
Collapse
|
21
|
Mishra P, Paital B, Jena S, Swain SS, Kumar S, Yadav MK, Chainy GBN, Samanta L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFĸB/AKT/mTOR/KEAP1 signalling in rat heart. Sci Rep 2019; 9:7408. [PMID: 31092832 PMCID: PMC6520394 DOI: 10.1038/s41598-019-43320-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is implicated in both hypo- and hyper-thyroid conditions. In the present study an attempt has been made to elucidate possible interaction between vitamin E or/and curcumin (two established antioxidants) with active portion (redox signaling intervening region) of nuclear factor erythroid 2-related factor 2 (NRF2) as a mechanism to alleviate oxidative stress in rat heart under altered thyroid states. Fifty Wistar strain rats were divided into two clusters (Cluster A: hypothyroidism; Cluster B: hyperthyroidism). The hypo- (0.05% (w/v) propylthiouracil in drinking water) and hyper- (0.0012% (w/v) T4 in drinking water) thyroid rats in both clusters were supplemented orally with antioxidants (vitamin E or/and curcumin) for 30 days. Interactive least count difference and principal component analyses indicated increase in lipid peroxidation, reduced glutathione level, alteration in the activities and protein expression of antioxidant enzymes like superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase under altered thyroid states. However, the expression of stress survival molecules; nuclear factor κB (NFκB) and the serine-threonine kinase B (Akt), in hyper-thyroidism only points towards different mechanisms responsible for either condition. Co-administration of vitamin E and curcumin showed better result in attenuating expression of mammalian target for rapamycin (mTOR), restoration of total protein content and biological activity of Ca2+ ATPase in hyperthyroid rats, whereas, their individual treatment showed partial restoration. Since NRF2 is responsible for activation of antioxidant response element and subsequent expression of antioxidant enzymes, possible interactions of both vitamin E or/and curcumin with the antioxidant enzymes, NRF2 and its regulator Kelch ECH associating protein (KEAP1) were studied in silico. For the first time, a modeled active portion of the zipped protein NRF2 indicated its interaction with both vitamin E and curcumin. Further, curcumin and vitamin E complex showed in silico interaction with KEAP1. Reduction of oxidative stress by curcumin and/or vitamin E may be due to modulation of NRF2 and KEAP1 function in rat heart under altered thyroid states.
Collapse
Affiliation(s)
- Pallavi Mishra
- Department of Zoology, Utkal University, Bhubaneswar, 751004, India.,Department of Zoology, Government Autonomous College, Phulbani, Kandhamal, Odisha, India
| | - Biswaranjan Paital
- Department of Zoology, Utkal University, Bhubaneswar, 751004, India. .,Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India.
| | - Srikanta Jena
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Shasank S Swain
- Central Research Laboratory, IMS and Sum Hospital, Siksha 'O' Anusandhan University, K-8 Kalinga Nagar, Bhubaneswar, 751003, Odisha, India.,ICMR-Regional Medical Research Centre (ICMR-RMRC), Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Sunil Kumar
- National Bureau of Agriculturally Important Microorganisms, Indian Council of Agricultural Research, Mau, Uttar Pradesh, 275103, India
| | - Manoj K Yadav
- Medical Biotechnology, Department of Biochemistry, Pt. J.N.M. Medical College, Raipur, C.G., 49200, India.,Department of Bioinformatics, SRM University Delhi-NCR, Sonepat, Haryana, 131029, India
| | - Gagan B N Chainy
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, India
| | - Luna Samanta
- Redox Biology Laboratory, Department of Zoology, Center of Excellence in Environment and Public Health, Ravenshaw University, Cuttack, 753003, Odisha, India.
| |
Collapse
|
22
|
Nakatani K, Masuda D, Kobayashi T, Sairyo M, Zhu Y, Okada T, Naito AT, Ohama T, Koseki M, Oka T, Akazawa H, Nishida M, Komuro I, Sakata Y, Yamashita S. Pressure Overload Impairs Cardiac Function in Long-Chain Fatty Acid Transporter CD36-Knockout Mice. Int Heart J 2018; 60:159-167. [PMID: 30518717 DOI: 10.1536/ihj.18-114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
CD36 is one of the important transporters of long-chain fatty acids (LCFAs) in the myocardium. We previously reported that CD36-deficient patients demonstrate a marked reduction of myocardial uptake of LCFA, while myocardial glucose uptake shows a compensatory increase, and are often accompanied by cardiomyopathy. However, the molecular mechanisms and functional role of CD36 in the myocardium remain unknown.The current study aimed to explore the pathophysiological role of CD36 in the heart. Methods: Using wild type (WT) and knockout (KO) mice, we generated pressure overload by transverse aortic constriction (TAC) and analyzed cardiac functions by echocardiography. To assess cardiac hypertrophy and fibrosis, histological and molecular analyses and measurement of ATP concentration in mouse hearts were performed.By applying TAC, the survival rate was significantly lower in KO than that in WT mice. After TAC, KO mice showed significantly higher heart weight-to-tibial length ratio and larger cross-sectional area of cardiomyocytes than those of WT. Although left ventricular (LV) wall thickness in the KO mice was similar to that in the WT mice, the KO mice showed a significant enlargement of LV cavity and reduced LV fractional shortening compared to the WT mice with TAC. A tendency for decreased myocardial ATP concentration was observed in the KO mice compared to the WT mice after TAC operation.These data suggest that the LCFA transporter CD36 is required for the maintenance of energy provision, systolic function, and myocardial structure.
