1
|
Guadagnin AR, Peñagaricano F, Dahl GE, Laporta J. Programming effects of intrauterine hyperthermia on adrenal gland development. J Dairy Sci 2024; 107:6308-6321. [PMID: 38580145 DOI: 10.3168/jds.2023-24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Maternal heat stress during late pregnancy can lead to intrauterine hyperthermia and affect fetal hypothalamic-pituitary-adrenal axis development and function. Herein, we investigated the effects of chronic environmental heat stress exposure of Holstein cows in the last 2 mo of gestation on their offspring's adrenal gland histomorphology and transcriptome. Cows in their last 54 ± 5 d of gestation were either heat stressed (housed under the shade of a freestall barn) or provided heat stress abatement via active cooling (via water soakers and fans) during a subtropical summer (temperature-humidity index >68). Respiration rate (RR) and skin temperature (ST) were elevated in heat-stressed dams relative to the cows with access to heat abatement (23 breaths/min and 2°C higher for RR and ST, respectively). Heifers born to heat-stressed cows experienced heat stress in utero (HS), whereas heifers born to actively cooled cows did not (CL). The adrenal gland was harvested from 6 heifers per group that were euthanized at birth (d 0; n = 12) or 1 wk after weaning (d 63; n = 12). Circulating cortisol was measured from blood samples collected weekly throughout the preweaning period. At d 63, heifers that experienced HS while developing in utero had heavier adrenal glands, with a greater total tissue surface area and thickness of the zona glomerulosa (ZG), fasciculata (ZF), and reticularis (ZR), compared with CL heifers. In addition, the adrenal gland of HS heifers had fewer cells in the ZG, more and larger cells in the ZF, and larger cells in the ZR, relative to CL heifers. Although no changes in circulating cortisol were observed through the preweaning period, the transcriptomic profile of the adrenal tissue was altered by fetal exposure to hyperthermia. Both at birth and on d 63, approximately 30 pathways were differentially expressed in the adrenal glands of HS heifers relative to CL. These pathways were associated with immune function, inflammation, prolactin signaling, cell function, and calcium transport. Upstream regulators significantly activated or inhibited in the adrenal glands of heifers exposed to intrauterine hyperthermia were identified. Maternal exposure to heat stress during late gestation caused an enlargement of their offspring's adrenal glands by inducing ZG and ZF cell hypertrophy, and caused gene expression changes. These phenotypic, histological, and molecular changes in the adrenal gland might lead to alterations in stress, immune, and metabolic responses later in life.
Collapse
Affiliation(s)
- Anne R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - Jimena Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
2
|
Mondello JE, Gano A, Vore AS, Deak T. Cues associated with repeated ethanol exposure facilitate the corticosterone response to ethanol and immunological challenges in adult male Sprague Dawley rats: implications for neuroimmune regulation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2023; 49:359-369. [PMID: 36862971 PMCID: PMC10474242 DOI: 10.1080/00952990.2023.2169831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
Background: We previously found a conditioned increase in central neuroinflammatory markers (Interleukin 6; IL-6) following exposure to alcohol-associated cues. Recent studies suggest (unconditioned) induction of IL-6 is entirely dependent on ethanol-induced corticosterone.Objectives: The goals of these present studies were to test whether alcohol-paired cues facilitated the hypothalamic-pituitary-adrenal (HPA) axis response to either a subthreshold priming alcohol dose or an immune or psychological stress challengeMethods: In Experiment 1 (N = 64), adult male Sprague Dawley rats were trained (paired or unpaired, four pairings total) with either vehicle or 2 g/kg alcohol [intragastric (i.g.) or intraperitoneal (i.p.)] injections. In Experiments 2 (N = 28) and 3 (N = 30), male rats were similarly trained but with 4 g/kg alcohol i.g. intubations. On test day, all rats were either administered a 0.5 g/kg alcohol dose (i.p. or i.g. Experiment 1), a 100 µg/kg i.p. lipopolysaccharide (LPS) challenge (Experiment 2), or a restraint challenge (Experiment 3), and exposed to alcohol-associated cues. Blood plasma was collected for analysis.Results: Alcohol-associated cues facilitated the plasma corticosterone response to a subthreshold dose of alcohol (F1,28 = 4.85, p < .05) and an immune challenge (F8,80 = 6.23, p < .001), but not a restraint challenge (F2,27 = 0.18, p > .05).Conclusion: These findings reveal that the impact of the cues associated with alcohol intoxication on the HPA axis may be context-specific. This work illustrates how HPA axis learning processes form in the early stages of alcohol use and has important implications for how the HPA and neuroimmune conditioning may develop in alcohol use disorder in humans and facilitate the response to a later immune challenge.
