1
|
Massri N, Loia R, Sones JL, Arora R, Douglas NC. Vascular changes in the cycling and early pregnant uterus. JCI Insight 2023; 8:e163422. [PMID: 37288662 PMCID: PMC10393238 DOI: 10.1172/jci.insight.163422] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Uterine vascular remodeling is intrinsic to the cycling and early pregnant endometrium. Maternal regulatory factors such as ovarian hormones, VEGF, angiopoietins, Notch, and uterine natural killer cells significantly mediate these vascular changes. In the absence of pregnancy, changes in uterine vessel morphology and function correlate with different stages of the human menstrual cycle. During early pregnancy, vascular remodeling in rodents and humans results in decreased uterine vascular resistance and increased vascular permeability necessary for pregnancy success. Aberrations in these adaptive vascular processes contribute to increased risk of infertility, abnormal fetal growth, and/or preeclampsia. This Review comprehensively summarizes uterine vascular remodeling in the human menstrual cycle, and in the peri- and post-implantation stages in rodent species (mice and rats).
Collapse
Affiliation(s)
- Noura Massri
- Cell and Molecular Biology Graduate Program and
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Rachel Loia
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Jennifer L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ripla Arora
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health and
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| |
Collapse
|
2
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
3
|
Lu L, Chen Y, Yang Z, Liang S, Zhu S, Liang X. Expression and Regulation of a Novel Decidual Cells-Derived Estrogen Target during Decidualization. Int J Mol Sci 2022; 24:ijms24010302. [PMID: 36613747 PMCID: PMC9820648 DOI: 10.3390/ijms24010302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
During decidualization in rodents, uterine stromal cells undergo extensive reprogramming to differentiate into distinct cell types, forming primary decidual zones (PDZs), secondary decidual zones (SDZs), and layers of undifferentiated stromal cells. The formation of secondary decidual zones is accompanied by extensive angiogenesis. During early pregnancy, besides ovarian estrogen, de novo synthesis of estrogen in the uterus is essential for the progress of decidualization. However, the molecular mechanisms are not fully understood. Studies have shown that Cystatin B (Cstb) is highly expressed in the decidual tissue of the uterus, but the regulation and mechanism of Cstb in the process of decidualization have not been reported. Our results showed that Cstb was highly expressed in mouse decidua and artificially induced deciduoma via in situ hybridization and immunofluorescence. Estrogen stimulates the expression of Cstb through the Estrogen receptor (ER)α. Moreover, in situ synthesis of estrogen in the uterus during decidualization regulates the expression of Cstb. Silencing the expression of Cstb affects the migration ability of stromal cells. Knockdown Cstb by siRNA significantly inhibits the expression of Dtprp, a marker for mouse decidualization. Our study identifies a novel estrogen target, Cstb, during decidualization and reveals that Cstb may play a pivotal role in angiogenesis during mouse decidualization via the Angptl7.
Collapse
|
4
|
Paracrine and Autocrine Effects of VEGF Are Enhanced in Human eMSC Spheroids. Int J Mol Sci 2022; 23:ijms232214324. [PMID: 36430800 PMCID: PMC9695450 DOI: 10.3390/ijms232214324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The mechanisms underlying the therapeutic potential of MSCs are the focus of intense research. We studied human MSCs isolated from desquamated endometrium (eMSCs), which, as previously shown, have high regenerative potential in various disease models. The aim was to evaluate the role of secreted VEGF in stimulating angiogenesis and maintaining eMSC viability and migration, which is important for improving the therapeutic properties of MSCs. We compared three eMSC cultures differing in the level of VEGF secretion: 3D spheroids, monolayer eMSCs, and monolayer eMSCs with VEGF knockdown. Spheroid eMSCs produced higher amounts of VEGF and had the strongest paracrine effect on HUVEC. eMSCs with VEGF knockdown did not stimulate angiogenesis. Monolayered eMSCs expressed VEGFR1, while spheroid eMSCs expressed both VEGFR1 and VEGFR2 receptors. The knockdown of VEGF caused a significant decrease in the viability and migration of eMSCs. eMSCs from 3D spheroids enhanced proliferation and migration in response to exogenous VEGF, in contrast to monolayered eMSCs. Our results suggest that the VEGF-VEGFR1 loop appears to be autocrine-involved in maintaining the viability of eMSCs, and VEGFR2 expression enhances their response to exogenous VEGF, so the angiogenic potential of eMSC can be up- or downregulated by intrinsic VEGF signals.
Collapse
|
5
|
Abel T, Moodley J, Khaliq OP, Naicker T. Vascular Endothelial Growth Factor Receptor 2: Molecular Mechanism and Therapeutic Potential in Preeclampsia Comorbidity with Human Immunodeficiency Virus and Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Int J Mol Sci 2022; 23:ijms232213752. [PMID: 36430232 PMCID: PMC9691176 DOI: 10.3390/ijms232213752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This review explored the role of vascular endothelial growth factor receptor-2 (VEGFR-2) in the synergy of preeclampsia (PE), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Downregulation of VEGFR-2 in PE promotes endothelial dysfunction and prevents endothelial cell (EC) migration, proliferation, and differentiation. The HIV-1 accessory protein, tat (trans-activator of transcription), prevents VEGFR-2 signaling via the vascular endothelial growth factor A (VEGF-A) ligand. Combined antiretroviral therapy (cART) may cause immune reconstitution, impaired decidualization, and endothelial injury, thus may be a risk factor for PE development. The VEGF/VEGFR-2 interaction may be associated with SARS-CoV-2-related pulmonary oedema. Endothelial dysfunction and heightened inflammation are both associated with PE, HIV, and SARS-CoV-2 infection; therefore, it is plausible that both characteristics may be exacerbated in the synergy of these events. In addition, this review explored microRNAs (miR) regulating VEGFR-2. An overexpression of miR-126 is evident in PE, HIV, and SARS-CoV-2 infection; thus, modulating the expression of miR-126 may be a therapeutic strategy. However, the involvement of microRNAs in PE, HIV, and SARS-CoV-2 infection needs further investigating. Since these conditions have been evaluated independently, this review attempts to predict their clinical manifestations in their synergy, as well as independently; thereby providing a platform for early diagnosis and therapeutic potential in PE, HIV, and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tashlen Abel
- Women’s Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Jagidesa Moodley
- Women’s Health and HIV Research Group, Department of Obstetrics & Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Olive P. Khaliq
- Department of Paediatrics and Child Health, Faculty of Health Sciences, The University of the Free State, Bloemfontein 9300, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institution, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Correspondence:
| |
Collapse
|
6
|
Xu N, Zhou X, Shi W, Ye M, Cao X, Chen S, Xu C. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front Physiol 2022; 13:893744. [PMID: 35991164 PMCID: PMC9390878 DOI: 10.3389/fphys.2022.893744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a major type of pathological pregnancy that still lacks reliable early diagnosis and effective treatment. The placenta is critical to fetal development and pregnancy success because it participates in critical processes such as early embryo implantation, vascular remodeling, and immunological tolerance. RPL is associated with abnormalities in the biological behavior of placental villous trophoblasts, resulting in aberrant placental function. MicroRNAs (miRNAs) are increasingly being recognized as essential regulators of placental development, as well as potential biomarkers. In this study, plasma miRNAs and placental messenger RNAs (mRNAs) from RPL patients and normal pregnant (NP) controls were sequenced and analyzed. Compared to those in NP controls, 108 circulating miRNAs and 1199 placental mRNAs were differentially expressed in RPL samples. A total of 140 overlapping genes (overlapping between plasma miRNA target genes and actual placental disorder genes) were identified, and functional enrichment analysis showed that these genes were mainly related to cell proliferation, angiogenesis, and cell migration. The regulatory network among miRNAs, overlapping genes, and downstream biological processes was analyzed by protein–protein interactions and Cytoscape. Moreover, enriched mRNAs, which were predictive targets of the differentially expressed plasma miRNAs miR-766-5p, miR-1285-3p, and miR-520a-3p, were accordingly altered in the placenta. These results suggest that circulating miRNAs may be involved in the pathogenesis of RPL and are potential noninvasive biomarkers for RPL.