Collapse
Affiliation(s)
| | - Daisaku Masuda
- Rinku Innovation Center for Wellness Care and Activities (RICWA), Health Care Center, Department of Cardiology, Rinku General Medical Center
| | | | - Masami Sairyo
- Department of Cardiovascular Medicine, Kawanishi City Hospital
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Atsuhiko T Naito
- Department of Pharmacology, Faculty of Medicine, Toho University
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Osaka University Dental Hospital
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Health Care Division, Health and Counseling Center, Osaka University
| | - Toru Oka
- Department of Medical Checkup, Osaka International Cancer Institute
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Health Care Division, Health and Counseling Center, Osaka University
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Shizuya Yamashita
- Rinku General Medical Center.,Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine.,Department of Community Medicine, Osaka University Graduate School of Medicine
| |
Collapse
|
23
|
Emerging Role of mTOR Signaling-Related miRNAs in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6141902. [PMID: 30305865 PMCID: PMC6165581 DOI: 10.1155/2018/6141902] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Mechanistic/mammalian target of rapamycin (mTOR), an atypical serine/threonine kinase of the phosphoinositide 3-kinase- (PI3K-) related kinase family, elicits a vital role in diverse cellular processes, including cellular growth, proliferation, survival, protein synthesis, autophagy, and metabolism. In the cardiovascular system, the mTOR signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of both physiological and pathological processes. MicroRNAs (miRs), a class of short noncoding RNA, are an emerging intricate posttranscriptional modulator of critical gene expression for the development and maintenance of homeostasis across a wide array of tissues, including the cardiovascular system. Over the last decade, numerous studies have revealed an interplay between miRNAs and the mTOR signaling circuit in the different cardiovascular pathophysiology, like myocardial infarction, hypertrophy, fibrosis, heart failure, arrhythmia, inflammation, and atherosclerosis. In this review, we provide a comprehensive state of the current knowledge regarding the mechanisms of interactions between the mTOR signaling pathway and miRs. We have also highlighted the latest advances on mTOR-targeted therapy in clinical trials and the new perspective therapeutic strategies with mTOR-targeting miRs in cardiovascular diseases.
Collapse
|
24
|
Wu R, Yao PA, Wang HL, Gao Y, Yu HL, Wang L, Cui XH, Xu X, Gao JP. Effect of fermented Cordyceps sinensis on doxorubicin‑induced cardiotoxicity in rats. Mol Med Rep 2018; 18:3229-3241. [PMID: 30066944 PMCID: PMC6102656 DOI: 10.3892/mmr.2018.9310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023] Open
Abstract
Cordyceps sinensis (CS) is a prominent medicinal herb in traditional Chinese medicine, and fermented CS is frequently used as a substitute for natural CS. Doxorubicin (DOX), an antitumor drug used in chemotherapy, is limited by its poor cardiotoxicity. The aim of the present study was to evaluate the protective effect of fermented CS against DOX-induced cardiotoxicity and the potential underlying mechanisms. Male Sprague-Dawley rats (180–200 g) were randomly assigned to seven different treatment groups: Normal control, DOX control, DOX+captopril (0.05 g/kg), 0.75, 1.5 and 3 g/kg DOX+CS, and the CS (1.5 g/kg) control. Histopathological changes, cardiac energy metabolism, cyclic adenosine monophosphate (cAMP) signaling and the associated mRNA expression of AMP-activated protein kinase (AMPK) were then evaluated. Fermented CS decreased the left ventricular weight index, heart weight index and mortality; however, it increased diastolic blood pressure and mean arterial pressure. In addition, it shortened the duration of the QRS complex and Sα-T segment, decreased serum creatine kinase (CK) and aspartate aminotransferase activity, inhibited histopathological changes and reduced brain natriuretic peptide content. Treatment with fermented CS also increased the activities of superoxide dismutase and glutathione peroxidase, reduced malondialdehyde content, increased the mitochondrial activities of Na+K+-adenosine 5′-triphosphate (ATP) ase, Ca2+Mg2+-ATPase and CK, and increased the creatine phosphate/ATP ratio and AMP/ATP ratio. Furthermore, it decreased the ATP/adenosine 5′-diphosphate (ADP) ratio, upregulated AMPKα2 expression, reduced the activity of serum phosphodiesterases (PDEs) and increased myocardial cAMP content. The results of the present study demonstrated that fermented CS attenuated DOX-induced cardiotoxicity by inhibiting myocardial hypertrophy and myocardial damage, ameliorating systolic function and the antioxidant enzyme system, improving cardiac energy metabolism, depressing the activities of PDEs, and by upregulating the cAMP and AMPK signaling pathways. Thus, fermented CS may be a candidate for the prevention of DOX-induced cardiotoxicity, cardiac energy impairment and against a number of cardiac diseases.
Collapse
Affiliation(s)
- Rong Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping-An Yao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hui-Lin Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Gao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hai-Lun Yu
- Department of Chemical and Environmental Engineering, School of Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Lei Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiao-Hua Cui
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Xu
- Department of Chemical and Environmental Engineering, School of Shanghai Institute of Technology, Shanghai 201418, P.R. China
| | - Jian-Ping Gao
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
25
|
Ivabradine improved left ventricular function and pressure overload-induced cardiomyocyte apoptosis in a transverse aortic constriction mouse model. Mol Cell Biochem 2018; 450:25-34. [DOI: 10.1007/s11010-018-3369-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
|
26
|
Reifsnyder PC, Ryzhov S, Flurkey K, Anunciado-Koza RP, Mills I, Harrison DE, Koza RA. Cardioprotective effects of dietary rapamycin on adult female C57BLKS/J-Lepr db mice. Ann N Y Acad Sci 2018; 1418:106-117. [PMID: 29377150 PMCID: PMC5934313 DOI: 10.1111/nyas.13557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Rapamycin (RAPA), an inhibitor of mTORC signaling, has been shown to extend life span in mice and other organisms. Recently, animal and human studies have suggested that inhibition of mTORC signaling can alleviate or prevent the development of cardiomyopathy. In view of this, we used a murine model of type 2 diabetes (T2D), BKS-Leprdb , to determine whether RAPA treatment can mitigate the development of T2D-induced cardiomyopathy in adult mice. Female BKS-Leprdb mice fed diet supplemented with RAPA from 11 to 27 weeks of age showed reduced weight gain and significant reductions of fat and lean mass compared with untreated mice. No differences in plasma glucose or insulin levels were observed between groups; however, RAPA-treated mice were more insulin sensitive (P < 0.01) than untreated mice. Urine albumin/creatinine ratio was lower in RAPA-treated mice, suggesting reduced diabetic nephropathy and improved kidney function. Echocardiography showed significantly reduced left ventricular wall thickness in mice treated with RAPA compared with untreated mice (P = 0.02) that was consistent with reduced heart weight/tibia length ratios, reduced myocyte size and cardiac fibrosis measured by histomorphology, and reduced mRNA expression of Col1a1, a marker for cardiomyopathy. Our results suggest that inhibition of mTORC signaling is a plausible strategy for ameliorating complications of obesity and T2D, including cardiomyopathy.
