1
|
Chen WH, Shi YC, Huang QY, Chen JM, Wang ZY, Lin S, Shi QY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: an updated review. Hormones (Athens) 2023; 22:441-451. [PMID: 37452264 PMCID: PMC10449684 DOI: 10.1007/s42000-023-00460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and peripheral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor-related therapies for PCOS.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Qiao-Yi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Zhi-Yi Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Qi-Yang Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
2
|
Rivas M, Serantes D, Pascovich C, Peña F, Ferreira A, Torterolo P, Benedetto L. Electrophysiological characterization of medial preoptic neurons in lactating rats and its modulation by hypocretin-1. Neurosci Res 2022; 184:19-29. [PMID: 36030967 DOI: 10.1016/j.neures.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
The medial preoptic area (mPOA) undergoes through neuroanatomical changes across the postpartum period, during which its neurons play a critical role in the regulation of maternal behavior. In addition, this area is also crucial for sleep-wake regulation. We have previously shown that hypocretins (HCRT) within the mPOA facilitate active maternal behaviors in postpartum rats, while the blockade of endogenous HCRT in this area promotes nursing and sleep. To explore the mechanisms behind these HCRT actions, we aimed to evaluate the effects of juxta-cellular HCRT-1 administration on mPOA neurons in urethane-anesthetized postpartum and virgin female rats. We recorded mPOA single units and the electroencephalogram (EEG) and applied HCRT-1 juxta-cellular by pressure pulses. Our main results show that the electrophysiological characteristics of the mPOA neurons and their relationship with the EEG of postpartum rats did not differ from virgin rats. Additionally, neurons that respond to HCRT-1 had a slower firing rate than those that did not. In addition, administration of HCRT increased the activity in one group of neurons while decreasing it in another, both in postpartum and virgin rats. The mechanisms by which HCRT modulate functions controlled by the mPOA involve different cell populations.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudia Pascovich
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Tan S, Zhou Y, Zhao H, Wu J, Yu H, Yang Y, Yang Y, Zhao H, Li H. Comprehensive transcriptome analysis of hypothalamus reveals genes associated with disorders of sex development in pigs. J Steroid Biochem Mol Biol 2021; 210:105875. [PMID: 33746111 DOI: 10.1016/j.jsbmb.2021.105875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
XX sex reversal, also called XX disorders of sex development (XX-DSD), is a condition affecting the development of the gonads or genitalia, and is relatively common in pigs. However, its genetic etiology and transcriptional regulation mechanism in the hypothalamic-pituitary-gonadal axis (HPGA) remain mostly unknown. XX-DSD (SRY-negative) pigs and normal sows were selected by external genitalia observation. The hypothalamus, which is the integrated center of the HPGA was sampled for whole-transcriptome RNA-seq. The role of DEmiRNA was validated by its overexpression and knockdown in vitro. A total of 1,258 lncRNAs, 1,086 mRNAs, and 61 microRNAs differentially expressed in XX-DSD pigs compared with normal female pigs. Genes in the hormone biosynthesis and secretion pathway significantly up-regulated, and the up-regulation of GNRH1, KISS1 and AVP may associate with the abnormal secretion of GnRH. We also predicted the lncRNA-miRNA-mRNA co-expression triplets and constructed three competing endogenous RNA (ceRNA) potentially associated with XX-DSD. Functional enrichment studies suggested that TCONS_00340886, TCONS_00000204 and miR-181a related to GnRH secretion. Further, miR-181a inhibitor up-regulated GNRH1, PAK6, and CAMK4 in the GT1-7 cells. Conversely, transfection of miR-181a mimics obtained the opposite trends. The expression levels of FSHR, LHR, ESR1 and ESR2 were significantly higher in XX-DSD gondas than those in normal sows. Taken together, we proposed that the balance of endocrine had broken in XX-DSD pigs. The current study is the first to examine the transcriptomic profile in the hypothalamus of XX-DSD pigs. It provides new insight into coding and non-coding RNAs that may be associated with DSD in pigs.
Collapse
Affiliation(s)
- Shuwen Tan
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan 430072, China; Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yi Zhou
- College of Basic Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan 430072, China; College of Science, Tibet University, Lhasa 850000, China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China.
| |
Collapse
|
4
|
Neuropeptide Y Expression Defines a Novel Class of GABAergic Projection Neuron in the Inferior Colliculus. J Neurosci 2020; 40:4685-4699. [PMID: 32376782 DOI: 10.1523/jneurosci.0420-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice of both sexes, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphologic reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcre and Ai14 Cre-reporter mice, we found that NPY Y1 receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostrocaudal extent of the IC. In whole-cell recordings, application of a high-affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.SIGNIFICANCE STATEMENT The identification of neuron types is a fundamental question in neuroscience. In the inferior colliculus (IC), the hub of the central auditory pathway, molecular markers for distinct classes of inhibitory neurons have remained unknown. We found that neuropeptide Y (NPY) expression identifies a class of GABAergic principal neurons that constitute one-third of the inhibitory neurons in the IC. NPY neurons fire spontaneously, have a stellate morphology, and project to the auditory thalamus. Additionally, we found that NPY signaling hyperpolarized the membrane potential of a subset of excitatory IC neurons that express the NPY Y1 receptor. Thus, NPY neurons are a novel class of inhibitory neurons that use GABA and NPY signaling to regulate activity in the IC and auditory thalamus.