Collapse
Affiliation(s)
- Naixin Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xuanyou Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weihui Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Mujin Ye
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xianling Cao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Songchang Chen
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| | - Chenming Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- *Correspondence: Songchang Chen, ; Chenming Xu,
| |
Collapse
|
7
|
Farag AH, Farid A, Nasr El-Din MH, Mohamed MA, El-Helaly AM. Serum and cervico-vaginal glycodelin concentrations as predictors of successful implantation after embryo transfer. Taiwan J Obstet Gynecol 2022; 61:464-471. [PMID: 35595439 DOI: 10.1016/j.tjog.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Evaluation of glycodelin (Gd) concentrations in serum and cervico-vaginal secretions as a predictor for implantation after ICSI. MATERIALS AND METHODS Prospective study on 50 women undergoing ICSI where long protocol ovarian stimulation was used. Serum and cervico-vaginal lavage Gd concentrations were measured then rates of biochemical and clinical pregnancy were detected and predictive value was evaluated using logistic regression analysis. RESULTS Using cut-off values of 2.2 ng/ml and 1.9 ng/ml for serum and cervico-vaginal Gd concentrations respectively for biochemical pregnancy and values of 2.7 ng/ml and 1.3 ng/ml respectively for clinical pregnancy, there was no significant difference regarding sensitivity (72% & 56%, and 72% & 89%, respectively and respectively). Specificity was statistically similar for biochemical pregnancy (72% and 89%, respectively) while specificity was significantly higher for clinical pregnancy using cervico-vaginal Gd concentration of 1.3 ng/ml (88%) compared to serum Gd concentration of 1.9 ng/ml (53%). CONCLUSION Glycodelin appears to be a promising marker for implantation after IVF/ICSI.
Collapse
Affiliation(s)
- Amr H Farag
- Department of Obstetrics and Gynaecology, Ain Shams University, Cairo, Egypt.
| | - Ali Farid
- Department of Obstetrics and Gynaecology, Ain Shams University, Cairo, Egypt
| | | | - Marwa A Mohamed
- Department of Obstetrics and Gynaecology, Ain Shams University, Cairo, Egypt
| | - Amr M El-Helaly
- Department of Obstetrics and Gynaecology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Li R, Wang TY, Xu X, Emery OM, Yi M, Wu SP, DeMayo FJ. Spatial transcriptomic profiles of mouse uterine microenvironments at pregnancy day 7.5†. Biol Reprod 2022; 107:529-545. [PMID: 35357464 PMCID: PMC9382390 DOI: 10.1093/biolre/ioac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tian-yuan Wang
- Integrative Bioinformatics Supportive Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Olivia M Emery
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - MyeongJin Yi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Correspondence: Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709, USA. Tel: +9842873987; E-mail:
| |
Collapse
|
9
|
Ingaramo PI, Alarcón R, Caglieris ML, Varayoud J, Muñoz-de-Toro M, Luque EH. Altered uterine angiogenesis in rats treated with a glyphosate-based herbicide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118729. [PMID: 34953950 DOI: 10.1016/j.envpol.2021.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the agrochemicals most used around the globe. However, they might have adverse effects on human and animal health. Previously, we showed that female rats neonatally exposed to GBHs exhibit altered expression of morphogenetic molecules and biomarkers of uterine development. We also observed a reduction in the size of implantation sites, altered expression of decidualization-related molecules, and increased post-implantation losses. Since decidualization comprises morphogenetic, biochemical and vascular changes, here we investigated the effects of neonatal GBH exposure on uterine angiogenesis in neonatal and pregnant rats. To achieve this, Wistar female rats were exposed to saline solution or GBH (2 mg glyphosate/kg-bw/day) on post-natal days (PND) 1, 3, 5 and 7. On PND8, uterine samples were collected for developmental studies. On PND90, the remaining females were mated and in the morning of gestational day (GD) 9, the implantation sites were collected. Angiogenesis-related molecules and cells involved in this process were identified and/or measured by immunohistochemistry or RT-PCR. On PND8, GBH-treated rats showed increased vascular endothelial growth factor (VEGF) expression and decreased Notch1, inducible nitric oxide synthase (iNOS) and Angiopoietin-2 (Ang2) mRNA levels. Vascular area, vessel diameter, endothelial cell proliferation, VEGF and Nestin protein expression, and VEGF, Notch1, iNOS and cyclooxygenase-2 (Cox-2) genes were downregulated in implantation sites of exposed females, while Ang2, VEGF receptor 1 and interleukin-10 (IL-10) were increased. Mast cells and macrophages were increased on PND8 and GD9 of treated rats. The increased Transforming growth factor-beta expression in the antimesometrial zone and IL-10 mRNA expression suggest that the M2 type is the predominant population of macrophages on implantation sites. In conclusion, neonatal GBH exposure alters the expression of angiogenesis-related molecules at neonatal uterine development and decidual reaction, suggesting altered vascular support. These alterations might contribute to the increased post-implantation losses observed in GBH-treated rats.
Collapse
Affiliation(s)
- Paola I Ingaramo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina.
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - María L Caglieris
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
10
|
He M, Li L, Wei X, Geng D, Jiang H, Xiangxiang G, Zhang Y, Du H. Xiaoyao powder improves endometrial receptivity via VEGFR-2-mediated angiogenesis through the activation of the JNK and P38 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114580. [PMID: 34474142 DOI: 10.1016/j.jep.2021.114580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyao powder (XYP) is a traditional Chinese medicine formula which has wide scope of indications related to liver stagnation, reconcile qi and blood in TCM syndrome. Infertility can induce similar symptoms and signs to the clinical features of liver stagnation syndrome, the treatment of infertility by soothing the liver is obvious. XYP can increase the clinical pregnancy rate, follicle development, oocyte quality and improve endometrial receptivity. However, its underlying pharmacological mechanism of improving endometrial receptivity is unclear. AIM OF THE STUDY The aim of the study was to investigate the effect of XYP on pregnancy rates and endometrial angiogenesis, to determine the potent mechanism in association with the pro-angiogenic behavior which closely related to improving endometrial receptivity. MATERIALS AND METHODS We established an animal model exhibiting decreasing endometrial receptivity by controlled ovarian hyperstimulation and a human endometrial microvascular endothelial cell (HEMEC) model. Endometrial morphology was observed by hematoxylin-eosin staining and Scanning electron microscopy. Western blot and qRT-PCR analysis were used to detect expression of PCNA, Cyclin D1, MMP9 and MAPK signaling pathway. Scratch-wound assay and tube formation assay were used to observe HEMEC migration and tubulogenesis. RESULTS The results demonstrated that XYP pretreatment could improve endometrial receptivity, which leads to high pregnancy rates. In the endometrium, XYP facilitated angiogenesis by promoting tube formation. XYP could enhance HEMEC proliferation and migration induced by VEGF, which were observed by the microscope and Scratch-wound assays. XYP promoted HEMEC proliferation and migration via the p38 and JNK MAPK signaling pathways. CONCLUSION XYP promotes HEMEC proliferation and migration via the P38 and the JNK MAPK signaling pathways, which contribute to the endometrial angiogenesis mediated by VEGFR-2 that is favorable for endometrial receptivity. We firstly elucidated the molecular mechanisms by which XYP improved endometrial receptivity by promoting angiogenesis.
Collapse
Affiliation(s)
- Ming He
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Li Li
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuecong Wei
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dandan Geng
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huabo Jiang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gu Xiangxiang
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
11
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
12
|
Elmetwally MA, Li X, Johnson GA, Burghardt RC, Herring CM, Kramer AC, Meininger CJ, Bazer FW, Wu G. Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances NO and polyamine syntheses and the expression of angiogenic proteins in porcine placentae. Amino Acids 2021; 54:193-204. [PMID: 34741684 DOI: 10.1007/s00726-021-03097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.