Collapse
Affiliation(s)
| | - Sergey Ryzhov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | | | - Rea P Anunciado-Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Ian Mills
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | | | - Robert A Koza
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
27
|
Xue R, Jiang J, Dong B, Tan W, Sun Y, Zhao J, Chen Y, Dong Y, Liu C. DJ-1 activates autophagy in the repression of cardiac hypertrophy. Arch Biochem Biophys 2017; 633:124-132. [PMID: 28941803 DOI: 10.1016/j.abb.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is the risk factor of heart failure when the heart is confronted with pressure overload or neurohumoral stimuli. Autophagy, a conserved degradative pathway, is one of the important mechanisms involved in the regulation of cardiac hypertrophy. DJ-1 is a traditional anti-oxidative protein and emerging evidence suggested that DJ-1 might modulate autophagy. However, the regulation of autophagy by DJ-1 in the process of cardiac hypertrophy remains unknown. In our study, we firstly discovered that the expression of DJ-1declined in the process of pressure overload cardiac hypertrophy, and its alteration was parallel with the impairment of autophagy. Furthermore, we proved that DJ-1 knockout mice exhibited a more hypertrophied phenotype than wildtype mice in cardiac hypertrophy which indicated that DJ-1 is responsible for the repression of cardiac hypertrophy. Furthermore, DJ-1 knockout significantly exacerbated pulmonary edema due to cardiac hypertrophy. In the process of cardiac hypertrophy, DJ-1 knockout significantly impaired autophagy activation and enhanced mTORC1 and mTORC2 phosphorylation were found. Similarly, our in vitro study proved that DJ-1 overexpression ameliorated phenylephrine (PE)-induced cardiac hypertrophy and promoted autophagy activation. Taken together, DJ-1 might repress both pressure overload and PE-induced cardiac hypertrophy via the activation of autophagy.
Collapse
Affiliation(s)
- Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Jingzhou Jiang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Weiping Tan
- Department of Respiratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yili Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China.
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China.
| |
Collapse
|
28
|
Pereyra AS, Hasek LY, Harris KL, Berman AG, Damen FW, Goergen CJ, Ellis JM. Loss of cardiac carnitine palmitoyltransferase 2 results in rapamycin-resistant, acetylation-independent hypertrophy. J Biol Chem 2017; 292:18443-18456. [PMID: 28916721 DOI: 10.1074/jbc.m117.800839] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy is closely linked to impaired fatty acid oxidation, but the molecular basis of this link is unclear. Here, we investigated the loss of an obligate enzyme in mitochondrial long-chain fatty acid oxidation, carnitine palmitoyltransferase 2 (CPT2), on muscle and heart structure, function, and molecular signatures in a muscle- and heart-specific CPT2-deficient mouse (Cpt2M-/-) model. CPT2 loss in heart and muscle reduced complete oxidation of long-chain fatty acids by 87 and 69%, respectively, without altering body weight, energy expenditure, respiratory quotient, or adiposity. Cpt2M-/- mice developed cardiac hypertrophy and systolic dysfunction, evidenced by a 5-fold greater heart mass, 60-90% reduction in blood ejection fraction relative to control mice, and eventual lethality in the absence of cardiac fibrosis. The hypertrophy-inducing mammalian target of rapamycin complex 1 (mTORC1) pathway was activated in Cpt2M-/- hearts; however, daily rapamycin exposure failed to attenuate hypertrophy in Cpt2M-/- mice. Lysine acetylation was reduced by ∼50% in Cpt2M-/- hearts, but trichostatin A, a histone deacetylase inhibitor that improves cardiac remodeling, failed to attenuate Cpt2M-/- hypertrophy. Strikingly, a ketogenic diet increased lysine acetylation in Cpt2M-/- hearts 2.3-fold compared with littermate control mice fed a ketogenic diet, yet it did not improve cardiac hypertrophy. Together, these results suggest that a shift away from mitochondrial fatty acid oxidation initiates deleterious hypertrophic cardiac remodeling independent of fibrosis. The data also indicate that CPT2-deficient hearts are impervious to hypertrophy attenuators, that mitochondrial metabolism regulates cardiac acetylation, and that signals derived from alterations in mitochondrial metabolism are the key mediators of cardiac hypertrophic growth.