Collapse
Affiliation(s)
- Jamie E. Mondello
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Andrew S. Vore
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton NY 13902-6000, USA
| |
Collapse
|
3
|
Zhang K, Hu Y, Li R, Li T. Single-cell atlas of murine adrenal glands reveals immune-adrenal crosstalk during systemic <i>Candida albicans</i> infection. Front Immunol 2022; 13:966814. [PMID: 36389688 PMCID: PMC9664004 DOI: 10.3389/fimmu.2022.966814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal sepsis remains a major health threat with high mortality, where the adrenal gland stress response has been rarely reported. <i>Candida albicans</i> (<i>C.albicans</i>) is the most common opportunistic fungal pathogen of life-threatening disseminated candidiasis and fungal sepsis. In the present study, we performed single-cell RNA sequencing (scRNA-Seq) using the 10x Genomics platform to analyze the changes in murine adrenal transcriptome following systemic <i>C.albicans</i> infection. A total of 16 021 cells were categorized into 18 transcriptionally distinct clusters, representing adrenocortical cells, endothelial cells, various immune cells, mesenchymal cells, smooth muscle cells, adrenal capsule, chromaffin cells, neurons and glials. As the main cell component in the adrenal gland responsible for steroidogenesis, the adrenocortical cells dramatically diminished and were further grouped into 10 subclusters, which differently distributed in the infected and uninfected samples. Pseudo-time analysis revealed transitions of the adrenocortical cells from the initial normal states to active or dysfunctional states following systemic <i>C.albicans</i> infection <i>via</i> two trajectory paths. Endothelial cells in the highly vascularized organ of adrenal gland further proliferated following infection, with the upregulation of genes positively regulating angiogenesis and downregulation of protective genes of endothelial cells. Immune cells were also excessively infiltrated in adrenal glands of <i>C.albicans</i>-infected mice. Macrophages dominated the immune microenvironments in murine adrenal glands both before and after <i>C.albicans</i> infection, mediating the crosstalk among the steroid-producing cells, endothelial cells and immune cells within the adrenal gland. NLR family, pyrin domain containing 3 (NLRP3, encoded by <i>Nlrp3</i>) and complement receptor 3 (CR3, encoded by <i>Itgam</i>) were found to be significantly upregulated on the adrenal macrophages upon systemic <i>C.albicans</i> infection and might play critical roles in mediating the myeloid response. Meanwhile, the number and strength of the interactions between the infiltrating immune cells and adrenal resident cells were unveiled by cell-cell communication analysis to be dramatically increased after systemic <i>C.albicans</i> infection, indicating that the immune-adrenal crosstalk might contribute to the compromised functions of adrenal cells. Overall, our comprehensive picture of the murine adrenal gland microenvironment in systemic <i>C.albicans</i> infection provides deeper insights into the immune-adrenal cell communications during fungal sepsis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| |
Collapse
|
4
|
Rehman A, Pacher P, Haskó G. Role of Macrophages in the Endocrine System. Trends Endocrinol Metab 2021; 32:238-256. [PMID: 33455863 DOI: 10.1016/j.tem.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are cells of the innate immune system that play myriad roles in the body. Macrophages are known to reside in endocrine glands, and a body of evidence now suggests that these cells interact closely with endocrine cells. Immune-endocrine interactions are important in the development of endocrine glands and their functioning during physiological states, and also become key players in pathophysiological states. Through gene expression profiling, diverse subpopulations of tissue macrophages have been discovered within endocrine organs; this has important implications for disease pathogenesis and potential pharmacotherapy. The molecular basis for the crosstalk between macrophages and endocrine cells is being unraveled, and allows the identification of multiple points for pharmacologic intervention. Macrophages in adipose tissue and pancreatic islets are key players in the process of metaflammation (metabolic inflammation) that underlies the development of insulin resistance, metabolic syndrome, diabetes mellitus, and non-alcoholic fatty liver disease. In the ovary, they play important roles in ovarian folliculogenesis and ovulation, whereas in the male reproductive tract they regulate spermatogenesis through the regulation of steroidogenesis by Leydig cells. We summarize the diverse roles played by macrophages in the endocrine system and identify potential targets for pharmacotherapy in endocrine disorders.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health (NIH), National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Marchette RCN, Bicca MA, Santos ECDS, de Lima TCM. Distinctive stress sensitivity and anxiety-like behavior in female mice: Strain differences matter. Neurobiol Stress 2018; 9:55-63. [PMID: 30450373 PMCID: PMC6234269 DOI: 10.1016/j.ynstr.