Collapse
Affiliation(s)
- Mohammed A Elmetwally
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Xilong Li
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cassandra M Herring
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Ma Z, Yang H, Peng L, Kuhn C, Chelariu-Raicu A, Mahner S, Jeschke U, von Schönfeldt V. Expression of the Carbohydrate Lewis Antigen, Sialyl Lewis A, Sialyl Lewis X, Lewis X, and Lewis Y in the Placental Villi of Patients With Unexplained Miscarriages. Front Immunol 2021; 12:679424. [PMID: 34135905 PMCID: PMC8202085 DOI: 10.3389/fimmu.2021.679424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. However, their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages. Methods Paraffin-embedded slides originating from placental tissue were collected from patients experiencing a miscarriage early in their pregnancy (6–13 weeks). Tissues collected from spontaneous (n = 20) and recurrent (n = 15) miscarriages were analyzed using immunohistochemical and immunofluorescent staining. Specimens obtained from legally terminated normal pregnancies were considered as control group (n = 18). Assessment of villous vessel density was performed in another cohort (n = 10 each group) of gestation ages-paired placenta tissue. Protein expression was evaluated with Immunoreactive Score (IRS). Statistical analysis was performed by using Graphpad Prism 8. Results Expression of sLeA, sLeX, LeX, and LeY in the syncytiotrophoblast was significantly upregulated in the control group compared with spontaneous and recurrent miscarriage groups. However, no prominent differences between spontaneous and recurrent miscarriage groups were identified. Potential key modulators ST3GAL6 and NEU1 were found to be significantly downregulated in the recurrent miscarriage group and upregulated in the spontaneous group, respectively. Interestingly, LeX and LeY expression was also detected in the endothelial cells of villous vessels in the control group but no significant expression in miscarriage groups. Furthermore, assessment of villous vessel density using CD31 found significantly diminished vessels in all size groups of villi (small villi <200 µm, P = 0.0371; middle villi between 200 and 400 µm, P = 0.0010 and large villi >400 µm, P = 0.0003). Immunofluorescent double staining also indicated the co-localization of LeX/Y and CD31. Conclusions The expression of four mentioned carbohydrate Lewis antigens and their potential modulators, ST3GAL6 and NEU1, in the placenta of patients with miscarriages was significantly different from the normal pregnancy. For the first time, their expression pattern in the placenta was illustrated, which might shed light on a novel understanding of Lewis antigens’ role in the pathogenesis of miscarriages.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Lin Peng
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany.,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | | |
Collapse
|
14
|
Tejada MÁ, Santos-Llamas AI, Fernández-Ramírez MJ, Tarín JJ, Cano A, Gómez R. A Reassessment of the Therapeutic Potential of a Dopamine Receptor 2 Agonist (D2-AG) in Endometriosis by Comparison against a Standardized Antiangiogenic Treatment. Biomedicines 2021; 9:biomedicines9030269. [PMID: 33800198 PMCID: PMC8001569 DOI: 10.3390/biomedicines9030269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022] Open
Abstract
Dopamine receptor 2 agonists (D2-ags) have been shown to reduce the size of tumors by targeting aberrant angiogenesis in pathological tissue. Because of this, the use of a D2-ag was inferred for endometriosis treatment. When assayed in mouse models however, D2-ags have been shown to cause a shift of the immature vessels towards a more mature phenotype but not a significant reduction in the amount of vascularization and size of lesions. These has raised concerns on whether the antiangiogenic effects of these compounds confer a therapeutic value for endometriosis. In the belief that antiangiogenic effects of D2-ags in endometriosis were masked due to non-optimal timing of pharmacological interventions, herein we aimed to reassess the antiangiogenic therapeutic potential of D2-ags in vivo by administering compounds at a timeframe in which vessels in the lesions are expected to be more sensitive to antiangiogenic stimuli. To prove our point, immunodeficient (NU/NU) mice were given a D2-ag (cabergoline), anti-VEGF (CBO-P11) or vehicle (saline) compounds (n = 8 per group) starting 5 days after implantation of a fluorescently labeled human lesion. The effects on the size of the implants was estimated by monitoring the extent of fluorescence emitted by the lesion during the three-week treatment period. Subsequently mice were sacrificed and lesions excised and fixed for quantitative immunohistochemical/immunofluorescent analysis of angiogenic parameters. Lesion size, vascular density and innervation were comparable in D2-ag and anti-VEGF groups and significantly decreased when compared to control. These data suggest that D2-ags are as powerful as standard antiangiogenic compounds in interfering with angiogenesis and lesion size. Our preliminary study opens the way to further exploration of the mechanisms beneath the antiangiogenic effects of D2-ags for endometriosis treatment in humans.
Collapse
Affiliation(s)
- Miguel Á. Tejada
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
| | - María José Fernández-Ramírez
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, 46010 Valencia, Spain;
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Juan J. Tarín
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Cellular Biology, Functional Biology, and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| | - Raúl Gómez
- Research Unit on Women’s Health-Institute of Health Research, INCLIVA, 46010 Valencia, Spain; (A.I.S.-L.); (J.J.T.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.Á.T.); (A.C.); (R.G.)
| |
Collapse
|
15
|
Maternal Cripto is critical for proper development of the mouse placenta and the placental vasculature. Placenta 2021; 107:13-23. [PMID: 33730615 DOI: 10.1016/j.placenta.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The growth and survival of the mammalian fetus is highly dependent on the placenta. Several research groups have demonstrated the involvement of different transforming growth factor-beta (TGFβ) superfamily members and their related receptors in placentation. Cripto is a member of the epidermal growth factor-Cripto1/FRL1/Cryptic protein family and plays a critical role in embryonic development, stem cell maintenance and tumor progression through TGFβ-dependent and independent pathways. Several studies have suggested that Cripto may also have a role in female reproduction and pregnancy maintenance, but its specific role remains elusive. METHODS We used a conditional knockout mouse model in which Cripto is deleted from the uterus using a loxP-Cre system. Cripto cKO females were mated with wildtype males and dissections were performed at different timepoints during pregnancy for assessment of the number and size of the implantation sites, resorption sites, fetal weight and placental development. Histology, IF staining and quantitative PCR were employed to analyze the placentation process. RESULTS We found that loss of maternal Cripto results in defective placentation, decreased vascularization within the placental labyrinth and leads to intrauterine growth restriction and fetal death. We further demonstrated that components of the VEGF and Notch signaling pathways are downregulated in Cripto cKO decidua and placenta potentially contributing to defects in the development of the vasculature at maternal-fetal interface. DISCUSSION These findings demonstrate that maternal Cripto is involved in the maternal-fetal communications required for proper development of the placenta and placental vasculature.
Collapse
|
16
|
Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, Gunel T. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med 2020; 35:815-825. [PMID: 33249960 DOI: 10.1080/14767058.2020.1849095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE It has been identified that endometrium specific microRNAs have different expression levels in endometrial tissues and maternal serum during endometrial cycle. The aim of this study was to analyze microRNA expression levels in recurrent implantation failure patients and healthy controls endometrial samples for enlightening the aetiopathogenesis of the disease. The second aim was to search for a potential noninvasive molecular biomarker in early diagnosis and treatment of Recurrent Implantation Failure (RIF) patients. METHODS Endometrium and serum samples in two different phases (PP; proliferative phase and SP; secretory phase) from the same cases (RIF; n = 12 and Control; n = 8) were obtained. The expression levels of the microRNA by RT-qPCR method were measured. The expression levels of the healthy controls and study group were compared. Lastly performed target genes analysis of significantly dysregulated miRNA by target analyze databases for obtained related biological pathways. RESULTS This study showed that has-miR-145, has-miR-23b, has-miR-31 and has-miR-30b were significantly up-regulated in PP and down-regulated in SP endometrium samples. In serum samples, has-miR-145 and hsa-miR-23b were significantly down-regulated in both of PP and SP. Target gene and pathway analysis for dysregulated miRNAs identified important, validated and predicted genes for the implantation process. CONCLUSIONS This study is the first study to obtain endometrium and serum samples in two different phases from the same cases and measure the candidate miRNAs expression. Our finding suggests that expression level of four candidate miRNAs may be involved in RIF development in women. Furthermore, these miRNAs can be potential biomarker for early diagnosis of RIF patients.