Collapse
Affiliation(s)
| | | | | | - Alycia G Berman
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Frederick W Damen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Craig J Goergen
- the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
29
|
Sun R, Zhu B, Xiong K, Sun Y, Shi D, Chen L, Zhang Y, Li Z, Xue L. Senescence as a novel mechanism involved in β-adrenergic receptor mediated cardiac hypertrophy. PLoS One 2017; 12:e0182668. [PMID: 28783759 PMCID: PMC5544424 DOI: 10.1371/journal.pone.0182668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Pathological cardiac hypertrophy used to be elucidated by biomechanical, stretch-sensitive or neurohumoral mechanisms. However, a series of hints have indicated that hypertrophy process simulates senescence program. However, further evidence need to be pursued. To verify this hypothesis and examine whether cardiac senescence is a novel mechanism of hypertrophy induced by isoproterenol, 2-month-old male Sprague Dawley rats were subjected to isoproterenol infusion (0.25mg/kg/day) for 7 days by subcutaneous injection). Key characteristics of senescence (senescence-associated β-galactosidase activity, lipofuscin, expression of cyclin-dependent kinase inhibitors) were examined in cardiac hypertrophy model. Senescence-like phenotype, such as increased senescence-associated β-galactosidase activity, accumulation of lipofuscin and high levels of cyclin-dependent kinase inhibitors (e.g. p16, p19, p21 and p53) was found along the process of cardiac hypertrophy. Cardiac-specific transcription factor GATA4 increased in isoproterenol-treated cardiomyocytes as well. We further found that myocardial hypertrophy could be inhibited by resveratrol, an anti-aging compound, in a dose-dependent manner. Our results showed for the first time that cardiac senescence is involved in the process of pathological cardiac hypertrophy induced by isoproterenol.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Baoling Zhu
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Kai Xiong
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Yan Sun
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Dandan Shi
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Li Chen
- Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Zijian Li
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| | - Lixiang Xue
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
- Medical Research Center, Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- * E-mail: (LX); (ZL)
| |
Collapse
|
30
|
Recovery following Thyroxine Treatment Withdrawal, but Not Propylthiouracil, Averts In Vivo and Ex Vivo Thyroxine-Provoked Cardiac Complications in Adult FVB/N Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6071031. [PMID: 28791308 PMCID: PMC5534272 DOI: 10.1155/2017/6071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/23/2022]
Abstract
Persistent cardiovascular pathology has been described in hyperthyroid patients even with effective antithyroid treatment. Here, we studied the effect of a well-known antithyroid drug, propylthiouracil (PTU; 20 mg/kg/day), on thyroxine (T4; 500 µg/kg/day)-induced increase in blood pressure (BP), cardiac hypertrophy, and altered responses of the contractile myocardium both in vivo and ex vivo after 2 weeks of treatment. Furthermore, the potential recovery through 2 weeks of T4 treatment discontinuation was also investigated. PTU and T4 recovery partially reduced the T4-prompted increase in BP. Alternatively, PTU significantly improved the in vivo left ventricular (LV) function with no considerable effects on cardiac hypertrophy or ex vivo right ventricular (RV) contractile alterations subsequent to T4 treatment. Conversely, T4 recovery considerably enhanced the T4-provoked cardiac changes both in vivo and ex vivo. Altogether, our data is in agreement with the proposal that hyperthyroidism-induced cardiovascular pathology could persevere even with antithyroid treatments, such as PTU. However, this cannot be generalized and further investigation with different antithyroid treatments should be executed. Moreover, we reveal that recovery following experimental hyperthyroidism could potentially ameliorate cardiac function and decrease the risk for additional cardiac complications, yet, this appears to be model-dependent and should be cautiously construed.
Collapse
|
31
|
A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3920195. [PMID: 28751931 PMCID: PMC5511646 DOI: 10.1155/2017/3920195] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Pathological molecular mechanisms involved in myocardial remodeling contribute to alter the existing structure of the heart, leading to cardiac dysfunction. Among the complex signaling network that characterizes myocardial remodeling, the distinct processes are myocyte loss, cardiac hypertrophy, alteration of extracellular matrix homeostasis, fibrosis, defective autophagy, metabolic abnormalities, and mitochondrial dysfunction. Several pathophysiological stimuli, such as pressure and volume overload, trigger the remodeling cascade, a process that initially confers protection to the heart as a compensatory mechanism. Yet chronic inflammation after myocardial infarction also leads to cardiac remodeling that, when prolonged, leads to heart failure progression. Here, we review the molecular pathways involved in cardiac remodeling, with particular emphasis on those associated with myocardial infarction. A better understanding of cell signaling involved in cardiac remodeling may support the development of new therapeutic strategies towards the treatment of heart failure and reduction of cardiac complications. We will also discuss data derived from gene therapy approaches for modulating key mediators of cardiac remodeling.
Collapse
|
32
|
Moderate lifelong overexpression of tuberous sclerosis complex 1 (TSC1) improves health and survival in mice. Sci Rep 2017; 7:834. [PMID: 28400571 PMCID: PMC5429778 DOI: 10.1038/s41598-017-00970-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The tuberous sclerosis complex 1/2 (TSC1/2) is an endogenous regulator of the mechanistic target of rapamycin (mTOR). While mTOR has been shown to play an important role in health and aging, the role of TSC1/2 in aging has not been fully investigated. In the current study, a constitutive TSC1 transgenic (Tsc1tg) mouse model was generated and characterized. mTORC1 signaling was reduced in majority of the tissues, except the brain. In contrast, mTORC2 signaling was enhanced in Tsc1tg mice. Tsc1tg mice are more tolerant to exhaustive exercises and less susceptible to isoproterenol-induced cardiac hypertrophy at both young and advanced ages. Tsc1tg mice have less fibrosis and inflammation in aged as well as isoproterenol-challenged heart than age-matched wild type mice. The female Tsc1tg mice exhibit a higher fat to lean mass ratio at advanced ages than age-matched wild type mice. More importantly, the lifespan increased significantly in female Tsc1tg mice, but not in male Tsc1tg mice. Collectively, our data demonstrated that moderate increase of TSC1 expression can enhance overall health, particularly cardiovascular health, and improve survival in a gender-specific manner.