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic studies have shown that the prevalence of stress-related mood disorders is higher in women, which suggests a different response of neuroendocrine circuits involved in the response to stressful events, as well as a genetic background influence. The aim of this study was to investigate the baseline differences in anxiety-like behaviors of females of two commonly used mice strains. Secondly, we have also aimed to study their behavioral and biochemical alterations following stress. Naïve 3-4 months-old Swiss and C57BL/6 female mice were evaluated in the elevated plus maze (EPM) and in the acoustic startle response (ASR) for anxiety-like behaviors. Besides, an independent group of animals from each strain was exposed to cold-restraint stress (30 min/4 °C, daily) for 21 consecutive days and then evaluated in EPM and in the sucrose consumption tests. Twenty-four hours following behavioral experimentation mice were decapitated and their hippocampi (HP) and cortex (CT) dissected for further Western blotting analysis of glucocorticoid receptor (GR) and glial fibrillary acid protein (GFAP). Subsequent to each behavioral protocol, animal blood samples were collected for further plasma corticosterone analysis. C57BL/6 presented a lower anxiety profile than Swiss female mice in both behavioral tests, EPM and ASR. These phenomena could be correlated with the fact that both strains have distinct corticosterone levels and GR expression in the HP at the baseline level. Moreover, C57BL/6 female mice were more vulnerable to the stress protocol, which was able to induce an anhedonic state characterized by lower preference for a sucrose solution. Behavioral anhedonic-like alterations in these animals coincide with reduced plasma corticosterone accompanied with increased GR and GFAP levels, both in the HP. Our data suggest that in C57BL/6 female mice a dysregulation of the hypothalamus-pituitary-adrenal axis (HPA-axis) occurs, in which corticosterone acting on GRs would possibly exert its pro-inflammatory role, ultimately leading to astrocyte activation in response to stress.
Collapse
Affiliation(s)
| | | | | | - Thereza Christina Monteiro de Lima
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88049-970, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
7
|
Kanczkowski W, Sue M, Zacharowski K, Reincke M, Bornstein SR. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol Cell Endocrinol 2015; 408:241-8. [PMID: 25543020 DOI: 10.1016/j.mce.2014.12.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
Sepsis and septic shock in response to bacterial or viral infections remain the major health problem worldwide. Despite decades of intensive research and improvements in medical care, severe sepsis is associated with high mortality. Rapid activation of the adrenal gland glucocorticoid and catecholamine production is a fundamental component of the stress response and is essential for survival of the host. However, in many critically ill patients this homeostatic function of the adrenal gland is often impaired. In these patients, plasma levels of adrenocorticotropic hormone (ACTH) and cortisol are often dissociated. This has been attributed to the stimulatory action of non-ACTH factors within the adrenal gland such as cytokines, and recently with decreased cortisol metabolism and suppressed ACTH synthesis. Regulation of the hypothalamus-pituitary-adrenal (HPA) axis function during sepsis is a complex process which involves various immune and neuroendocrine interactions occurring at the levels of the central nervous system (CNS) and the adrenal gland. A coordinated interaction of numerous cell types and systems within the adrenal gland is involved in the sustained adrenal glucocorticoid production. This review article describes and discusses recent experimental findings regarding the role of adrenal gland microenvironment including the adrenal vasculature and the immune-adrenal crosstalk in the disregulated HPA axis during sepsis conditions. In summary, in addition to the reduced cortisol breakdown and related ACTH suppression, sepsis-mediated chronic activation of the immune-adrenal crosstalk and vascular dysfunction may contribute to the HPA axis dysregulation found in septic patients.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Mariko Sue
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Kai Zacharowski
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, 60595 Frankfurt am Main, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
8
|
Deak T, Quinn M, Cidlowski JA, Victoria NC, Murphy AZ, Sheridan JF. Neuroimmune mechanisms of stress: sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress 2015; 18:367-80. [PMID: 26176590 PMCID: PMC4813310 DOI: 10.3109/10253890.2015.1053451] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The last decade has witnessed profound growth in studies examining the role of fundamental neuroimmune processes as key mechanisms that might form a natural bridge between normal physiology and pathological outcomes. Rooted in core concepts from psychoneuroimmunology, this review utilizes a succinct, exemplar-driven approach of several model systems that contribute significantly to our knowledge of the mechanisms by which neuroimmune processes interact with stress physiology. Specifically, we review recent evidence showing that (i) stress challenges produce time-dependent and stressor-specific patterns of cytokine/chemokine expression in the CNS; (ii) inflammation-related genes exhibit unique expression profiles in males and females depending upon individual, cooperative or antagonistic interactions between steroid hormone receptors (estrogen and glucocorticoid receptors); (iii) adverse social experiences incurred through repeated social defeat engage a dynamic process of immune cell migration from the bone marrow to brain and prime neuroimmune function and (iv) early developmental exposure to an inflammatory stimulus (carageenin injection into the hindpaw) has a lasting influence on stress reactivity across the lifespan. As such, the present review provides a theoretical framework for understanding the role that neuroimmune mechanisms might play in stress plasticity and pathological outcomes, while at the same time pointing toward features of the individual (sex, developmental experience, stress history) that might ultimately be used for the development of personalized strategies for therapeutic intervention in stress-related pathologies.