Collapse
Affiliation(s)
- Fatemeh Azhari
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Molecular Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mohammad Kazem Hosseini
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| | | | - Nazife Cevik
- Department of Computer Engineering, Engineering-Architecture Faculty, Arel University, Istanbul, Turkey
| | - Ercan Bastu
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Tuba Gunel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Lian C, Zhao L, Qiu J, Wang Y, Chen R, Liu Z, Cui J, Zhu X, Wen X, Wang S, Wang J. miR-25-3p promotes endothelial cell angiogenesis in aging mice via TULA-2/SYK/VEGFR-2 downregulation. Aging (Albany NY) 2020; 12:22599-22613. [PMID: 33201836 PMCID: PMC7746355 DOI: 10.18632/aging.103834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
In aging, the regulation of angiogenesis is a dynamic and complex process. We aimed to identify and characterize microRNAs that regulate angiogenesis during aging. We showed that, in response to vascular endothelial senescence, microRNA-25-3p (miR-25-3p) plays the role of an angiogenic microRNA by targeting TULA-2 (T-cell ubiquitin ligand-2)/SYK (spleen tyrosine kinase)/VEGFR-2 (vascular endothelial growth factor receptor 2) signaling in vitro and in vivo. Mechanistic studies demonstrated that miR-25-3p inhibits a TULA-2/SYK/VEGFR-2 signaling pathway in endothelial cells. In old endothelial cells (OECs), upregulation of miR-25-3p inhibited the expression of TULA-2, which caused downregulation of the interaction between TULA-2 and SYK and increased phosphorylation of SYK Y323. The increased SYK Y323 phosphorylation level upregulated the phosphorylation of VEGFR-2 Y1175, which plays a vital role in angiogenesis, while miR-25-3p downregulation in YECs showed opposite effects. Finally, a salvage study showed that miR-25-3p upregulation promoted capillary regeneration and hindlimb blood flow recovery in aging mice with hindlimb ischemia. These findings suggest that miR-25-3p acts as an agonist of TULA-2/SYK/VEGFR-2 and mediates the endothelial cell angiogenesis response, which shows that the miR-25-3p/TULA-2 pathway may be potential therapeutic targets for angiogenesis during aging.
Collapse
Affiliation(s)
- Chong Lian
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Lei Zhao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jiacong Qiu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Yang Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Rencong Chen
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Zhen Liu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jin Cui
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Xiaonan Zhu
- Department of Pharmacology Laboratory, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xuejun Wen
- Institute for Engineering and Medicine, Department of Biomedical Engineering, Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Shenming Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| | - Jinsong Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Guangzhou 510080, China.,Guangdong Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou 510080, China
| |
Collapse
|
18
|
Yadav PK, Gupta SK, Kumar S, Ghosh M, Yadav BS, Kumar D, Kumar A, Saini M, Kataria M. MMP-7 derived peptides with MHC class-I binding motifs from canine mammary tumor tissue elicit strong antigen-specific T-cell responses in BALB/c mice. Mol Cell Biochem 2020; 476:311-320. [PMID: 32970284 PMCID: PMC7511522 DOI: 10.1007/s11010-020-03908-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
Abstract
Matrix Metalloproteinases (MMPs)-induced altered proteolysis of extracellular matrix proteins and basement membrane holds the key for tumor progression and metastasis. Matrix metalloproteinases-7 (Matrilysin), the smallest member of the MMP family also performs quite alike; thus serves as a potential candidate for anti-tumor immunotherapy. Conversely, being an endogenous tumor-associated antigen (TAA), targeting MMP-7 for immunization is challenging. But MMP-7-based xenovaccine can surmount the obstacle of poor immunogenicity and immunological tolerance, often encountered in TAA-based conventional vaccine for anti-tumor immunotherapy. This paves the way for investigating the potential of MMP-7-derived major histocompatibility complex (MHC)-binding peptides to elicit precise epitope-specific T-cell responses towards their possible inclusion in anti-tumor vaccine formulations. Perhaps it also ushers the path of achieving multiple epitope-based broad and universal cellular immunity. In current experiment, an immunoinformatics approach has been employed to identify the putative canine matrix matelloproteinases-7 (cMMP-7)-derived peptides with MHC class-I-binding motifs which can elicit potent antigen-specific immune responses in BALB/c mice. Immunization with the cMMP-7 DNA vaccine induced a strong CD8+ cytotoxic T lymphocytes (CTLs) and Th1- type response, with high level of gamma interferon (IFN-γ) production in BALB/c mice. The two identified putative MHC-I-binding nonameric peptides (Peptide32-40 and Peptide175-183) from cMMP-7 induced significant lymphocyte proliferation along with the production of IFN-γ from CD8+ T-cells in mice immunized with cMMP-7 DNA vaccine. The current observation has depicted the immunogenic potential of the two cMMP-7-derived nonapeptides for their possible exploitation in xenovaccine-mediated anti-tumor immunotherapy in mouse model.
Collapse
Affiliation(s)
- Pavan Kumar Yadav
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
- Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India.
| | - Shishir Kumar Gupta
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- Laboratory Animal Facility, CSIR-CDRI, Lucknow, Uttar Pradesh, 226031, India
| | - Saroj Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Mayukh Ghosh
- Faculty of Veterinary and Animal Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, 231001, India
| | - Brijesh Singh Yadav
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- University of Information Science & Technology St. Paul the apostle Partizanska bb., 6000, Ohrid, Republic of Macedonia
| | - Dinesh Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
- College of Agriculture, Tikamgarh, Jawaharlal Nehru Krishi Vishwa Vidylaya, Jabalpur, Madhya Pradesh, 482004, India
| | - Ajay Kumar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Mohini Saini
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Meena Kataria
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
19
|
Endothelial Jagged1 Antagonizes Dll4/Notch Signaling in Decidual Angiogenesis during Early Mouse Pregnancy. Int J Mol Sci 2020; 21:ijms21186477. [PMID: 32899448 PMCID: PMC7554752 DOI: 10.3390/ijms21186477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Maternal spiral arteries and newly formed decidual capillaries support embryonic development prior to placentation. Previous studies demonstrated that Notch signaling is active in endothelial cells of both decidual capillaries and spiral arteries, however the role of Notch signaling in physiologic decidual angiogenesis and maintenance of the decidual vasculature in early mouse pregnancy has not yet been fully elucidated. We used the Cdh5-CreERT2;Jagged1(Jag1)flox/flox (Jag1∆EC) mouse model to delete Notch ligand, Jag1, in maternal endothelial cells during post-implantation, pre-placentation mouse pregnancy. Loss of endothelial Jag1 leads to increased expression of Notch effectors, Hey2 and Nrarp, and increased endothelial Notch signaling activity in areas of the decidua with remodeling angiogenesis. This correlated with an increase in Dll4 expression in capillary endothelial cells, but not spiral artery endothelial cells. Consistent with increased Dll4/Notch signaling, we observed decreased VEGFR2 expression and endothelial cell proliferation in angiogenic decidual capillaries. Despite aberrant Dll4 expression and Notch activation in Jag1∆EC mutants, pregnancies were maintained and the decidual vasculature was not altered up to embryonic day 7.5. Thus, Jag1 functions in the newly formed decidual capillaries as an antagonist of endothelial Dll4/Notch signaling during angiogenesis, but Jag1 signaling is not necessary for early uterine angiogenesis.
Collapse
|
20
|
Ma Y, Yao J, Zhou S, Mi Y, Tan X, Zhang C. Enhancing effect of FSH on follicular development through yolk formation and deposition in the low-yield laying chickens. Theriogenology 2020; 157:418-430. [PMID: 32871446 DOI: 10.1016/j.theriogenology.2020.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/11/2023]
Abstract
Healthy and efficient development of ovarian follicles largely determines poultry laying performance. In low-yield laying chickens, retarded follicle progression resulted in decreased prehierarchical follicles. In this study the extenuating effect of follicle-stimulating hormone (FSH) on delayed follicular development was investigated in the low-yield chickens. Results showed that FSH administration in vivo accelerated development of prehierarchical follicles, with increased expression of steroidogenic enzymes and follicular angiogenesis through elevating plasma levels of 17β-estradiol, progesterone, luteinizing hormone and the expression of vascular endothelial growth factor and its receptor as well as angiopoietins. Furthermore, treatment with FSH raised expression of lipid uptake and adipogenesis-related proteins and decreased tight junctions between granulosa cells. Meanwhile, the results of the in vivo studies were confirmed by the in vitro studies as FSH promoted development of the cultured prehierarchical follicles with increased angiogenesis, cell proliferation, steroid hormones synthesis and yolk deposition. These results indicated FSH enhanced follicular development in the low-yield laying chickens involving increased follicular angiogenesis.