Collapse
|
33
|
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Studies regarding the role of autophagy in cardiac and vascular tissues have opened new therapeutic avenues to treat cardiovascular disorders. Altogether, these studies point out that autophagic activity needs to be maintained at an optimal level to preserve cardiovascular function. Reaching this goal constitutes a challenge for future efficient therapeutic strategies. The present review therefore highlights recent advances in the understanding of the role of autophagy in cardiovascular pathologies.
Collapse
Affiliation(s)
- Marouane Kheloufi
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France - Service d'hépatologie, DHU unity, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Chantal M Boulanger
- Inserm, U970, Paris cardiovascular research center - PARCC, 56, rue Leblanc, 75015 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, UMR-S 970, Paris, France
| |
Collapse
|
34
|
Delbridge LMD, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial stress and autophagy: mechanisms and potential therapies. Nat Rev Cardiol 2017; 14:412-425. [PMID: 28361977 DOI: 10.1038/nrcardio.2017.35] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is a ubiquitous cellular catabolic process responsive to energy stress. Research over the past decade has revealed that cardiomyocyte autophagy is a prominent homeostatic pathway, important in adaptation to altered myocardial metabolic demand. The cellular machinery of autophagy involves targeted direction of macromolecules and organelles for lysosomal degradation. Activation of autophagy has been identified as cardioprotective in some settings (that is, ischaemia and ischaemic preconditioning). In other situations, sustained autophagy has been linked with cardiopathology (for example, sustained pressure overload and heart failure). Perturbation of autophagy in diabetic cardiomyopathy has also been observed and is associated with both adaptive and maladaptive responses to stress. Emerging research findings indicate that various forms of selective autophagy operate in parallel to manage various types of catabolic cellular cargo including mitochondria, large proteins, glycogen, and stored lipids. In this Review, induction of autophagy associated with cardiac benefit or detriment is considered. The various static and dynamic approaches used to measure autophagy are critiqued, and current inconsistencies in the understanding of autophagy regulation in the heart are highlighted. The prospects for pharmacological intervention to achieve therapeutic manipulation of autophagic processes are also discussed.
Collapse
Affiliation(s)
- Lea M D Delbridge
- School of Biomedical Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kimberley M Mellor
- Department of Physiology, Medical &Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - David J Taylor
- Heart Institute, Cedars-Sinai Hospital, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| | - Roberta A Gottlieb
- Heart Institute, Cedars-Sinai Hospital, 127 South San Vicente Boulevard, Los Angeles, California 90048, USA
| |
Collapse
|
35
|
Xue R, Zeng J, Chen Y, Chen C, Tan W, Zhao J, Dong B, Sun Y, Dong Y, Liu C. Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation. J Cell Mol Med 2017; 21:1193-1205. [PMID: 28181410 PMCID: PMC5431155 DOI: 10.1111/jcmm.13052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/30/2016] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy is one of the major risk factors of cardiovascular morbidity and mortality. Autophagy is acknowledged to be an important mechanism regulating cardiac hypertrophy. Sestrin 1, a downstream target gene of p53, has been proven to regulate autophagy. However, the role of Sestrin 1 in cardiac hypertrophy remains unknown. Our study showed that Sestrin 1 mRNA and protein expression declined in pressure overload cardiac hypertrophy and phenylephrine (PE)-induced cardiac hypertrophy. Knockdown of Sestrin 1 by RNAi deteriorated PE-induced cardiac hypertrophy, whereas the overexpression of Sestrin 1 by adenovirus transfection blunted hypertrophy. We discovered that knockdown of Sestrin 1 resulted in impaired autophagy while overexpression of Sestrin 1 resulted in increased autophagy without affecting lysosomal function. In addition, the antihypertrophic effect of Sestrin 1 overexpression was eliminated by autophagy blockade. Importantly, Sestrin 1 targets at the AMPK/mTORC1/autophagy pathway to inhibit cardiac hypertrophy by interaction with AMPK which is responsible for autophagy regulation. Taken together, our data indicate that Sestrin 1 regulates AMPK/mTORC1/autophagy axis to attenuate cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruicong Xue
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yili Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Cong Chen
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Weiping Tan
- Department of Respiratory, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Bin Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yu Sun
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Chen Liu
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| |
Collapse
|
36
|
Lu J, Sun D, Liu Z, Li M, Hong H, Liu C, Gao S, Li H, Cai Y, Chen S, Li Z, Ye J, Liu P. SIRT6 suppresses isoproterenol-induced cardiac hypertrophy through activation of autophagy. Transl Res 2016; 172:96-112.e6. [PMID: 27016702 DOI: 10.1016/j.trsl.2016.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022]
Abstract
Reduction in autophagy has been reported to contribute to the pathogenesis of cardiac hypertrophy. However, the molecular pathways leading to impaired autophagy at the presence of hypertrophic stimuli remain to be elucidated. The present study aimed to investigate the role of sirtuin 6 (SIRT6), a sirtuin family member, in regulating cardiomyocyte autophagy, and its implication in prevention of cardiac hypertrophy. Primary neonatal rat cardiomyocytes (NRCMs) or Sprague-Dawley (SD) rats were submitted to isoproterenol (ISO) treatment, and then the hypertrophic responses and changes in autophagy activity were measured. The influence of SIRT6 on autophagy was observed in cultured NRCMs with gain- and loss-of-function approaches to regulate SIRT6 expression, and further confirmed in vivo by intramyocardial delivery of an adenovirus vector encoding SIRT6 cDNA. In addition, the involvement of SIRT6-mediated autophagy in attenuation of cardiomyocyte hypertrophy induced by ISO was determined basing on genetic or pharmaceutical disruption of autophagy, and the underlying mechanism was preliminarily explored. ISO-caused cardiac hypertrophy accompanying with a significant decrease in autophagy activity. SIRT6 overexpression enhanced autophagy in NRCMs and in rat hearts, whereas knockdown of SIRT6 by RNA interference led to suppression of cardiomyocyte autophagy. Furthermore, the protective effect of SIRT6 against ISO-stimulated hypertrophy was associated with induction of autophagy. SIRT6 promoted nuclear retention of forkhead box O3 transcription factor possibly via attenuating Akt signaling, which was responsible for autophagy activation. Our findings revealed that SIRT6 positively regulates autophagy in cardiomyocytes, which may help to ameliorate ISO-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Duanping Sun