Collapse
Affiliation(s)
- Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000
- Address correspondence to: Terrence Deak, Ph.D., , Phone: 607-777-5918
| | - Matt Quinn
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - John A. Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709
| | - Nicole C. Victoria
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Petit Science Center, PO Box 5030, Atlanta, GA 30302-5030
| | - John F. Sheridan
- The Ohio State University College of Dentistry and Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH 43210
| |
Collapse
|
9
|
Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev 2013; 34:827-84. [PMID: 23939821 PMCID: PMC3857130 DOI: 10.1210/er.2012-1092] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
The discovery of corticotropin-releasing factor (CRF) or CRH defining the upper regulatory arm of the hypothalamic-pituitary-adrenal (HPA) axis, along with the identification of the corresponding receptors (CRFRs 1 and 2), represents a milestone in our understanding of central mechanisms regulating body and local homeostasis. We focused on the CRF-led signaling systems in the skin and offer a model for regulation of peripheral homeostasis based on the interaction of CRF and the structurally related urocortins with corresponding receptors and the resulting direct or indirect phenotypic effects that include regulation of epidermal barrier function, skin immune, pigmentary, adnexal, and dermal functions necessary to maintain local and systemic homeostasis. The regulatory modes of action include the classical CRF-led cutaneous equivalent of the central HPA axis, the expression and function of CRF and related peptides, and the stimulation of pro-opiomelanocortin peptides or cytokines. The key regulatory role is assigned to the CRFR-1α receptor, with other isoforms having modulatory effects. CRF can be released from sensory nerves and immune cells in response to emotional and environmental stressors. The expression sequence of peptides includes urocortin/CRF→pro-opiomelanocortin→ACTH, MSH, and β-endorphin. Expression of these peptides and of CRFR-1α is environmentally regulated, and their dysfunction can lead to skin and systemic diseases. Environmentally stressed skin can activate both the central and local HPA axis through either sensory nerves or humoral factors to turn on homeostatic responses counteracting cutaneous and systemic environmental damage. CRF and CRFR-1 may constitute novel targets through the use of specific agonists or antagonists, especially for therapy of skin diseases that worsen with stress, such as atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Andrzej T Slominski
- MD, PhD, Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center; 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163.
| | | | | | | | | | | |
Collapse
|
10
|
Hueston CM, Deak T. The inflamed axis: the interaction between stress, hormones, and the expression of inflammatory-related genes within key structures comprising the hypothalamic-pituitary-adrenal axis. Physiol Behav 2013; 124:77-91. [PMID: 24184413 DOI: 10.1016/j.physbeh.2013.10.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
Acute stress increases the expression of cytokines and other inflammatory-related factors in the CNS, plasma, and endocrine glands, and activation of inflammatory signaling pathways within the hypothalamic-pituitary-adrenal (HPA) axis may play a key role in later stress sensitization. In addition to providing a summary of stress effects on neuroimmune changes within the CNS, we present a series of experiments that characterize stress effects on members of the interleukin-1β (IL-1) super-family and other inflammatory-related genes in key structures comprising the HPA axis (PVN, pituitary and adrenal glands), followed by a series of experiments examining the impact of exogenous hormone administration (CRH and ACTH) and dexamethasone on the expression of inflammatory-related genes in adult male Sprague-Dawley rats. The results demonstrated robust, time-dependent, and asynchronous expression patterns for IL-1 and IL-1R2 in the PVN, with substantial increases in IL-6 and COX-2 in the adrenal glands emerging as key findings. The effects of exogenous CRH and ACTH were predominantly isolated within the adrenals. Finally, pretreatment with dexamethasone severely blunted neuroimmune changes in the adrenal glands, but not in the PVN. These findings provide novel insight into the relationship between stress, the expression of inflammatory signaling factors within key structures comprising the HPA axis, and their interaction with HPA hormones, and provide a foundation for better understanding the role of cytokines as modulators of hypothalamic, pituitary and adrenal sensitivity.