Collapse
Affiliation(s)
- Yanfen Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinwei Yao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuo Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xun Tan
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caiqiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Borowski S, Tirado-Gonzalez I, Freitag N, Garcia MG, Barrientos G, Blois SM. Altered Glycosylation Contributes to Placental Dysfunction Upon Early Disruption of the NK Cell-DC Dynamics. Front Immunol 2020; 11:1316. [PMID: 32760395 PMCID: PMC7372038 DOI: 10.3389/fimmu.2020.01316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immune cells [e. g., dendritic cells (DC) and natural killer (NK) cells] are critical players during the pre-placentation stage for successful mammalian pregnancy. Proper placental and fetal development relies on balanced DC-NK cell interactions regulating immune cell homing, maternal vascular expansion, and trophoblast functions. Previously, we showed that in vivo disruption of the uterine NK cell-DC balance interferes with the decidualization process, with subsequent impact on placental and fetal development leading to fetal growth restriction. Glycans are essential determinants of reproductive health and the glycocode expressed in a particular compartment (e.g., placenta) is highly dependent on the cell type and its developmental and pathological state. Here, we aimed to investigate the maternal and placental glycovariation during the pre- and post-placentation period associated with disruption of the NK cell-DC dynamics during early pregnancy. We observed that depletion of NK cells was associated with significant increases of O- and N-linked glycosylation and sialylation in the decidual vascular zone during the pre-placental period, followed by downregulation of core 1 and poly-LacNAc extended O-glycans and increased expression of branched N-glycans affecting mainly the placental giant cells and spongiotrophoblasts of the junctional zone. On the other hand, expansion of DC induced a milder increase of Tn antigen (truncated form of mucin-type O-glycans) and branched N-glycan expression in the vascular zone, with only modest changes in the glycosylation pattern during the post-placentation period. In both groups, this spatiotemporal variation in the glycosylation pattern of the implantation site was accompanied by corresponding changes in galectin-1 expression. Our results show that pre- and post- placentation implantation sites have a differential glycopattern upon disruption of the NK cell-DC dynamics, suggesting that immune imbalance early in gestation impacts placentation and fetal development by directly influencing the placental glycocode.
Collapse
Affiliation(s)
- Sophia Borowski
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany.,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irene Tirado-Gonzalez
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Nancy Freitag
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany
| | - Mariana G Garcia
- Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, CONICET, Universidad Austral, Derqui-Pilar, Argentina
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany.,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Blois SM, Verlohren S, Wu G, Clark G, Dell A, Haslam SM, Barrientos G. Role of galectin-glycan circuits in reproduction: from healthy pregnancy to preterm birth (PTB). Semin Immunopathol 2020; 42:469-486. [PMID: 32601855 PMCID: PMC7508936 DOI: 10.1007/s00281-020-00801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Growing evidence suggests that galectins, an evolutionarily conserved family of glycan-binding proteins, fulfill key roles in pregnancy including blastocyst implantation, maternal-fetal immune tolerance, placental development, and maternal vascular expansion, thereby establishing a healthy environment for the growing fetus. In this review, we comprehensively present the function of galectins in shaping cellular circuits that characterize a healthy pregnancy. We describe the current understanding of galectins in term and preterm labor and discuss how the galectin-glycan circuits contribute to key immunological pathways sustaining maternal tolerance and preventing microbial infections. A deeper understanding of the glycoimmune pathways regulating early events in preterm birth could offer the broader translational potential for the treatment of this devastating syndrome.
Collapse
Affiliation(s)
- Sandra M Blois
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, AG GlycoImmunology, Berlin, Germany. .,Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stefan Verlohren
- Department of Obstetrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, UK
| | - Gary Clark
- Department of Obstetrics, Gynaecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
23
|
Tal R, Dong D, Shaikh S, Mamillapalli R, Taylor HS. Bone-marrow-derived endothelial progenitor cells contribute to vasculogenesis of pregnant mouse uterus†. Biol Reprod 2019; 100:1228-1237. [PMID: 30601943 PMCID: PMC6497522 DOI: 10.1093/biolre/ioy265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/02/2018] [Accepted: 01/01/2019] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is essential for cyclic endometrial growth, implantation, and pregnancy maintenance. Vasculogenesis, the formation of new blood vessels by bone marrow (BM)-derived endothelial progenitor cells (EPCs), has been shown to contribute to endometrial vasculature. However, it is unknown whether vasculogenesis occurs in neovascularization of the decidua during pregnancy. To investigate the contribution of BM-derived EPCs to vascularization of the pregnant uterus, we induced non-gonadotoxic submyeloablation by 5-fluorouracil administration to wild-type FVB/N female mice recipients followed by BM transplantation from transgenic mice expressing green fluorescent protein (GFP) under regulation of Tie2 endothelial-specific promoter. Following 1 month, Tie2-GFP BM-transplanted mice were bred and sacrificed at various gestational days (ED6.5, ED10.5, ED13.5, ED18.5, and postpartum). Bone-marrow-transplanted non-pregnant and saline-injected pregnant mice served as controls (n = 5-6/group). Implantation sites were analyzed by flow cytometry, immunohistochemistry, and immunofluorescence. While no GFP-positive EPCs were found in non-pregnant or early pregnant uteri of BM-transplanted mice, GFP-positive EPCs were first detected in pregnant uterus on ED10.5 (0.12%) and increased as the pregnancy progressed (1.14% on ED13.5), peaking on ED18.5 (1.42%) followed by decrease in the postpartum (0.9%). The percentage of endothelial cells that were BM-derived out of the total endothelial cell population in the implantation sites (GFP+CD31+/CD31+) were 9.3%, 15.8%, and 6.1% on ED13.5, ED18.5, and postpartum, respectively. Immunohistochemistry demonstrated that EPCs incorporated into decidual vasculature, and immunofluorescence showed that GFP-positive EPCs colocalized with CD31 in vascular endothelium of uterine implantation sites, confirming their endothelial lineage. Our findings indicate that BM-derived EPCs contribute to vasculogenesis of the pregnant mouse decidua.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dirong Dong
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Hayashi KG, Hosoe M, Fujii S, Kanahara H, Sakumoto R. Temporal expression and localization of vascular endothelial growth factor family members in the bovine uterus during peri-implantation period. Theriogenology 2019; 133:56-64. [PMID: 31059929 DOI: 10.1016/j.theriogenology.2019.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/25/2018] [Accepted: 04/15/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine endometrial mRNA expression patterns and uterine protein localizations of vascular endothelial growth factor (VEGF) ligands (VEGFA, VEGFB, VEGFC, and VEGFD) and their receptors (VEGFR1, soluble VEGFR1 (sVEGFR1), VEGFR2, and VEGFR3) during the peri-implantation period in cows. The number of blood and lymphatic vessels in the bovine uterus was also investigated. Bovine uterine tissues were collected from pregnant animals on days 15, 18, and 27 after artificial insemination and from non-pregnant animals on days 15 and 18 of the estrous cycle (day 0 = day of estrus). The mRNA expression level of VEGFA, VEGFR1, sVEGFR1, and VEGFR3 were higher on day 18 than on day 15 in the non-pregnant group. On day 18, the levels of mRNA expression of these genes were higher in the non-pregnant group than in the pregnant group. VEGFB mRNA expression levels was higher on day 15 than on days 18 and 27 of gestation and was higher in the pregnant group than in the non-pregnant group on day 15. Using immunohistochemistry, VEGF ligands and their receptors were found in luminal epithelium, glandular epithelium, stroma, and blood vessels of the endometrium. In addition, VEGFA, VEGFD, and VEGFR3 were also detected in the uterine myometrium. In the pregnant group, the number of blood vessels in the endometrium increased from day 15 to 18 and was greater than that of the non-pregnant group on day 18. Our results demonstrate that the VEGF family is expressed and regulated in the bovine uterus during the peri-implantation period, which may be associated with uterine functions, including vascular remodeling in maternal recognition of pregnancy and implantation.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Misa Hosoe
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Shiori Fujii
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Hiroko Kanahara
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan
| | - Ryosuke Sakumoto
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, 305-0901, Japan.