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Min Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Huiqi Hong
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Cui Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Hong Li
- Department of Biochemistry and Molecular Biology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Yi Cai
- Guangzhou Research Institute of Snake Venom, Guangzhou Medical College, Guangzhou, Guangdong, P.R. China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
37
|
Gu J, Hu W, Song ZP, Chen YG, Zhang DD, Wang CQ. Rapamycin Inhibits Cardiac Hypertrophy by Promoting Autophagy via the MEK/ERK/Beclin-1 Pathway. Front Physiol 2016; 7:104. [PMID: 27047390 PMCID: PMC4796007 DOI: 10.3389/fphys.2016.00104] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/03/2016] [Indexed: 01/07/2023] Open
Abstract
Rapamycin, also known as sirolimus, is an antifungal agent and immunosuppressant drug used to prevent organ rejection in transplantation. However, little is known about the role of rapamycin in cardiac hypertrophy and the signaling pathways involved. Here, the effect of rapamycin was examined using phenylephrine (PE) induced cardiomyocyte hypertrophy in vitro and in a rat model of aortic banding (AB) - induced hypertrophy in vivo. Inhibition of MEK/ERK signaling reversed the effect of rapamycin on the up-regulation of LC3-II, Beclin-1 and Noxa, and the down-regulation of Mcl-1 and p62. Silencing of Noxa or Beclin-1 suppressed rapamycin-induced autophagy, and co-immunoprecipitation experiments showed that Noxa abolishes the inhibitory effect of Mcl-1 on Beclin-1, promoting autophagy. In vivo experiments showed that rapamycin decreased AB-induced cardiac hypertrophy in a MEK/ERK dependent manner. Taken together, our results indicate that rapamycin attenuates cardiac hypertrophy by promoting autophagy through a mechanism involving the modulation of Noxa and Beclin-1 expression by the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China; Department of Cardiology, Shanghai Minhang Hospital, Fudan UniversityShanghai, China
| | - Wei Hu
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University Shanghai, China
| | - Zhi-Ping Song
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University Shanghai, China
| | - Yue-Guang Chen
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University Shanghai, China
| | - Da-Dong Zhang
- Department of Cardiology, Shanghai Minhang Hospital, Fudan University Shanghai, China
| | - Chang-Qian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai, China
| |
Collapse
|
38
|
Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1425-33. [PMID: 26993579 DOI: 10.1016/j.bbalip.2016.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/12/2022]
Abstract
The heart's extraordinary metabolic flexibility allows it to adapt to normal changes in physiology in order to preserve its function. Alterations in the metabolic profile of the heart have also been attributed to pathological conditions such as ischemia and hypertrophy; however, research during the past decade has established that cardiac metabolic adaptations can precede the onset of pathologies. It is therefore critical to understand how changes in cardiac substrate availability and use trigger events that ultimately result in heart dysfunction. This review examines the mechanisms by which the heart obtains fuels from the circulation or from mobilization of intracellular stores. We next describe experimental models that exhibit either an increase in glucose use or a decrease in FA oxidation, and how these aberrant conditions affect cardiac metabolism and function. Finally, we highlight the importance of alternative, relatively under-investigated strategies for the treatment of heart failure. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Florencia Pascual
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, 27599, USA.
| |
Collapse
|
39
|
Xu L, Brink M. mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1894-903. [PMID: 26775585 DOI: 10.1016/j.bbamcr.2016.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is an evolutionary conserved kinase that senses the nutrient and energy status of cells, the availability of growth factors, stress stimuli and other cellular and environmental cues. It responds by regulating a range of cellular processes related to metabolism and growth in accordance with the available resources and intracellular needs. mTOR has distinct functions depending on its assembly in the structurally distinct multiprotein complexes mTORC1 or mTORC2. Active mTORC1 enhances processes including glycolysis, protein, lipid and nucleotide biosynthesis, and it inhibits autophagy. Reported functions for mTORC2 after growth factor stimulation are very diverse, are tissue and cell-type specific, and include insulin-stimulated glucose transport and enhanced glycogen synthesis. In accordance with its cellular functions, mTOR has been demonstrated to regulate cardiac growth in response to pressure overload and is also known to regulate cells of the immune system. The present manuscript presents recently obtained insights into mechanisms whereby mTOR may change anabolic, catabolic and stress response pathways in cardiomocytes and discusses how mTOR may affect inflammatory cells in the heart during hemodynamic stress. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Marijke Brink
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
40
|
Nishida K, Otsu K. Autophagy during cardiac remodeling. J Mol Cell Cardiol 2015; 95:11-8. [PMID: 26678624 DOI: 10.1016/j.yjmcc.2015.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022]
Abstract
Despite progress in cardiovascular research and evidence-based therapies, heart failure is a leading cause of morbidity and mortality in industrialized countries. Cardiac remodeling is a chronic maladaptive process, characterized by progressive ventricular dilatation, cardiac hypertrophy, fibrosis, and deterioration of cardiac performance, and arises from interactions between adaptive modifications of cardiomyocytes and negative aspects of adaptation such as cardiomyocyte death and fibrosis. Autophagy has evolved as a conserved process for bulk degradation and recycling of cytoplasmic components, such as long-lived proteins and organelles. Accumulating evidence demonstrates that autophagy plays an essential role in cardiac remodeling to maintain cardiac function and cellular homeostasis in the heart. This review discusses some recent advances in understanding the role of autophagy during cardiac remodeling. This article is part of a Special Issue entitled: Autophagy in the Heart.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK.