Collapse
|
5
|
Rønnekleiv OK, Qiu J, Kelly MJ. Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Semin Reprod Med 2019; 37:131-140. [PMID: 31869841 DOI: 10.1055/s-0039-3400251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypothalamic control of fertility is the quintessential homeostatic function. However, fertility is metabolically demanding; so, there must be coordination between energy states and reproductive functions. Because gonadotropin-releasing hormone (GnRH) neurons are devoid of many of the critical metabolic hormone receptors for sensing nutrient levels, it has long been recognized that the sensing of energy stores had to be done by neurons presynaptic to GnRH neurons. Some of the obvious players have been the anorexigenic proopiomelanocortin (POMC) and orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons, both of which are in close apposition to the median eminence, a circumventricular organ. Indeed, POMC and NPY/AgRP neurons are inversely regulated by glucose and metabolic hormones including insulin and leptin. However, their synaptic connections with GnRH neurons are sparse and/or GnRH neurons are lacking the postsynaptic receptors to mediate the appropriate physiological response. Kisspeptin neurons were discovered in the early part of this century and subsequently shown to project to and control GnRH neuronal excitability. In fact, more recently the arcuate kisspeptin neurons have been identified as the command neurons driving pulsatile release of GnRH. Subsequently, it was shown that arcuate kisspeptin neurons express not only steroid hormone receptors but also metabolic hormone receptors such that similar to POMC neurons, they are excited by insulin and leptin. Therefore, based on the premise that arcuate kisspeptin neurons are the key neurons coordinating energy states with reproduction, we will review not only how these vital neurons control pulsatile GnRH release but how they control energy homeostasis through their synaptic connections with POMC and NPY/AgRP neurons and ultimately how E2 can regulate their excitability.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.,Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon.,Division of Neuroscience, National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| |
Collapse
|
6
|
Marvel M, Spicer OS, Wong TT, Zmora N, Zohar Y. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol Reprod 2019; 99:565-577. [PMID: 29635430 DOI: 10.1093/biolre/ioy078] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Collapse
Affiliation(s)
- Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Zhang X, Zhang S, Ma L, Jiang E, Xu H, Chen R, Yang Q, Chen H, Li Z, Lan X. Reduced representation bisulfite sequencing (RRBS) of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes. Oncotarget 2017; 8:115326-115344. [PMID: 29383163 PMCID: PMC5777775 DOI: 10.18632/oncotarget.23260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
DNA methylation (DNAm), a major element of epigenetics, plays critical roles in individual development. Reduced representation bisulfite sequencing (RRBS) is an effective and economical method for analyzing the DNA methylation of a single base. The aims of this study were to determine the DNAm profiles of the methylation contexts (CGs and non-CGs) of lactation and dry periods of goat mammary glands using the RRBS, and to identify potential milk-related genes. The proportion of CG was the highest among all the sequence contexts. The highest CG levels (72.44% to 75.24%) occurred in the 3′ UTR region, followed by the gene body region (61.14% to 65.45%). The non-CG levels were low compared to the CG levels. Bioinformatic analysis demonstrated that the CGs were mainly enriched at high methylation levels (>90%), while non-CGs were enriched at low methylation levels. Methylation levels of 95 and 54 genes in the lactation period were up- or downregulated, respectively, relative to the dry period, such as PPARα, RXRα and NPY genes. The bisulfite sequencing PCR results showed that the methylation level of goat PPARα gene during the lactation period was significant lower than in the dry period, while the methylation level of the RXRα gene was lower in the dry period than in the lactation period. Meanwhile, the methylation levels of human PPARα and NPY genes were significantly higher in MCF-7 than in MCF-10A cells. These findings provide essential information for DNA methylation profiles of goat mammary gland and detect some potential milk-related genes in dairy goats.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Lin Ma
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Enhui Jiang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Han Xu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Qing Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Hasebe M, Oka Y. High-Frequency Firing Activity of GnRH1 Neurons in Female Medaka Induces the Release of GnRH1 Peptide From Their Nerve Terminals in the Pituitary. Endocrinology 2017; 158:2603-2617. [PMID: 28575187 DOI: 10.1210/en.2017-00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons play an important role in promoting secretion of pituitary luteinizing hormone (LH) and ovulation by releasing GnRH peptide. The release of GnRH peptide is generally assumed to be mainly modulated according to the firing activity of GnRH neurons. However, the relationship between the firing activity and the release of GnRH peptide has been elusive. We analyzed the relationship using two lines of transgenic medaka (gnrh1:enhanced green fluorescent protein and lhb:inverse-pericam) for the combined electrophysiological and Ca2+ imaging analyses. We show that a high-frequency firing activity induced by an excitatory neurotransmitter, glutamate, strongly increases [Ca2+]i in the cell bodies of GnRH1 neurons, which should lead to stimulation of GnRH release. We examined whether this high-frequency firing actually leads to the release of endogenous GnRH1 peptide from the nerve terminals projecting to the pituitary LH cells using a whole brain-pituitary preparation of a fish generated by crossing the two types of transgenic fish. Ca2+ imaging analyses showed that local glutamate activation of GnRH1 cell bodies, but not their nerve terminals in the pituitary, induced a substantial Ca2+ response in LH cells that was abolished in the presence of a GnRH receptor antagonist, Analog M. These results suggest that such an evoked high-frequency firing activity of GnRH1 cell body stimulates the release of endogenous GnRH1 peptide from the axon terminals to the pituitary LH cells. Thus, the findings of the present study have clearly demonstrated the relationship between the firing activity of hypothalamic GnRH neurons and the release of GnRH peptide.