| |
Collapse
|
25
|
New Gene Markers of Angiogenesis and Blood Vessels Development in Porcine Ovarian Granulosa Cells during Short-Term Primary Culture In Vitro. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6545210. [PMID: 30834271 PMCID: PMC6374792 DOI: 10.1155/2019/6545210] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Abstract
The physiological processes that drive the development of ovarian follicle, as well as the process of oogenesis, are quite well known. Granulosa cells are major players in this occurrence, being the somatic element of the female gamete development. They participate directly in the processes of oogenesis, building the cumulus-oocyte complex surrounding the ovum. In addition to that, they have a further impact on the reproductive processes, being a place of steroid sex hormone synthesis and secretion. It is known that the follicle development creates a major need for angiogenesis and blood vessel development in the ovary. In this study, we use novel molecular approaches to analyze markers of these processes in porcine granulosa cultured primarily in vitro. The cells were recovered from mature sus scrofa specimen after slaughter. They were then subjected to enzymatic digestion and culture primarily for a short term. The RNA was extracted from cultures in specific time periods (0h, 24h, 48h, 96h, and 144h) and analyzed using expression microarrays. The genes that exhibited fold change bigger than |2|, and adjusted p-value lower than 0.05, were considered differentially expressed. From these, we have chosen the members of “angiogenesis,” “blood vessel development,” “blood vessel morphogenesis,” “cardiovascular system development,” and “vasculature development” for further selection. CCL2, FGFR2, SFRP2, PDPN, DCN, CAV1, CHI3L1, ITGB3, FN1, and LOX which are upregulated, as well as CXCL10, NEBL, IHH, TGFBR3, SCUBE1, IGF1, EDNRA, RHOB, PPARD, and SLITRK5 genes whose expression is downregulated through the time of culture, were chosen as the potential markers, as their expression varied the most during the time of culture. The fold changes were further validated with RT-qPCR. The genes were described, with special attention to their possible function in GCs during culture. The results broaden the general knowledge about GC's in vitro molecular processes and might serve as a point of reference for further in vivo and clinical studies.
Collapse
|
26
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2019; 24:74-93. [PMID: 29329415 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA.,Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA.,Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA.,Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|
27
|
Zhang X, Li Q, Jiang W, Xiong X, Li H, Zhao J, Qi H. LAMA5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia. J Matern Fetal Neonatal Med 2018; 33:1114-1124. [PMID: 30200802 DOI: 10.1080/14767058.2018.1514597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Objective: Preeclampsia (PE) is currently thought to associated with oxidative stress and vascular endothelial dysfunction. LAMA5 is associated with the cell migration, proliferation, and vascular endothelial function. The aims of this study are to investigate the expression patterns of LAMA5 in normal and PE pregnancies, as well as evaluating the effects of LAMA5 on human umbilical vein endothelial cells (HUVECs) function.Methods: LAMA5 expression levels were examined by reverse-transcriptase polymerase chain reaction (RT-PCR) and further confirmed by western blot and immunofluorescence. Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry respectively. Cell migration was assessed by transwell migration assay.Results: LAMA5 expression levels of vascular endothelial cells in PE placentas was significantly decreased than that in normal placentas. LAMA5 small-interfering RNA (siRNA) transfection and hypoxia/reoxygenation (H/R) treatments resulted in decreased proliferation, migration, and vascular formation ability of HUVECs but increased HUVECs apoptosis. Down-regulated LAMA5 could inhibit the protein expression of the PI3K downstream p-AKT and p-MTOR.Conclusions: Down-regulated LAMA5 is associated with PE placenta and restrained HUVECs proliferation, migration, and angiogenesis through PI3K-AKT-MTOR signaling pathways.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Qin Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Wei Jiang
- Department of Orthopedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Xiong
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Haiying Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Jianlin Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Yuzhong District, China
| |
Collapse
|
28
|
Jung YJ, Park Y, Kim HS, Lee HJ, Kim YN, Lee J, Kim YH, Maeng YS, Kwon JY. Abnormal lymphatic vessel development is associated with decreased decidual regulatory T cells in severe preeclampsia. Am J Reprod Immunol 2018; 80:e12970. [PMID: 29756666 DOI: 10.1111/aji.12970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
PROBLEM The lymphatic vasculature controls leukocytes trafficking and limits the adaptive immune response. In previous models of preeclampsia (PE), defective immune function caused by disruption of lymphangiogenesis was shown to be involved in the disease pathophysiology. Especially, the dysfunction of regulatory T cells (Treg) at the maternal-fetal interface may be one of the causes of severe PE. In particular, activation of Tregs to obtain immune tolerance requires adequate antigen presentation through the lymphatic system. We hypothesized that impaired lymphangiogenesis and imbalanced Tregs at the maternal-fetal interface are associated with the pathophysiology of severe PE. However, the current research addressing this hypothesis is limited. Therefore, to compare differences in lymphangiogenesis in severe PE and normal conditions, we aimed to examine the location of lymphatics at the maternal-fetal interface and to investigate the association between lymphangiogenesis and Tregs in severe PE. METHOD OF STUDY We obtained entire uterus from normal pregnant mice. Placental and fetal membranes, including decidua, were obtained from 10 pregnant women with severe PE and 10 gestational age-matched controls. Immunohistochemistry for LYVE1 was used to localize the distribution of lymphatic vessels and CD4, CD25, and FOXP3 for Treg. RESULTS LYVE1-positive vessels were present in the uterine wall of mice. LYVE1-positive lymphatic vessels were localized on the human decidua. Tubular lymphatics were abundant in the control decidua, but significantly reduced in severe PE. Furthermore, lymphatic vessel density correlated with the number of decidual Tregs. CONCLUSION Abnormal decidual lymphangiogenesis is associated with reduced numbers of decidual Tregs in severe PE.
Collapse
Affiliation(s)
- Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Yejin Park
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Hyun-Soo Kim
- Department of Pathology, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Hwa Jin Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
29
|
Weinerman R, Ord T, Bartolomei MS, Coutifaris C, Mainigi M. The superovulated environment, independent of embryo vitrification, results in low birthweight in a mouse model. Biol Reprod 2018; 97:133-142. [PMID: 28859279 DOI: 10.1093/biolre/iox067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies suggest that babies born following in vitro fertilization (IVF) and fresh embryo transfer are of lower birthweight than babies born following frozen embryo transfer, although the mechanism responsible for this phenotype is not known. We developed a novel mouse model that isolates the independent effects of embryo freezing and the superovulated environment, which cannot be performed in humans. We transferred blastocysts that had been vitrified and warmed, mixed with with fresh blastocysts, into individual pseudopregnant recipients produced by either natural mating or mating following injection with equine chorionic gonadotropin and human chorionic gonadotropin and hCG (superovulation). We found that superovulation of the recipient dams led to significantly lower fetal weight at term while blastocyst vitrification had no significant effect on fetal weight (1.43 ± 0.24 g fresh-natural, 1.30 ± 0.28 g vitrified-natural vs. 1.09 ± 0.20 fresh-superovulated, 0.93 ± 0.23 g vitrified-superovulated, P < 0.0001). Doppler ultrasound revealed increased median umbilical artery resistance in the placentae of near-term dams exposed to superovulation compared to naturally mated dams (0.927 vs 0.904, P = 0.02). Additionally, placental microvascular density was lower in superovulated compared to naturally mated dams (1.24 × 10-3 vessel/micron vs 1.46 × 10-3 vessels/micron, P = 0.046). Gene expression profiling suggested alterations in fetal genes involved in glucorticoid regulation. These results suggest a potential mechanism for altered birthweight following superovulation in our model and may have implications for human IVF.
Collapse
Affiliation(s)
- Rachel Weinerman
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Reproductive Endocrinology and Infertility, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Teri Ord
- Division of Reproductive Endocrinology and Infertility, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Marisa S Bartolomei
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Coutifaris
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Monica Mainigi
- Division of Reproductive Endocrinology and Infertility, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Sones JL, Merriam AA, Seffens A, Brown-Grant DA, Butler SD, Zhao AM, Xu X, Shawber CJ, Grenier JK, Douglas NC. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J 2018; 32:2574-2586. [PMID: 29279353 DOI: 10.1096/fj.201701008r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder of pregnancy, is a leading cause of maternal and fetal morbidity and mortality. Although the etiology is unknown, PE is thought to be caused by defective implantation and decidualization in pregnancy. Pregnant blood pressure high (BPH)/5 mice spontaneously develop placentopathies and maternal features of human PE. We hypothesized that BPH/5 implantation sites have transcriptomic alterations. Next-generation RNA sequencing of implantation sites at peak decidualization, embryonic day (E)7.5, revealed complement gene up-regulation in BPH/5 vs. controls. In BPH/5, expression of complement factor 3 was increased around the decidual vasculature of E7.5 implantation sites and in the trophoblast giant cell layer of E10.5 placentae. Altered expression of VEGF pathway genes in E5.5 BPH/5 implantation sites preceded complement dysregulation, which correlated with abnormal vasculature and increased placental growth factor mRNA and VEGF164 expression at E7.5. By E10.5, proangiogenic genes were down-regulated, whereas antiangiogenic sFlt-1 was up-regulated in BPH/5 placentae. We found that early local misexpression of VEGF genes and abnormal decidual vasculature preceded sFlt-1 overexpression and increased complement deposition in BPH/5 placentae. Our findings suggest that abnormal decidual angiogenesis precedes complement activation, which in turn contributes to the aberrant trophoblast invasion and poor placentation that underlie PE.-Sones, J. L., Merriam, A. A., Seffens, A., Brown-Grant, D.-A., Butler, S. D., Zhao, A. M., Xu, X., Shawber, C. J., Grenier, J. K., Douglas, N. C. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.