Collapse
Affiliation(s)
- Cara M Hueston
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | |
Collapse
|
11
|
Blandino P, Hueston CM, Barnum CJ, Bishop C, Deak T. The impact of ventral noradrenergic bundle lesions on increased IL-1 in the PVN and hormonal responses to stress in male sprague dawley rats. Endocrinology 2013; 154:2489-500. [PMID: 23671261 DOI: 10.1210/en.2013-1075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The impact of acute stress on inflammatory signaling within the central nervous system is of interest because these factors influence neuroendocrine function both directly and indirectly. Exposure to certain stressors increases expression of the proinflammatory cytokine, Il-1β in the hypothalamus. Increased IL-1 is reciprocally regulated by norepinephrine (stimulatory) and corticosterone (inhibitory), yet neural pathways underlying increased IL-1 have not been clarified. These experiments explored the impact of bilateral lesions of the ventral noradrenergic bundle (VNAB) on IL-1 expression in the paraventricular nucleus of the hypothalamus (PVN) after foot shock. Adult male Sprague Dawley rats received bilateral 6-hydroxydopamine lesions of the VNAB (VNABx) and were exposed to intermittent foot shock. VNABx depleted approximately 64% of norepinephrine in the PVN and attenuated the IL-1 response produced by foot shock. However, characterization of the hypothalamic-pituitary-adrenal response, a crucial prerequisite for interpreting the effect of VNABx on IL-1 expression, revealed a profound dissociation between ACTH and corticosterone. Specifically, VNABx blocked the intronic CRH response in the PVN and the increase in plasma ACTH, whereas corticosterone was unaffected at all time points examined. Additionally, foot shock led to a rapid and profound increase in cyclooxygenase-2 and IL-1 expression within the adrenal glands, whereas more subtle effects were observed in the pituitary gland. Together the findings were the 1) demonstration that exposure to acute stress increased expression of inflammatory factors more broadly throughout the hypothalamic-pituitary-adrenal axis; 2) implication of a modest role for norepinephrine-containing fibers of the VNAB as an upstream regulator of PVN IL-1; and 3) suggestion of an ACTH-independent mechanism controlling the release of corticosterone in VNABx rats.
Collapse
Affiliation(s)
- Peter Blandino
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | | | | | |
Collapse
|
12
|
Tkachenko IV, Jääskeläinen T, Jääskeläinen J, Palvimo JJ, Voutilainen R. Interleukins 1α and 1β as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 2011; 76:1103-15. [PMID: 21600230 DOI: 10.1016/j.steroids.2011.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) regulate the activity of the hypothalamo-pituitary-adrenal (HPA) axis at several levels. Although hypothalamic CRH secretion may be the primary mechanism by which these cytokines activate the HPA axis, IL-1 expression is increased within the adrenal glands in models for systemic inflammation, and IL-1 may augment adrenal glucocorticoid production. Our aim was to investigate the direct effects of IL-1α and IL-1β on adrenal steroidogenesis and expression of three key steroidogenic genes in human adrenocortical cells using the NCI-H295R cell line as a model. mRNAs encoding receptors for IL-1, TNF-α, and leukemia inhibitory factor (LIF) were detectable in the cell line (Affymetrix microarray analysis). Both IL-1α and IL-1β increased cortisol, androstenedione, dehydroepiandrosterone and dehydroepiandrosterone sulfate production, and the accumulation of mRNAs for steroidogenic acute regulatory protein (STAR), 17α-hydroxylase/17,20-lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase 2 (HSD3B2) in these cells (P<0.05 for all). Both ILs augmented TNF-α- and LIF-induced STAR and CYP17A1 mRNA accumulation, and TNF-α-induced cortisol production (P<0.05 for all). Both ILs also increased the apoptotic index of the cells (P<0.05), which was efficiently neutralized by their specific antibodies. The IL-induced changes in the STAR, HSD3B2, and CYP17A1 protein levels were not as evident as those in the respective mRNA levels. In conclusion, the combined effect of inflammatory cytokines at the adrenal level in acute or chronic inflammatory states could significantly stimulate glucocorticoid production, and thus explain the observed discrepancy between the cortisol and ACTH concentrations sometimes seen in sepsis and chronic inflammatory states.