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK
| |
Collapse
|
41
|
Abstract
Cardiac remodeling includes alterations in molecular, cellular, and interstitial systems contributing to changes in size, shape, and function of the heart. This may be the result of injury, alterations in hemodynamic load, neurohormonal effects, electrical abnormalities, metabolic changes, etc. Thyroid hormones (THs) serve as master regulators for diverse remodeling processes of the cardiovascular system-from the prenatal period to death. THs promote a beneficial cardiomyocyte shape and improve contractility, relaxation, and survival via reversal of molecular remodeling. THs reduce fibrosis by decreasing interstitial collagen and reduce the incidence and duration of arrhythmias via remodeling ion channel expression and function. THs restore metabolic function and also improve blood flow both by direct effects on the vessel architecture and decreasing atherosclerosis. Optimal levels of THs both in the circulation and in cardiac tissues are critical for normal homeostasis. This review highlights TH-based remodeling and clinically translatable strategies for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Viswanathan Rajagopalan
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd, PO Box 8000, Old Westbury, NY, 11568-8000, USA,
| | | |
Collapse
|
42
|
Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation. Toxicol Lett 2015; 237:121-32. [DOI: 10.1016/j.toxlet.2015.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
|
43
|
Drolet MC, Desbiens-Brassard V, Roussel E, Tu V, Couet J, Arsenault M. Blockade of the acute activation of mTOR complex 1 decreases hypertrophy development in rats with severe aortic valve regurgitation. SPRINGERPLUS 2015; 4:435. [PMID: 26306297 PMCID: PMC4542859 DOI: 10.1186/s40064-015-1230-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
Background Hypertrophy (H) is an adaptive response of the heart to a hemodynamic overload. Severe left ventricular (LV) volume overload (VO) from valve regurgitations (aortic (AR) or mitral regurgitation) leads to eccentric LVH. Increased protein turnover is a major event during development of LVH and the mechanistic target of rapamycin (mTOR) is a key molecule for its control. The role of mTOR inhibition in the development of LVH using rapamycin for relatively short periods of time (days to a few weeks) has been studied in the past in pressure overload models but not in VO models. We investigated if mTOR pathway was activated during LVH development in a model of severe VO (AR) in rats and if a rapamycin treatment can slow heart remodeling in this situation. Methods and Results Male rats with severe AR were studied acutely at 2 days, at 8 weeks (compensated phase) and 6 months (late phase) after VO induction. mTOR complex (mTORC) 1 (ribosomal S6 protein phosphorylation) was activated early after AR induction but not later in the disease whereas mTORC2 activity levels (Akt phosphorylation at Ser473) remained stable. We observed that a moderate dose of rapamycin (2 mg/kg/day; orally) for 8 weeks prevented severe LVH caused by AR (−46 %: p < 0.001). Rapamycin treatment specifically inhibited LV mTORC1 without altering mTORC2 activity at 8 weeks. Rapamycin also prevented cardiac myocyte hypertrophy caused by AR. Conclusion Rapamycin slows hypertrophy in LV VO by inhibiting early activation of mTORC1 without modulating mTORC2.
Collapse
Affiliation(s)
- Marie-Claude Drolet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Vincent Desbiens-Brassard
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Elise Roussel
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Veronique Tu
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Jacques Couet
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| | - Marie Arsenault
- Groupe de Recherche sur les Valvulopathies, Centre de Recherche de l'Institut universitaire de Cardiologie et pneumologie de Québec, Université Laval, 2725, Chemin Sainte-Foy, Quebec, QC G1V 4G5 Canada
| |
Collapse
|
44
|
Diniz GP, Lino CA, Guedes EC, Moreira LDN, Barreto-Chaves MLM. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor. Basic Res Cardiol 2015. [PMID: 26202011 DOI: 10.1007/s00395-015-0504-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil.
| | - Caroline Antunes Lino
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Elaine Castilho Guedes
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Luana do Nascimento Moreira
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
45
|
Liu B, Wu Z, Li Y, Ou C, Huang Z, Zhang J, Liu P, Luo C, Chen M. Puerarin prevents cardiac hypertrophy induced by pressure overload through activation of autophagy. Biochem Biophys Res Commun 2015; 464:908-15. [PMID: 26188094 DOI: 10.1016/j.bbrc.2015.07.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 11/28/2022]
Abstract
This study aimed to explore the effects of puerarin on autophagy in cardiac hypertrophy. Decreased 5'-adenosine monophosphate kinase (AMPK) activity alone with inhibited autophagy could be detected in rats within 3 weeks after aortic banding (AB). Puerarin treatment for 3 weeks in AB rats significantly restored autophagy. Administration of puerarin for 6 weeks effectively restricted cardiomyocyte hypertrophy and apoptosis. In an in vitro study, similar anti-hypertrophy and anti-apoptosis effects of puerarin on isoprenaline-induced H9c2 cells were also observed. After inhibition of autophagy by pretreatment with 3-methyladenine, the protective effects of puerarin were blocked. Further in vivo study demonstrated that puerarin significantly enabled phosphorylation of 5'-AMPK to be activated, subsequently inhibiting expression of the mammalian target of rapamycin (mTOR) target proteins S6 ribosomal protein and 4E-binding protein 1. All these data indicate that puerarin exerts protective effects against cardiomyocyte hypertrophy and apoptosis, partly by restoration of autophagy through AMPK/mTOR-mediated signaling.