Collapse
Affiliation(s)
- Jennifer L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Audrey A Merriam
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Angelina Seffens
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Dex-Ann Brown-Grant
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Scott D Butler
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; and
| | - Anna M Zhao
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Xinjing Xu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Carrie J Shawber
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jennifer K Grenier
- RNA Sequencing Core, Center for Reproductive Genomics, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Nataki C Douglas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
31
|
Souza CA, Silva JF, Silva CL, Ocarino NM, Serakides R. Thyroid hormones affect decidualization and angiogenesis in the decidua and metrial gland of rats. PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000900017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT: This study aimed to evaluate the effects of thyroid hormone on the decidua and metrial gland of rats and to examine the expression of angiogenic factors. 72 adult, female rats were divided into hypothyroid, T4-treated2, and control groups. At 10, 14 and 19 days of gestation (DG), the decidua and metrial gland were collected for histomorphometric and immunohistochemical evaluation of the expression of VEGF, Flk-1 and Tie-2. Hypothyroidism reduced the area of the decidua at 10 and 19 DG. Furthermore, VEGF was increased at 10 and 14 DG, and Flk-1 only at 14 DG, but both was reduced at 19 DG in the metrial gland without significantly changing the area occupied by blood vessels. Rats treated with T4 showed an increase in the decidua blood vessels at 10 and 19 DG. However, at 10 DG, excess T4 resulted in increased of Flk-1 in the decidua and metrial gland. Hypothyroidism increased the Tie-2 at 10 and 19 DG in the decidua and metrial gland. In conclusion, hypothyroidism reduces the area of the decidua and increases the expression of VEGF, Tie-2 and Flk-1. The excess of T4 promotes tissue angiogenesis by increasing the number of vessels in the decidua because of the increased expression of Flk-1.
Collapse
|
32
|
Yuan Y, Shan N, Tan B, Deng Q, Liu Y, Wang H, Luo X, He C, Luo X, Zhang H, Baker PN, Olson DM, Qi H. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia. Reprod Sci 2017; 25:748-758. [DOI: 10.1177/1933719117725818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Qinyin Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yangming Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hanbin Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaofang Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chengjin He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N. Baker
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - David M. Olson
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- China–Canada–New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
33
|
Li X, Shen C, Liu X, He J, Ding Y, Gao R, Mu X, Geng Y, Wang Y, Chen X. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:523-531. [PMID: 28043741 DOI: 10.1016/j.envpol.2016.11.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/30/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.
Collapse
Affiliation(s)
- Xueyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
34
|
Clark DA. The importance of being a regulatory T cell in pregnancy. J Reprod Immunol 2016; 116:60-9. [DOI: 10.1016/j.jri.2016.04.288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
|
35
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
36
|
Honarvar N, Sheikhha MH, Farashahi Yazd E, Pashaiefar H, Mohtaram S, Sazegari A, Feizollahi Z, Ghasemi N. KDR gene polymorphisms and idiopathic recurrent spontaneous abortion. J Matern Fetal Neonatal Med 2016; 29:3737-40. [PMID: 26866667 DOI: 10.3109/14767058.2016.1142966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Process of angiogenesis is essential for successful gestation. Disruption in this pathway leads to various undesirable consequences in pregnancy such as recurrent spontaneous abortion (RSA). One of the most important genes involved in angiogenesis is kinase-insert domain-containing receptor (KDR). This study aimed to investigate the associations between two single-nucleotide polymorphisms (SNPs) of KDR gene, 1719A > T and 1192G > A, with idiopathic RSA in south-east Iran. METHODS A total of 230 women, including 110 women with a history of at least two consecutive spontaneous miscarriages and 120 healthy women were recruited in this study. Genomic DNA was extracted from peripheral blood samples of participants using the Salting out method. The KDR 1719A > T and 1192G > A polymorphisms were genotyped by the standard amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) technique. RESULTS For the case group, frequencies of 2.73%, 30% and 67.27% were observed for AA, AT and TT genotypes in1719A > T SNP, respectively, and the genotype frequencies for controls were equal to AA = 3.33%, AT = 32.5% and TT = 64.17%. Distribution of genotypes in 1192G > A SNP in the case group was 79.1%, 19.1% and 1.8% for GG, AG and AA, respectively, whereas the corresponding values for the controls were GG = 80%, AG = 20% and AA = 0. No significant difference was found between the case and control groups based on the frequency of KDR gene polymorphisms with the susceptibility to RSA. CONCLUSIONS There is no association between these two SNPs of KDR gene and the susceptibility to RSA in women from south-east Iran.
Collapse
Affiliation(s)
- Negar Honarvar
- a Medical Genetics Department at International Campus, Shahid Sadoughi University of Medical Sciences , Yazd , Iran and
| | - Mohammad Hasan Sheikhha
- b Recurrent Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi Medical Sciences University , Yazd , Iran
| | - Ehsan Farashahi Yazd
- b Recurrent Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi Medical Sciences University , Yazd , Iran
| | - Hossein Pashaiefar
- b Recurrent Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi Medical Sciences University , Yazd , Iran
| | - Shirin Mohtaram
- a Medical Genetics Department at International Campus, Shahid Sadoughi University of Medical Sciences , Yazd , Iran and
| | - Ali Sazegari
- a Medical Genetics Department at International Campus, Shahid Sadoughi University of Medical Sciences , Yazd , Iran and
| | - Zahra Feizollahi
- a Medical Genetics Department at International Campus, Shahid Sadoughi University of Medical Sciences , Yazd , Iran and
| | - Nasrin Ghasemi
- b Recurrent Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi Medical Sciences University , Yazd , Iran
| |
Collapse
|
37
|
Boroujeni MB, Boroujeni NB, Gholami M. The effect of progesterone treatment after ovarian induction on endometrial VEGF gene expression and its receptors in mice at pre-implantation time. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:252-7. [PMID: 27114794 PMCID: PMC4834114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Progestrone is a prequisite for pre-implantation angiogenesis and induce decidual angiogenesis. It is unknown the effect of progestrone administration on the endometrium of hyperstimulated mice at pre-implantation time. MATERIAL AND METHODS Adult female NMRI mice were divided in three groups [control group, ovarian stimulated group and progestrone treated mice after ovarian stimulation]. Uterine horn samples removed at pre-implantation time in each group. Motic image Plus 2 software was used to assess the quantitative vascular parameters of endometrium. Gene expression was determined for vascular endothelial growth factor (VEGF), FMS-like tyrosine kinase (FLT) and Kinase insert domain protein receptor (FLK) genes using the real time PCR method. Data analysis was done with LinReg PCR and Rest-RG software. RESULTS Comparison between progestrone treated mice after ovarian stimulation with control group showed that increase in rate of VEGF gene expression [0.775] and decrease in rate of FLK [6.072] and FLT [1.711] gene expression. Analysis of the data on quantitative vascular parameters were indicated remarkable increase in quantitative vascular parameters of progestrone treated mice compare to control group. CONCLUSION Biological effect of progestrone on the vascular changes after ovarian stimulation resulted in an increase in VEGF receptors experession, it seems that induced angiogenesis by progesterone could result in better condition for implantation.