Collapse
Affiliation(s)
- Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
True C, Takahashi D, Kirigiti M, Lindsley SR, Moctezuma C, Arik A, Smith MS, Kievit P, Grove KL. Arcuate nucleus neuropeptide coexpression and connections to gonadotrophin-releasing hormone neurones in the female rhesus macaque. J Neuroendocrinol 2017; 29:10.1111/jne.12491. [PMID: 28561903 PMCID: PMC5523807 DOI: 10.1111/jne.12491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
The underlying hypothalamic neurocircuitry by which metabolism and feeding regulates reproductive function has been well-studied in the rodent; however, recent data have demonstrated significant neuroanatomical differences in the human brain. The present study had three objectives, centred on arcuate nucleus neuropeptides regulating feeding and reproduction: (i) to characterise coexpression patterns in the female nonhuman primate; (ii) to establish whether these neuronal populations make potential contacts with gonadotophin-releasing hormone (GnRH) neurones; and (iii) to determine whether these contacts differ between the low and high GnRH-releasing states of pre-puberty and adulthood, respectively. Female nonhuman primates have several coexpression patterns of hypothalamic neuropeptides that differ from those reported in rodents. Cocaine- and amphetamine-regulated transcript (CART) is not coexpressed with pro-opiomelanocortin but instead with neuropeptide Y (NPY). CART is also expressed in a subpopulation of kisspeptin cells in the nonhuman primate, similar to observations in humans but diverging from findings in rodents. Very few GnRH-expressing neurones received close appositions from double-labelled kisspeptin/CART fibres; however, both single-labelled kisspeptin and CART fibres were in frequent apposition with GnRH neurones, with no differences between prepubertal and adult animals. NPY/agouti-related peptide (AgRP) coexpressing fibres contacted significantly more GnRH neurones in prepubertal animals than adults, consistent with increased NPY and AgRP mRNA observed in prepubertal animals. The findings of the present study detail significant differences in arcuate nucleus neuropeptide coexpression in the monkey compared to the rodent and are consistent with the hypothesis that arcuate nucleus NPY/AgRP neurones play an inhibitory role in controlling GnRH neuronal regulation in the prepubertal primate.
Collapse
Affiliation(s)
- C True
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - D Takahashi
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - M Kirigiti
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - S R Lindsley
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - C Moctezuma
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - A Arik
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - M S Smith
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - P Kievit
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K L Grove
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
10
|
Abstract
Successfully rearing young places multiple demands on the mammalian female. These are met by a wide array of alterations in maternal physiology and behavior that are coordinated with the needs of the developing young, and include adaptations in neuroendocrine systems not directly involved in maternal behavior or lactation. In this article, attenuations in the behavioral and neuroendocrine responses to stressors, the alterations in metabolic pathways facilitating both increased food intake and conservation of energy, and the changes in fertility that occur postpartum are described. The mechanisms underlying these processes as well as the factors that contribute to them and the relative contributions of these stimuli at different times postpartum are also reviewed. The induction and maintenance of the adaptations observed in the postpartum maternal brain are dependent on mother-young interaction and, in most cases, on suckling stimulation and its consequences for the hormonal profile of the mother. The peptide hormone prolactin acting on receptors within the brain makes a major contribution to changes in metabolic pathways, suppression of fertility and the attenuation of the neuroendocrine response to stress during lactation. Oxytocin is also released, both into the circulation and in some hypothalamic nuclei, in response to suckling stimulation and this hormone has been implicated in the decrease in anxiety behavior seen in the early postpartum period. The relative importance of these hormones changes across lactation and it is becoming increasingly clear that many of the adaptations to motherhood reviewed here reflect the outcome of multiple influences. © 2016 American Physiological Society. Compr Physiol 6:1493-1518, 2016.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Simonneaux V, Bahougne T. A Multi-Oscillatory Circadian System Times Female Reproduction. Front Endocrinol (Lausanne) 2015; 6:157. [PMID: 26539161 PMCID: PMC4611855 DOI: 10.3389/fendo.2015.00157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/21/2015] [Indexed: 01/14/2023] Open
Abstract
Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans.
Collapse
Affiliation(s)
- Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- *Correspondence: Valérie Simonneaux, Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), 5 rue Blaise Pascal, Strasbourg 67084, France,
| | - Thibault Bahougne
- Institut des Neurosciences Cellulaires et Intégratives, CNRS (UPR 3212), Strasbourg, France
- Service d’Endocrinologie et Diabète, Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Rønnekleiv OK, Zhang C, Bosch MA, Kelly MJ. Kisspeptin and Gonadotropin-Releasing Hormone Neuronal Excitability: Molecular Mechanisms Driven by 17β-Estradiol. Neuroendocrinology 2014; 102:184-93. [PMID: 25612870 PMCID: PMC4459938 DOI: 10.1159/000370311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin is a neuropeptide that signals via a Gαq-coupled receptor, GPR54, in gonadotropin-releasing hormone (GnRH) neurons and is essential for pubertal maturation and fertility. Kisspeptin depolarizes and excites GnRH neurons primarily through the activation of canonical transient receptor potential (TRPC) channels and the inhibition of K+ channels. The gonadal steroid 17β-estradiol (E2) upregulates not only kisspeptin (Kiss1) mRNA but also increases the excitability of the rostral forebrain Kiss1 neurons. In addition, a primary postsynaptic action of E2 on GnRH neurons is to upregulate the expression of channel transcripts that orchestrate the downstream signaling of kisspeptin in GnRH neurons. These include not only TRPC4 channels but also low-voltage-activated T-type calcium channels and high-voltage-activated L-, N- and R-type calcium channel transcripts. Moreover, E2 has direct membrane-initiated actions to alter the excitability of GnRH neurons by enhancing ATP-sensitive potassium channel activity, which is critical for maintaining GnRH neurons in a hyperpolarized state for the recruitment of T-type calcium channels that are important for burst firing. Therefore, E2 modulates the excitability of GnRH neurons as well as of Kiss1 neurons by altering the expression and/or function of ion channels; moreover, kisspeptin provides critical excitatory input to GnRH neurons to facilitate burst firing activity and peptide release.
