1
|
Yamagishi G, Miyagawa S. Neuroendocrinology of Reproduction and Social Behaviors in Reptiles: Advances Made in the Last Decade. Zoolog Sci 2024; 41:87-96. [PMID: 38587521 DOI: 10.2108/zs230060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/03/2023] [Indexed: 04/09/2024]
Abstract
Among amniotes, reptiles are ectothermic and are clearly distinguished from mammals and birds. Reptiles show great diversity not only in species numbers, but also in ecological and physiological features. Although their physiological diversity is an interesting research topic, less effort has been made compared to that for mammals and birds, in part due to lack of established experimental models and techniques. However, progress, especially in the field of neuroendocrinology, has been steadily made. With this process, basic data on selected reptilian species have been collected. This review article presents the progress made in the last decade, which includes 1) behavioral regulation by sex steroid hormones, 2) regulation of seasonal reproduction by melatonin and GnRH, and 3) regulation of social interaction by arginine vasotocin. Through these research topics, we provide insights into the physiology of reptiles and the latest findings in the field of amniote neuroendocrinology.
Collapse
Affiliation(s)
- Genki Yamagishi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan,
| |
Collapse
|
2
|
Wibbels T. Temperature-dependent sex determination and the David Crews' laboratory: The early years. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:65-69. [PMID: 34843174 DOI: 10.1002/jez.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Thane Wibbels
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
O’Connell LA, Crews D. Evolutionary insights into sexual behavior from whiptail lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:88-98. [PMID: 33929097 PMCID: PMC8556411 DOI: 10.1002/jez.2467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.
Collapse
Affiliation(s)
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Rosenfeld CS, Denslow ND, Orlando EF, Gutierrez-Villagomez JM, Trudeau VL. Neuroendocrine disruption of organizational and activational hormone programming in poikilothermic vertebrates. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:276-304. [PMID: 28895797 PMCID: PMC6174081 DOI: 10.1080/10937404.2017.1370083] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In vertebrates, sexual differentiation of the reproductive system and brain is tightly orchestrated by organizational and activational effects of endogenous hormones. In mammals and birds, the organizational period is typified by a surge of sex hormones during differentiation of specific neural circuits; whereas activational effects are dependent upon later increases in these same hormones at sexual maturation. Depending on the reproductive organ or brain region, initial programming events may be modulated by androgens or require conversion of androgens to estrogens. The prevailing notion based upon findings in mammalian models is that male brain is sculpted to undergo masculinization and defeminization. In absence of these responses, the female brain develops. While timing of organizational and activational events vary across taxa, there are shared features. Further, exposure of different animal models to environmental chemicals such as xenoestrogens such as bisphenol A-BPA and ethinylestradiol-EE2, gestagens, and thyroid hormone disruptors, broadly classified as neuroendocrine disrupting chemicals (NED), during these critical periods may result in similar alterations in brain structure, function, and consequently, behaviors. Organizational effects of neuroendocrine systems in mammals and birds appear to be permanent, whereas teleost fish neuroendocrine systems exhibit plasticity. While there are fewer NED studies in amphibians and reptiles, data suggest that NED disrupt normal organizational-activational effects of endogenous hormones, although it remains to be determined if these disturbances are reversible. The aim of this review is to examine how various environmental chemicals may interrupt normal organizational and activational events in poikilothermic vertebrates. By altering such processes, these chemicals may affect reproductive health of an animal and result in compromised populations and ecosystem-level effects.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, Columbia, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Edward F. Orlando
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Abstract
Social interactions are essential for animals to reproduce, defend their territory, and raise their young. The conserved nature of social behaviors across animal species suggests that the neural pathways underlying the motivation for, and the execution of, specific social responses are also maintained. Modern tools of neuroscience have offered new opportunities for dissecting the molecular and neural mechanisms controlling specific social responses. We will review here recent insights into the neural circuits underlying a particularly fascinating and important form of social interaction, that of parental care. We will discuss how these findings open new avenues to deconstruct infant-directed behavioral control in males and females, and to help understand the neural basis of parenting in a variety of animal species, including humans. Please also see the video abstract here.
Collapse
Affiliation(s)
- Johannes Kohl
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Anita E. Autry
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
6
|
Serotonin signaling in the brain of adult female mice is required for sexual preference. Proc Natl Acad Sci U S A 2013; 110:9968-73. [PMID: 23716677 DOI: 10.1073/pnas.1220712110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female-female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference.