Collapse
Affiliation(s)
- Bei Liu
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Zhiye Wu
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Yunpeng Li
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Caiwen Ou
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Zhenjun Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Jianwu Zhang
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Peng Liu
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China
| | - Chengfeng Luo
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, China.
| | - Minsheng Chen
- Department of Cardiology, Zhu Jiang Hospital of Southern Medical University, China.
| |
Collapse
|
46
|
Li Z, Wang J, Yang X. Functions of autophagy in pathological cardiac hypertrophy. Int J Biol Sci 2015; 11:672-8. [PMID: 25999790 PMCID: PMC4440257 DOI: 10.7150/ijbs.11883] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 12/29/2022] Open
Abstract
Pathological cardiac hypertrophy is the response of heart to various biomechanical and physiopathological stimuli, such as aging, myocardial ischemia and hypertension. However, a long-term exposure to the stress makes heart progress to heart failure. Autophagy is a dynamic self-degradative process necessary for the maintenance of cellular homeostasis. Accumulating evidence has revealed a tight link between cardiomyocyte autophagy and cardiac hypertrophy. Sophisticatedly regulated autophagy protects heart from various physiological and pathological stimuli by degradating and recycling of protein aggregates, lipid drops, or organelles. Here we review the recent progresses concerning the functions of autophagy in cardiac hypertrophy induced by various hypertrophic stimuli. Moreover, the therapeutic strategies targeting autophagy for cardiac hypertrophy will also be discussed.
Collapse
Affiliation(s)
- Zhenhua Li
- State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Collaborative Innovation Center for Cardiovascular Disorders, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
47
|
Zhang S, Li G, Fu X, Qi Y, Li M, Lu G, Hu J, Wang N, Chen Y, Bai Y, Cui M. PDCD5 protects against cardiac remodeling by regulating autophagy and apoptosis. Biochem Biophys Res Commun 2015; 461:321-8. [PMID: 25881505 DOI: 10.1016/j.bbrc.2015.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 01/06/2023]
Abstract
Cardiac remodeling, including cardiac hypertrophy and fibrosis, is an important pathological process that can lead to heart failure. A previous study demonstrated that autophagy could represent an active adaptive response in cardiomyocytes that affords protection from cardiac remodeling. In the present study, we investigated the role of an autophagy-related gene, PDCD5 (Programmed cell death 5), in cardiac remodeling induced by β-adrenergic stimulation in vivo. We report for the first time that mice systemically overexpressing PDCD5 (PDCD5tg) were protected from cardiac remodeling. In addition, cardiac function was preserved in PDCD5tg mice in response to isoproterenol (ISO) stimulation. Importantly, basal autophagy was significantly higher in PDCD5tg mice than in the wild-type (WT) mice. Moreover, apoptosis was significantly lower in PDCD5tg mice than in WT mice, among the ISO-induced animals. In summary, our findings reveal that PDCD5 overexpression improves cardiac function and inhibits cardiac remodeling induced by ISO via induction of autophagy and inhibition of apoptosis.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China
| | - Ge Li
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xin Fu
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China
| | - Yanchao Qi
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China
| | - Mengtao Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guang Lu
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jia Hu
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Nan Wang
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China
| | - Yingyu Chen
- Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ming Cui
- Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education and Beijing Key Laboratory of Cardiovasicular Receptors Research, Beijing 100191, China.
| |
Collapse
|
48
|
Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:252-61. [DOI: 10.1016/j.bbadis.2014.05.020] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
|
49
|
Rohrbach S, Aslam M, Niemann B, Schulz R. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects. Br J Pharmacol 2015; 171:2964-92. [PMID: 24611611 DOI: 10.1111/bph.12650] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/12/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans.
Collapse
Affiliation(s)
- Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | |
Collapse
|
50
|
Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S. An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun 2014; 456:250-6. [PMID: 25446079 DOI: 10.1016/j.bbrc.2014.11.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Alpha-adrenergic agonists is known to be protective in cardiac myocytes from apoptosis induced by beta-adrenergic stimulation. Although there has been a recent focus on the role of cardiac autophagy in heart failure, its role in heart failure with adrenergic overload has not yet been elucidated. In the present study, we investigated the contribution of autophagy to cardiac failure during adrenergic overload both in vitro and in vivo. Neonatal rat cardiac myocytes overexpressing GFP-tagged LC3 were prepared and stimulated with the alpha1-adrenergic agonist, phenylephrine (PE), the beta-adrenergic agonist, isoproterenol (ISO), or norepinephrine (NE) in order to track changes in the formation of autophagosomes in vitro. All adrenergic stimulators increased cardiac autophagy by stimulating autophagic flux. Blocking autophagy by the knockdown of autophagy-related 5 (ATG5) exacerbated ISO-induced apoptosis and negated the anti-apoptotic effects of PE, which indicated the cardioprotective role of autophagy during adrenergic overload. PE-induced cardiac autophagy was mediated by the PI3-kinase/Akt pathway, but not by MEK/ERK, whereas both pathways mediated the anti-apoptotic effects of PE. Knock down of Akt1 was the most essential among the three Akt family members examined for the induction of cardiac autophagy. The four-week administration of PE kept the high level of cardiac autophagy without heart failure in vivo, whereas autophagy levels in a myocardium impaired by four-week persistent administration of ISO or NE were the same with the control state. These present study indicated that cardiac autophagy played a protective role during adrenergic overload and also that the Akt pathway could mediate cardiac autophagy for the anti-apoptotic effects of the alpha-adrenergic pathway.
Collapse
Affiliation(s)
- Mikihiko Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eri Iwai-Kanai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Faculty of Health Care, Tenri Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Maki Katamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuichiro Mita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|