Collapse
Affiliation(s)
- Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Chunguang Zhang
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martha A. Bosch
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
13
|
Verma S, Kirigiti M, Millar RP, Grove KL, Smith MS. Endogenous kisspeptin tone is a critical excitatory component of spontaneous GnRH activity and the GnRH response to NPY and CART. Neuroendocrinology 2014; 99:190-203. [PMID: 25011649 PMCID: PMC4201869 DOI: 10.1159/000365419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/22/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Kisspeptin is the major excitatory regulator of gonadotropin-releasing hormone (GnRH) neurons and is responsible for basal GnRH/LH release and the GnRH/LH surge. Although it is widely assumed, based on mutations in kisspeptin and Kiss1R, that kisspeptin acts to sustain basal GnRH neuronal activity, there have been no studies to investigate whether endogenous basal kisspeptin tone plays a direct role in basal spontaneous GnRH neuronal excitability. It is also of interest to examine possible interactions between endogenous kisspeptin tone and other neuropeptides that have direct effects on GnRH neurons, such as neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART), since the activity of all these neuropeptides changes during states of negative energy balance. METHODS Loose cell-attached and whole-cell current patch-clamp recordings were made from GnRH-GFP neurons in hypothalamic slices from female and male rats. RESULTS Kisspeptin activated GnRH neurons in a concentration-dependent manner with an EC50 of 3.32 ± 0.02 nM. Surprisingly, a kisspeptin antagonist, Peptide 347, suppressed spontaneous activity in GnRH neurons, demonstrating the essential nature of the endogenous kisspeptin tone. Furthermore, inhibition of endogenous kisspeptin tone blocked the direct activation of GnRH cells that occurs in response to antagonism of NPY Y5 receptor or by CART. CONCLUSIONS Our electrophysiology studies suggest that basal endogenous kisspeptin tone is not only essential for spontaneous GnRH neuronal firing, but it is also required for the net excitatory effects of other neuropeptides, such as CART or NPY antagonism, on GnRH neurons. Therefore, endogenous kisspeptin tone could serve as the linchpin in GnRH activation or inhibition.
Collapse
Affiliation(s)
- Saurabh Verma
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Melissa Kirigiti
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Robert P. Millar
- MRC Receptor Biology & Reproductive Health, University of Pretoria, Pretoria, South Africa
| | - Kevin L. Grove
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - M. Susan Smith
- Division of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| |
Collapse
|
14
|
True C, Verma S, Grove KL, Smith MS. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology 2013; 154:2821-32. [PMID: 23736294 PMCID: PMC3713223 DOI: 10.1210/en.2013-1156] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a hypothalamic neuropeptide implicated in both metabolic and reproductive regulation, raising the possibility that CART plays a role in reproductive inhibition during negative metabolic conditions. The current study characterized CART's regulatory influence on GnRH and kisspeptin (Kiss1) cells and determined the sensitivity of different CART populations to negative energy balance. CART fibers made close appositions to 60% of GnRH cells, with the majority of the fibers (>80%) originating from the arcuate nucleus (ARH) CART/pro-opiomelanocortin population. Electrophysiological recordings in GnRH-green fluorescent protein rats demonstrated that CART postsynaptically depolarizes GnRH cells. CART fibers from the ARH were also observed in close contact with Kiss1 cells in the ARH and anteroventral periventricular nucleus (AVPV). Recordings in Kiss1-GFP mice demonstrated CART also postsynaptically depolarizes ARH Kiss1 cells, suggesting CART may act directly and indirectly, via Kiss1 populations, to stimulate GnRH neurons. CART protein and mRNA levels were analyzed in 2 models of negative energy balance: caloric restriction (CR) and lactation. Both CART mRNA levels and the number of CART-immunoreactive cells were suppressed in the ARH during CR but not during lactation. AVPV CART mRNA was suppressed during CR, but not during lactation when there was a dramatic increase in CART-immunoreactive cells. These data suggest differing regulatory signals of CART between the models. In conclusion, both morphological and electrophysiological methods identify CART as a novel and potent stimulator of Kiss1 and GnRH neurons and suppression of CART expression during negative metabolic conditions could contribute to inhibition of the reproductive axis.
Collapse
Affiliation(s)
- Cadence True
- Divisions of Diabetes, Obesity, & Metabolism, and Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
15
|
Roa J. Role of GnRH Neurons and Their Neuronal Afferents as Key Integrators between Food Intake Regulatory Signals and the Control of Reproduction. Int J Endocrinol 2013; 2013:518046. [PMID: 24101924 PMCID: PMC3786537 DOI: 10.1155/2013/518046] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/17/2022] Open
Abstract
Reproductive function is regulated by a plethora of signals that integrate physiological and environmental information. Among others, metabolic factors are key components of this circuit since they inform about the propitious timing for reproduction depending on energy availability. This information is processed mainly at the hypothalamus that, in turn, modulates gonadotropin release from the pituitary and, thereby, gonadal activity. Metabolic hormones, such as leptin, insulin, and ghrelin, act as indicators of the energy status and convey this information to the reproductive axis regulating its activity. In this review, we will analyse the central mechanisms involved in the integration of this metabolic information and their contribution to the control of the reproductive function. Particular attention will be paid to summarize the participation of GnRH, Kiss1, NPY, and POMC neurons in this process and their possible interactions to contribute to the metabolic control of reproduction.