Collapse
|
7
|
O'Connell LA, Matthews BJ, Crews D. Neuronal nitric oxide synthase as a substrate for the evolution of pseudosexual behaviour in a parthenogenetic whiptail lizard. J Neuroendocrinol 2011; 23:244-53. [PMID: 21126273 PMCID: PMC4509676 DOI: 10.1111/j.1365-2826.2010.02099.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of neuroendocrine mechanisms governing sex-typical behaviour is poorly understood. An outstanding animal model is the whiptail lizard (Cnemidophorus) because both the ancestral and descendent species still exist. The ancestral little striped whiptail, Cnemidophorus inornatus, consists of males and females, which exhibit sex-specific mating behaviours. The descendent desert grassland whiptail, Cnemidophorus uniparens, consists only of females that alternately exhibit both female-like and male-like pseudosexual behaviour. Castrated male C. inornatus will mount a conspecific in response to exogenous androgen, although some are also sensitive to progesterone. This polymorphism in progesterone sensitivity in the ancestral species may have been involved in evolution of progesterone-mediated male-typical behaviour in the descendant unisexual lizards. We tested whether progesterone activates a typically androgenic signalling pathway by investigating hormonal regulation of neuronal nitric oxide synthase (nNOS) using in situ hybridisation and NADPH diaphorase histochemistry, a stain for nNOS protein. NADPH diaphorase is widely distributed throughout the brain of both species, although only in the periventricular nucleus of the preoptic area (pvPOA) are there differences between mounting and non-mounting individuals. The number of cells expressing nNOS mRNA and NADPH diaphorase is higher in the pvPOA of individuals that mount in response to progesterone or androgen. Furthermore, the nNOS promoter has both androgen and progesterone response elements, and NADPH diaphorase colocalises with the progesterone receptor in the pvPOA. These data suggest that a polymorphism in progesterone sensitivity in the sexual ancestor reflects a differential regulation of nNOS and may account for the male-typical behaviour in unisexual whiptail lizards.
Collapse
Affiliation(s)
- Lauren A. O'Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - Bryan J. Matthews
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA
- Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
- All correspondence and requests for reprints should to addressed to: David Crews Section of Integrative Biology University of Texas at Austin, Austin, TX 78712 Phone: 512-471-1113
| |
Collapse
|
8
|
O’Connell LA, Matthews BJ, Patel SB, O’Connell JD, Crews D. Molecular characterization and brain distribution of the progesterone receptor in whiptail lizards. Gen Comp Endocrinol 2011; 171:64-74. [PMID: 21185292 PMCID: PMC3041865 DOI: 10.1016/j.ygcen.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Progesterone and its nuclear receptor are critical in modulating reproductive physiology and behavior in female and male vertebrates. Whiptail lizards (genus Cnemidophorus) are an excellent model system in which to study the evolution of sexual behavior, as both the ancestral and descendent species exist. Male-typical sexual behavior is mediated by progesterone in both the ancestral species and the descendant all-female species, although the molecular characterization and distribution of the progesterone receptor protein throughout the reptilian brain is not well understood. To better understand the gene targets and ligand binding properties of the progesterone receptor in whiptails, we cloned the promoter and coding sequence of the progesterone receptor and analyzed the predicted protein structure. We next determined the distribution of the progesterone receptor protein and mRNA throughout the brain of Cnemidophorus inornatus and Cnemidophorus uniparens by immunohistochemistry and in situ hybridization. We found the progesterone receptor to be present in many brain regions known to regulate social behavior and processing of stimulus salience across many vertebrates, including the ventral tegmental area, amygdala, nucleus accumbens and several hypothalamic nuclei. Additionally, we quantified immunoreactive cells in the preoptic area and ventromedial hypothalamus in females of both species and males of the ancestral species. We found differences between both species and across ovarian states. Our results significantly extend our understanding of progesterone modulation in the reptilian brain and support the important role of the nuclear progesterone receptor in modulating sexual behavior in reptiles and across vertebrates.
Collapse
Affiliation(s)
- Lauren A. O’Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Bryan J. Matthews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Sagar B. Patel
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jeremy D. O’Connell
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- All correspondence and requests for reprints should to addressed to: David Crews, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, Phone: 512-471-1113,
| |
Collapse
|
9
|
Dias BG, Chin SG, Crews D. Steroidogenic enzyme gene expression in the brain of the parthenogenetic whiptail lizard, Cnemidophorus uniparens. Brain Res 2008; 1253:129-38. [PMID: 19084508 DOI: 10.1016/j.brainres.2008.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/11/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
The steroidogenic enzyme CYP17 is responsible for catalyzing the production of androgenic precursors, while CYP19 converts testosterone to estradiol. De novo neurosteroidogenesis in specific brain regions influences steroid hormone dependent behaviors. In the all-female lizard species Cnemidophorus uniparens, individuals alternately display both male-like mounting and female-like receptivity. Mounting is associated with high circulating concentrations of progesterone following ovulation (PostOv), while receptivity is correlated with estrogen preceding it (PreOv). At a neuroanatomical level, the preoptic area (POA) and ventromedial nucleus of the hypothalamus (VMN) are the foci of the male-typical mounting and female-typical receptivity, respectively. In this study, we indirectly test the hypothesis that the whiptail lizard brain is capable of de novo neurosteroidogenesis by cloning fragments of the genes encoding two steroidogenic enzymes, CYP17 and CYP19, and examining their expression patterns in the C. uniparens brain. Our data indicate that these genes are expressed in the C. uniparens brain, and more importantly in the POA and VMN. Using radioactive in situ hybridization, we measured higher CYP17 mRNA levels in the POA of PostOv lizards compared to receptive PreOv animals; CYP19 mRNA levels in the VMN did not change across the ovarian cycle. To our knowledge, these are the first data suggesting that the reptilian brain is capable of de novo steroidogenesis. This study also supports the idea that non-gonadal sources of steroid hormones locally produced in behaviorally relevant brain loci are central to the mediation of behavioral output.
Collapse
Affiliation(s)
- Brian George Dias
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|