Collapse
Affiliation(s)
- Irina V Tkachenko
- Department of Pediatrics, Kuopio University Hospital and University of Eastern Finland, P.O. Box 1777, FI-70211 Kuopio, Finland
| | | | | | | | | |
Collapse
|
13
|
Arakawa H, Arakawa K, Blandino P, Deak T. The role of neuroinflammation in the release of aversive odor cues from footshock-stressed rats: Implications for the neural mechanism of alarm pheromone. Psychoneuroendocrinology 2011; 36:557-68. [PMID: 20888127 DOI: 10.1016/j.psyneuen.2010.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 11/29/2022]
Abstract
Stressed animals have been known to release aversive chemosignals toward which conspecifics show avoidance-like responses. The present studies assessed whether inflammatory cytokine responses provoked by footshock stress modulate odor signals released from male rats. Male rats were exposed to 30min of intermittent footshock (60 shocks, 1.0mA, 100ms each, variable ITI of 30s) or remained in their home cages as non-stressed controls. Real time RT-PCR analysis of brain tissues indicated that footshock increased the pro-inflammatory cytokine, IL-1β and hnCRH as well as c-fos mRNA expressions in the paraventricular nucleus, and the bed nucleus of the stria terminalis, and increased plasma corticosterone levels. Soiled bedding collected from rats exposed to 30-min, but not 5-min, of footshock elicited a differential response, as expressed by decreased sniffing and increased avoidance in male test subjects. Soiled bedding from rats given corticosterone injection (s.c. 1.25 or 3.75mg/ml) 3h before bedding collection evoked no avoidance response in odor-recipients. Furthermore, ICV infusion of the anti-inflammatory cytokine IL-10 (20 or 200ng) into the stimulus animals 30-min before a 30-min footshock session, had no effect on plasma corticosterone levels in the stimulus animals, but attenuated the release of aversive odor as indicated by dose-dependently diminished avoidance in odor-recipient rats. These results demonstrated that stressed rats release odorant cues that cause other rats to move away from the source of the signal. Such stress-induced chemosignals may be mediated by inflammatory cytokine responses in the brain.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | | | | | | |
Collapse
|
14
|
Influence of physical exercise on neuroimmunological functioning and health: aging and stress. Neurotox Res 2010; 20:69-83. [PMID: 20953749 DOI: 10.1007/s12640-010-9224-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022]
Abstract
Chronic and acute stress, with associated pathophysiology, are implicated in a variety of disease states, with neuroimmunological dysregulation and inflammation as major hazards to health and functional sufficiency. Psychosocial stress and negative affect are linked to elevations in several inflammatory biomarkers. Immunosenescence, the deterioration of immune competence observed in the aged aspect of the life span, linked to a dramatic rise in morbidity and susceptibility to diseases with fatal outcomes, alters neuroimmunological function and is particularly marked in the neurodegenerative disorders, e.g., Parkinson's disease and diabetes. Physical exercise diminishes inflammation and elevates agents and factors involved in immunomodulatory function. Both the alleviatory effects of life-long physical activity upon multiple cancer forms and the palliative effects of physical activity for individuals afflicted by cancer offer advantages in health intervention. Chronic conditions of stress and affective dysregulation are associated with neuroimmunological insufficiency and inflammation, contributing to health risk and mortality. Physical exercise regimes have induced manifest anti-inflammatory benefits, mediated possibly by brain-derived neurotrophic factor. The epidemic proportions of metabolic disorders, obesity, and diabetes demand attention; several variants of exercise regimes have been found repeatedly to induce both prevention and improvement under both laboratory and clinical conditions. Physical exercise offers a unique non-pharmacologic intervention incorporating multiple activity regimes, e.g., endurance versus resistance exercise that may be adapted to conform to the particular demands of diagnosis, intervention and prognosis inherent to the staging of autoimmune disorders and related conditions.
Collapse
|