Collapse
Affiliation(s)
- Juan Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
- *Juan Roa:
| |
Collapse
|
16
|
Castellano JM, Tena-Sempere M. Metabolic Regulation of Kisspeptin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:363-83. [DOI: 10.1007/978-1-4614-6199-9_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Lee K, Liu X, Herbison AE. Burst firing in gonadotrophin-releasing hormone neurones does not require ionotrophic GABA or glutamate receptor activation. J Neuroendocrinol 2012; 24:1476-83. [PMID: 22831560 DOI: 10.1111/j.1365-2826.2012.02360.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/11/2012] [Accepted: 07/19/2012] [Indexed: 11/28/2022]
Abstract
Burst firing is a feature of many neuroendocrine cell types, including the hypothalamic gonadotrophin-releasing hormone (GnRH) neurones that control fertility. The role of intrinsic and extrinsic influences in generating GnRH neurone burst firing is presently unclear. In the present study, we investigated the role of fast amino acid transmission in burst firing by examining the effects of receptor antagonists on bursting displayed by green fluorescent protein GnRH neurones in sagittal brain slices prepared from adult male mice. Blockade of AMPA and NMDA glutamate receptors with a cocktail of CNQX and AP5 was found to have no effects on burst firing in GnRH neurones. The frequency of bursts, dynamics of individual bursts, or percentage of firing clustered in bursts was not altered. Similarly, GABA(A) receptor antagonists bicuculline and picrotoxin had no effects upon burst firing in GnRH neurones. To examine the importance of both glutamate and GABA ionotrophic signalling, a cocktail including picrotoxin, CNQX and AP5 was used but, again, this was found to have no effects on GnRH neurone burst firing. To further question the impact of endogenous amino acid release on burst firing, electrical activation of anteroventral periventricular nuclei GABA/glutamate inputs to GnRH neurones was undertaken and found to have no impact on burst firing. Taken together, these observations indicate that bursting in GnRH neurones is not dependent upon acute ionotrophic GABA and glutamate signalling and suggest that extrinsic inputs to GnRH neurones acting through AMPA, NMDA and GABA(A) receptors are unlikely to be required for burst initiation in these cells.
Collapse
Affiliation(s)
- K Lee
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
18
|
Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153:5587-99. [PMID: 22948210 DOI: 10.1210/en.2012-1470] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) and proopiomelanocortin (POMC) neurons act to sense and coordinate the brain's responses to metabolic cues. One neuronal network that is very sensitive to metabolic status is that controlling fertility. In this study, we investigated the impact of neuropeptides released by NPY and POMC neurons on the cellular excitability of GnRH neurons, the final output cells of the brain controlling fertility. The majority (∼70%) of GnRH neurons were activated by α-melanocyte-stimulating hormone, and this resulted from the direct postsynaptic activation of melanocortin receptor 3 and melanocortin receptor 4. A small population of GnRH neurons (∼15%) was excited by cocaine and amphetamine-regulated transcript or inhibited by β-endorphin. Agouti-related peptide, released by NPY neurons, was found to have variable inhibitory (∼10%) and stimulatory (∼25%) effects upon subpopulations of GnRH neurons. A variety of NPY and pancreatic polypeptide analogs was used to examine potential NPY interactions with GnRH neurons. Although porcine NPY (Y1/Y2/Y5 agonist) directly inhibited the firing of approximately 45% of GnRH neurons, [Leu(31),Pro(34)]-NPY (Y1/Y4/Y5 agonist) could excite (56%) or inhibit (19%). Experiments with further agonists indicated that Y1 receptors were responsible for suppressing GnRH neuron activity, whereas postsynaptic Y4 receptors were stimulatory. These results show that the activity of GnRH neurons is regulated in a complex manner by neuropeptides released by POMC and NPY neurons. This provides a direct route through which different metabolic cues can regulate fertility.
Collapse
Affiliation(s)
- Juan Roa
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | |
Collapse
|
19
|
Losa-Ward SM, Todd KL, McCaffrey KA, Tsutsui K, Patisaul HB. Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol Reprod 2012; 87:28. [PMID: 22572997 DOI: 10.1095/biolreprod.112.100826] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hypothalamic neurons, which produce the kisspeptin family of peptide hormones (Kp), are critical for initiating puberty and maintaining estrous cyclicity by stimulating gonadotropin-releasing hormone (GnRH) release. Conversely, RFamide-related peptide-3 (RFRP3) neurons inhibit GnRH activity. It has previously been shown that neonatal exposure to bisphenol A (BPA) can alter the timing of female pubertal onset and induce irregular estrous cycles or premature anestrus. Here we tested the hypothesis that disrupted ontogeny of RFamide signaling pathways may be a mechanism underlying advanced puberty. To test this, we used a transgenic strain of Wistar rats whose GnRH neurons express enhanced green fluorescent protein. Pups were exposed by daily subcutaneous injection to vehicle, 17beta-estradiol (E2), 50 μg/kg BPA, or 50 mg/kg BPA, from Postnatal Day (PND) 0 through PND 3, and then cohorts were euthanized on PNDs 17, 21, 24, 28, and 33 (5-8 animals per age per exposure; males were collected on PNDs 21 and 33). Vaginal opening was advanced by E2 and 50 μg/kg BPA. On PND 28, females exposed to E2 and 50 μg/kg BPA had decreased RFRP-3 fiber density and contacts on GnRH neurons. RFRP3 perikarya were also decreased in females exposed to 50 μg/kg BPA. Data suggest that BPA-induced premature puberty results from decreased inhibition of GnRH neurons.
Collapse
Affiliation(s)
- Sandra M Losa-Ward
- Department of Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
20
|
Woodside B, Budin R, Wellman MK, Abizaid A. Many mouths to feed: the control of food intake during lactation. Front Neuroendocrinol 2012; 33:301-14. [PMID: 23000403 DOI: 10.1016/j.yfrne.2012.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/07/2023]
Abstract
Providing nutrients to their developing young is perhaps the most energetically demanding task facing female mammals. In this paper we focus primarily on studies carried out in rats to describe the changes in the maternal brain that enable the dam to meet the energetic demands of her offspring. In rats, providing milk for their litter is associated with a dramatic increase in caloric intake, a reduction in energy expenditure and changes in the pattern of energy utilization as well as storage. These behavioral and physiological adaptations result, in part, from alterations in the central pathways controlling energy balance. Differences in circulating levels of metabolic hormones such as leptin, ghrelin and insulin as well as in responsiveness to these signals between lactating and nonlactating animals, contribute to the modifications in energy balance pathways seen postpartum. Suckling stimulation from the pups both directly, and through the hormonal state that it induces in the mother, plays a key role in facilitating these adaptations.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology/Groupe de recherches en neurobiologie comportementale, Concordia University, Montreal, Canada.
| | | | | | | |
Collapse
|
21
|
Stevenson TJ, Hahn TP, MacDougall-Shackleton SA, Ball GF. Gonadotropin-releasing hormone plasticity: a comparative perspective. Front Neuroendocrinol 2012; 33:287-300. [PMID: 23041619 PMCID: PMC3484179 DOI: 10.1016/j.yfrne.2012.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) is a key regulator of the reproductive neuroendocrine system in vertebrates. Recent developments have suggested that GnRH1 neurons exhibit far greater plasticity at the cellular and molecular levels than previously thought. Furthermore, there is growing evidence that sub-populations of GnRH1 neurons in the preoptic area are highly responsive to specific environmental and hormonal conditions. In this paper we discuss findings that reveal large variation in GnRH1 mRNA and protein expression that are regulated by social cues, photoperiod, and hormonal feedback. We draw upon studies using histochemistry and immediate early genes (e.g., c-FOS/ZENK) to illustrate that specific groups of GnRH1 neurons are topographically organized. Based on data from diverse vertebrate species, we suggest that GnRH1 expression within individuals is temporally dynamic and this plasticity may be evolutionarily conserved. We suggest that the plasticity observed in other neuropeptide systems (i.e. kisspeptin) may have evolved in a similar manner.
Collapse
Affiliation(s)
- T J Stevenson
- Institute for Mind and Biology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
22
|
Evans JJ, Anderson GM. Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides. Hum Reprod Update 2012; 18:313-32. [DOI: 10.1093/humupd/dms004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Abstract
17β-Oestradiol (E(2)) is essential for cyclical gonadotrophin-releasing hormone (GnRH) neuronal activity and secretion. In particular, E(2) increases the excitability of GnRH neurones during the afternoon of pro-oestrus in the rodent, which is associated with increased synthesis and secretion of GnRH. It is well established that E(2) regulates the activity of GnRH neurones through both presynaptic and postsynaptic mechanisms. E(2) significantly modulates the mRNA expression of numerous ion channels in GnRH neurones and alters the associated endogenous conductances, including potassium (K(ATP) , A-type) currents and low-voltage T-type and high-voltage L-type calcium currents. Notably, K(ATP) channels are critical for maintaining GnRH neurones in a hyperpolarised state for recruiting the T-type calcium channels, which are important for burst firing in GnRH neurones. In addition, there are other critical channels contributing to burst firing pattern, including the small conductance Ca(2+) -activated K(+) channels that may be modulated by E(2) . Despite these advances, the cellular mechanisms underlying the cyclical GnRH neuronal activity and GnRH release are largely unknown. Ultimately, the ensemble of both pre- and postsynaptic targets of the actions of E(2) will dictate the excitability and activity pattern of GnRH neurones.
Collapse
Affiliation(s)
- O K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | |
Collapse
|
24
|
Abstract
Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.
Collapse
Affiliation(s)
- S Constantin
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
25
|
Kokay IC, Petersen SL, Grattan DR. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 2011; 152:526-35. [PMID: 21177834 DOI: 10.1210/en.2010-0668] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High levels of circulating prolactin are known to cause infertility, but the precise mechanisms by which prolactin influences the neuroendocrine axis are yet to be determined. We used dual-label in situ hybridization to investigate whether prolactin-receptor (PRLR) mRNA is expressed in GnRH neurons. In addition, because γ-aminobutyric acidergic and kisspeptin neurons in the rostral hypothalamus are known to regulate GnRH neurons and, hence, might mediate the actions of prolactin, we investigated whether these neurons coexpress PRLR mRNA. (35)S-labeled RNA probes to detect PRLR mRNA were hybridized together with digoxigenin-labeled probes to detect either GnRH, Gad1/Gad2, or Kiss1 mRNA in the rostral hypothalamus of ovariectomized (OVX), estradiol-treated rats. Additional sets of serial sections were cut through the arcuate nucleus of OVX rats, without estradiol replacement, to examine coexpression of PRLR mRNA in the arcuate population of kisspeptin neurons. PRLR mRNA was highly expressed throughout the rostral preoptic area, particularly in periventricular regions surrounding the third ventricle, and there was a high degree of colocalization of PRLR mRNA in both Gad1/Gad2 and Kiss1 mRNA-containing cells (86 and 85.5%, respectively). In contrast, only a small number of GnRH neurons (<5%) was found to coexpress PRLR mRNA. In the arcuate nucleus of OVX rats, the majority of Kiss1 mRNA-containing cells also coexpressed PRLR mRNA. These data are consistent with the hypothesis that, in addition to a direct action on a small subpopulation of GnRH neurons, prolactin actions on GnRH neurons are predominantly mediated indirectly, through known afferent pathways.
Collapse
Affiliation(s)
- Ilona C Kokay
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, University of Otago, Dunedin 9016, New Zealand
| | | | | |
Collapse
|
26
|
True C, Grove KL, Smith MS. Beyond Leptin: Emerging Candidates for the Integration of Metabolic and Reproductive Function during Negative Energy Balance. Front Endocrinol (Lausanne) 2011; 2:53. [PMID: 22645510 PMCID: PMC3355832 DOI: 10.3389/fendo.2011.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
Reproductive status is tightly coupled to metabolic state in females, and ovarian cycling in mammals is halted when energy output exceeds energy input, a metabolic condition known as negative energy balance. This inhibition of reproductive function during negative energy balance occurs due to suppression of gonadotropin-releasing hormone (GnRH) release in the hypothalamus. The GnRH secretagogue kisspeptin is also inhibited during negative energy balance, indicating that inhibition of reproductive neuroendocrine circuits may occur upstream of GnRH itself. Understanding the metabolic signals responsible for the inhibition of reproductive pathways has been a compelling research focus for many years. A predominant theory in the field is that the status of energy balance is conveyed to reproductive neuroendocrine circuits via the adipocyte hormone leptin. Leptin is stimulatory for GnRH release and lower levels of leptin during negative energy balance are believed to result in decreased stimulatory drive for GnRH cells. However, recent evidence found that restoring leptin to physiological levels did not restore GnRH function in three different models of negative energy balance. This suggests that although leptin may be an important permissive signal for reproductive function as indicated by many years of research, factors other than leptin must critically contribute to negative energy balance-induced reproductive inhibition. This review will focus on emerging candidates for the integration of metabolic status and reproductive function during negative energy balance.
Collapse
Affiliation(s)
- Cadence True
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kevin L. Grove
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
| | - M. Susan Smith
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science UniversityBeaverton, OR, USA
- *Correspondence: M. Susan Smith, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. e-mail:
| |
Collapse
|
27
|
Kelly MJ, Qiu J. Estrogen signaling in hypothalamic circuits controlling reproduction. Brain Res 2010; 1364:44-52. [PMID: 20807512 PMCID: PMC3070154 DOI: 10.1016/j.brainres.2010.08.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022]
Abstract
It is well known that many of the actions of 17β-estradiol (E2) in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there is compelling evidence for membrane steroid receptors for estrogen in hypothalamic and other brain neurons. Yet, it is not well understood how estrogen signals via membrane receptors and how these signals impact not only membrane excitability but also gene transcription in neurons that modulate GnRH neuronal excitability. Indeed, it has been known for some time that E2 can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by E2 in hypothalamic neurons critical for reproductive function.
Collapse
Affiliation(s)
- Martin J Kelly
- Department of Physiology and Pharmacology, Portland, OR 97239, USA.
| | | |
Collapse
|
28
|
Rønnekleiv OK, Bosch MA, Zhang C. Regulation of endogenous conductances in GnRH neurons by estrogens. Brain Res 2010; 1364:25-34. [PMID: 20816765 PMCID: PMC2992606 DOI: 10.1016/j.brainres.2010.08.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/24/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
17β-estradiol (E2) regulates the activity of the gonadotropin-releasing hormone (GnRH) neurons through both presynaptic and postsynaptic mechanisms, and this ovarian steroid hormone is essential for cyclical GnRH neuronal activity and secretion. E2 has significant actions to modulate the mRNA expression of numerous ion channels in GnRH neurons and/or to enhance (suppress) endogenous conductances (currents) including potassium (K(ATP), A-type) and calcium low voltage T-type and high voltage L-type currents. Also, it is well documented that E2 can alter the excitability of GnRH neurons via direct action, but the intracellular signaling cascades mediating these actions are not well understood. As an example, K(ATP) channels are critical ion channels needed for maintaining GnRH neurons in a hyperpolarized state for recruiting T-type calcium channels that are important for burst firing in GnRH neurons. E2 modulates the activity of K(ATP) channels via a membrane-initiated signaling pathway in GnRH neurons. Obviously there are other channels, including the small conductance activated K(+) (SK) channels, that maybe modulated by this signaling pathway, but the ensemble of mER-, ERα-, and ERβ-mediated effects both pre- and post-synaptic will ultimately dictate the excitability of GnRH neurons.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
29
|
Ardeshirpour L, Brian S, Dann P, VanHouten J, Wysolmerski J. Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce the full effects of lactation on the skeleton. Endocrinology 2010; 151:5591-601. [PMID: 21047946 PMCID: PMC2999486 DOI: 10.1210/en.2010-0566] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During lactation, calcium is mobilized from the maternal skeleton to supply the breast for milk production. This results in rapid but fully reversible bone loss. Prior studies have suggested that PTHrP, secreted from the breast, and estrogen deficiency, due to suckling-induced central hypogonadism, combine to trigger bone resorption. To determine whether this combination was sufficient to explain bone loss during lactation, we raised PTHrP levels and decreased levels of estrogens in nulliparous mice. PTHrP was infused via osmotic minipumps and estrogens were decreased either by using leuprolide, a long-acting GnRH agonist, or by surgical ovariectomy (OVX). Bone mineral density declined by 23.2 ± 1.3% in the spine and 16.8 ± 1.9% in the femur over 10 d of lactation. This was accompanied by changes in trabecular architecture and an increase in both osteoblast and osteoclast numbers. OVX and PTHrP infusion both induced a modest decline in bone mineral density over 10 d, but leuprolide treatment did not. The combination of OVX and PTHrP was more effective than either treatment alone, but there was no interaction between PTHrP and leuprolide. None of the treatments reproduced the same degree of bone loss caused by lactation. However, both forms of estrogen deficiency led to an increase in osteoclasts, whereas infusion of PTHrP increased both osteoblasts and osteoclasts. Therefore, although the combination of PTHrP and estrogen deficiency contributes to bone loss, it is insufficient to reproduce the full response of the skeleton to lactation, suggesting that other factors also regulate bone metabolism during this period.
Collapse
Affiliation(s)
- Laleh Ardeshirpour
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA
| | | | | | | | | |
Collapse
|
30
|
The neuroendocrine basis of lactation-induced suppression of GnRH: role of kisspeptin and leptin. Brain Res 2010; 1364:139-52. [PMID: 20727862 DOI: 10.1016/j.brainres.2010.08.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022]
Abstract
Lactation is an important physiological model of the integration of energy balance and reproduction, as it involves activation of potent appetitive neuropeptide systems coupled to a profound inhibition of pulsatile GnRH/LH secretion. There are multiple systems that contribute to the chronic hyperphagia of lactation: 1) suppression of the metabolic hormones, leptin and insulin, 2) activation of hypothalamic orexigenic neuropeptide systems NPY, AGRP, orexin (OX) and melanin concentrating hormone (MCH), 3) special induction of NPY expression in the dorsomedial hypothalamus, and 4) suppression of anorexigenic systems POMC and CART. These changes ensure adequate energy intake to meet the metabolic needs of milk production. There is significant overlap in all of the systems that regulate food intake with the regulation of GnRH, suggesting there could be several redundant factors acting to suppress GnRH/LH during lactation. In addition to an overall increase in inhibitory tone acting directly on GnRH cell bodies that is brought about by increases in orexigenic systems, there are also effects at the ARH to disrupt Kiss1/neurokinin B/dynorphin neuronal function through inhibition of Kiss1 and NKB. These changes could lead to an increase in inhibitory auto-regulation of the Kiss1 neurons and a possible disruption of pulsatile GnRH release. While the low levels of leptin and insulin contribute to the changes in ARH appetitive systems, they do not appear to contribute to the suppression of ARH Kiss1 or NKB. The inhibition of Kiss1 may be the key factor in the suppression of GnRH during lactation, although the mechanisms responsible for its inhibition are unknown.
Collapse
|
31
|
Bhattarai JP, Kaszás A, Park SA, Yin H, Park SJ, Herbison AE, Han SK, Abrahám IM. Somatostatin inhibition of gonadotropin-releasing hormone neurons in female and male mice. Endocrinology 2010; 151:3258-66. [PMID: 20410192 DOI: 10.1210/en.2010-0148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies indicate that somatostatin regulates gonadotropin secretion. We investigated here whether somatostatin has direct effects on GnRH neurons in the adult male and female mice. Dual-labeling immunofluorescence experiments revealed the presence of somatostatin-immunoreactive fibers adjacent to GnRH neurons, and three-dimensional confocal reconstructions demonstrated apparent somatostatin fiber appositions with 50-60% of GnRH neurons located throughout the brain in both male and female mice. Perforated patch-clamp recordings from GnRH-green fluorescent protein neurons revealed that approximately 70% of GnRH neurons responded in a dose-dependent manner to 10-300 nm somatostatin with an acute membrane hyperpolarization and cessation of firing. This effect persisted in the presence of tetrodotoxin and amino acid receptor antagonists, indicating a direct postsynaptic site of action on the GnRH neuron. The identity of the somatostatin receptors underlying this action was assessed using GnRH neuron single-cell RT-PCR. Of the somatostatin receptor subtypes, the sstr2 transcript was the most prevalent and detected in both males and females. The expression of sstr2 by GnRH neurons was confirmed in the sstr2 knockout/LacZ knock-in mouse line. Electrophysiological studies demonstrated that the sstr2-selective agonist seglitide exerted acute hyperpolarizing actions on GnRH neurons identical to those of somatostatin. Together, these studies reveal somatostatin, acting through sstr2, to be one of the most potent inhibitors of electrical excitability of male and female GnRH neurons identified thus far.
Collapse
Affiliation(s)
- Janardhan P Bhattarai
- Department of Oral Physiology and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University, Duck-jin dong, Duck-jin Ku, Jeonju, 561-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Klenke U, Constantin S, Wray S. Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 2010; 151:2736-46. [PMID: 20351316 PMCID: PMC2875836 DOI: 10.1210/en.2009-1198] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.
Collapse
Affiliation(s)
- Ulrike Klenke
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 2009; 106:17217-22. [PMID: 19805188 DOI: 10.1073/pnas.0908200106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.
Collapse
|
34
|
Xu J, Kirigiti MA, Grove KL, Smith MS. Regulation of food intake and gonadotropin-releasing hormone/luteinizing hormone during lactation: role of insulin and leptin. Endocrinology 2009; 150:4231-40. [PMID: 19470705 PMCID: PMC2736090 DOI: 10.1210/en.2009-0190] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Negative energy balance during lactation is reflected by low levels of insulin and leptin and is associated with chronic hyperphagia and suppressed GnRH/LH activity. We studied whether restoration of insulin and/or leptin to physiological levels would reverse the lactation-associated hyperphagia, changes in hypothalamic neuropeptide expression [increased neuropeptide Y (NPY) and agouti-related protein (AGRP) and decreased proopiomelanocortin (POMC), kisspeptin (Kiss1), and neurokinin B (NKB)] and suppression of LH. Ovariectomized lactating rats (eight pups) were treated for 48 h with sc minipumps containing saline, human insulin, or rat leptin. The arcuate nucleus (ARH) was analyzed for NPY, AGRP, POMC, Kiss1, and NKB mRNA expression; the dorsal medial hypothalamus (DMH) was analyzed for NPY mRNA. Insulin replacement reversed the increase in ARH NPY/AGRP mRNAs, partially recovered POMC, but had no effect on recovering Kiss1/NKB. Leptin replacement only affected POMC, which was fully recovered. Insulin/leptin dual replacement had similar effects as insulin replacement alone but with a slight increase in Kiss1/NKB. The lactation-induced increase in DMH NPY was unchanged after treatments. Restoration of insulin and/or leptin had no effect on food intake, body weight, serum glucose or serum LH. These results suggest that the negative energy balance of lactation is not required for the hyperphagic drive, although it is involved in the orexigenic changes in the ARH. The chronic hyperphagia of lactation is most likely sustained by the induction of NPY in the DMH. The negative energy balance also does not appear to be a necessary prerequisite for the suppression of GnRH/LH activity.
Collapse
Affiliation(s)
- Jing Xu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|