Collapse
Affiliation(s)
- Mandana Beigi Boroujeni
- Deptartment of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nasim Beigi Boroujeni
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran,Corresponding author: Nasim Beigi Boroujeni. Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran. Tel.: +98- 6633225012; Fax: +98-6633204005;
| | - Mohammadreza Gholami
- Deptartment of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
38
|
Schnabel A, Blois SM, Meint P, Freitag N, Ernst W, Barrientos G, Conrad ML, Rose M, Seelbach-Göbel B. Elevated systemic galectin-1 levels characterize HELLP syndrome. J Reprod Immunol 2016; 114:38-43. [PMID: 26956510 DOI: 10.1016/j.jri.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022]
Abstract
Galectin-1 (gal-1), a member of a family of conserved β-galactoside-binding proteins, has been shown to exert a key role during gestation. Though gal-1 is expressed at higher levels in the placenta from HELLP patients, it is still poorly understood whether systemic gal-1 levels also differ in HELLP patients. In the present study, we evaluated the systemic expression of gal-1, together with the angiogenic factors, placental growth factor (PlGF) and soluble fms-like tyrosine kinase 1 (sFlt-1) in conjunction with HELLP syndrome severity. Systemic levels of gal-1 and sFlt-1 were elevated in patients with both early- and late-onset HELLP syndrome as compared to healthy controls. In contrast, peripheral PlGF levels were decreased in early- and late-onset HELLP. A positive correlation between systemic gal-1 levels and sFlt-1/PlGF ratios was found in early onset HELLP patients. Our results show that HELLP syndrome is associated with increased circulating levels of gal-1; integrating systemic gal-1 measurements into the diagnostic analyses of pregnant women may provide more effective prediction of HELLP syndrome development.
Collapse
Affiliation(s)
- Annegret Schnabel
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany.
| | - Sandra M Blois
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Peter Meint
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| | - Nancy Freitag
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Ernst
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| | - Gabriela Barrientos
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie L Conrad
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Division of General Internal and Psychosomatic Medicine, Reproductive Medicine Research Group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Seelbach-Göbel
- Krankenhaus Barmherzige Brüder - Frauenklinik St. Hedwig, Department of Obstetrics and Gynecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Shawber CJ, Lin L, Gnarra M, Sauer MV, Papaioannou VE, Kitajewski JK, Douglas NC. Vascular Notch proteins and Notch signaling in the peri-implantation mouse uterus. Vasc Cell 2015; 7:9. [PMID: 26629328 PMCID: PMC4666149 DOI: 10.1186/s13221-015-0034-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/17/2015] [Indexed: 12/01/2022] Open
Abstract
Background Angiogenesis is essential for uterine decidualization, the progesterone-mediated transformation of the uterus allowing embryo implantation and initiation of pregnancy. In the current study, we define the vasculature, expression of Notch proteins and Notch ligands, and Notch activity in both endothelial cells and vascular-associated mural cells of blood vessels in the pre-implantation endometrium and post-implantation decidua of the mouse uterus. Methods We used immunofluorescence to determine the expression of Notch in endothelial cells and mural cells by co-staining for the endothelial cell marker, CD31, the pan-mural cell marker, platelet-derived growth factor receptor beta (PDGFR-β), the pericyte markers, neural/glial antigen 2 (NG2) and desmin, or the smooth muscle cell marker, alpha smooth muscle actin (SMA). A fluorescein isothiocyanate-labeled dextran tracer, was used to identify functional peri-implantation vasculature. CBF:H2B-Venus Notch reporter transgenic mice were used to determine Notch activity. Results Notch signaling is observed in endothelial cells and pericytes in the peri-implantation uterus. Prior to implantation, Notch1, Notch2 and Notch4 and Notch ligand, Delta-like 4 (Dll4) are expressed in capillary endothelial cells, while Notch3 is expressed in the pericytes. Jagged1 is expressed in both capillary endothelial cells and pericytes. After implantation, Notch1, Notch4 and Dll4 are expressed in endothelial cells of newly formed decidual capillaries. Jagged1 is expressed in endothelial cells of spiral arteries and a subset of decidual pericytes. Notch proteins are not expressed in lymphatic vessels or macrophages in the peri-implantation uterus. Conclusions We show Notch activity and distinct expression patterns for Notch proteins and ligands, suggesting unique roles for Notch1, Notch4, Dll4, and Jag1 during decidual angiogenesis and early placentation. These data set the stage for loss-of-function and gain-of-function studies that will determine the cell-type specific requirements for Notch proteins in decidual angiogenesis and placentation. Electronic supplementary material The online version of this article (doi:10.1186/s13221-015-0034-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carrie J Shawber
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Surgery, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Lu Lin
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Maria Gnarra
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Mark V Sauer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Virginia E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Jan K Kitajewski
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| | - Nataki C Douglas
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA ; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th St, New York, NY 10032 USA
| |
Collapse
|
40
|
Gram A, Hoffmann B, Boos A, Kowalewski MP. Expression and localization of vascular endothelial growth factor A (VEGFA) and its two receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine corpus luteum and utero-placental compartments during pregnancy and at normal and induced parturition. Gen Comp Endocrinol 2015; 223:54-65. [PMID: 26414127 DOI: 10.1016/j.ygcen.2015.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/08/2015] [Accepted: 09/19/2015] [Indexed: 11/27/2022]
Abstract
VEGFA is one of the most potent known inducers of angiogenesis. However, the function of angiogenic factors in the canine corpus luteum (CL) of pregnancy and in the pregnant uterus and placenta has not yet been elucidated. Therefore, here we investigated the expression and localization of VEGFA and its receptors (VEGFR1/FLT1 and VEGFR2/FLK1/KDR) in the canine CL and utero-placental compartments (ut-pl) throughout pregnancy until prepartum luteolysis. Antigestagen-mediated effects on expression of VEGF system in ut-pl were elucidated in mid-pregnant dogs. While displaying high individual variation, the luteal VEGFA was elevated during pre-implantation and post-implantation, followed by a decrease during mid-gestation, which was more pronounced at the mRNA level, and showed constant expression afterwards. Within the uterus, it increased following implantation and during mid-gestation in ut-pl compartments, but was downregulated at prepartum luteolysis. Luteal VEGFR1 expression resembled that of VEGFA; VEGFR2 remained unaffected throughout pregnancy. In ut-pl compartments, both receptors increased gradually towards mid-gestation; a prepartum decrease was observed for VEGFR1. Antigestagen-treatment resulted in decreased expression of ut-pl VEGFR1. In the CL, VEGFA stained in luteal cells. Uterine signals of VEGFA and its two receptors were observed in epithelial and vascular compartments, and in myometrium. In placental labyrinth, additionally, trophoblast stained positively. Luteal VEGFR1 was localized to the luteal cells and tunica media of blood vessels, whereas VEGFR2 stained only in capillary endothelial cells. The upregulation of luteal and the ut-pl VEGF system during early gestational stages supports the increased vascularization rate during this time. The diminishing effects of the prepartum endocrine milieu on VEGFA function seem to be more pronounced in the ut-pl units.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bernd Hoffmann
- Clinic for Obstetrics, Gynecology and Andrology of Large- and Small Animals, Justus-Liebig University Giessen, DE-35392 Giessen, Germany
| | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
41
|
Li Y, Gao R, Liu X, Chen X, Liao X, Geng Y, Ding Y, Wang Y, He J. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice. Nutrients 2015; 7:6425-45. [PMID: 26247969 PMCID: PMC4555123 DOI: 10.3390/nu7085284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 03/27/2015] [Accepted: 07/20/2015] [Indexed: 11/24/2022] Open
Abstract
The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34) immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA), placental growth factor (PLGF), and VEGF receptor 2 (VEGFR2) were also tested. Serum levels of homocysteine (Hcy), follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2) were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR) and estrogen receptor α (ERα) were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.
Collapse
Affiliation(s)
- Yanli Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Xinggui Liao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
42
|
Tait S, Tassinari R, Maranghi F, Mantovani A. Bisphenol A affects placental layers morphology and angiogenesis during early pregnancy phase in mice. J Appl Toxicol 2015; 35:1278-91. [PMID: 26063408 DOI: 10.1002/jat.3176] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/10/2015] [Accepted: 04/19/2015] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is a widespread endocrine disrupter mainly used in food contact plastics. Much evidence supports the adverse effects of BPA, particularly on susceptible groups such as pregnant women. The present study considered placental development - relevant for pregnancy outcomes and fetal nutrition/programming - as a potential target of BPA. Pregnant CD-1 mice were administered per os with vehicle, 0.5 (BPA05) or 50 mg kg(-1) (BPA50) body weight day(-1) of BPA, from gestational day (GD) 1 to GD11. At GD12, BPA50 induced significant degeneration and necrosis of giant cells, increased vacuolization in the junctional zone in the absence of glycogen accumulation and reduction of the spongiotrophoblast layer. In addition, BPA05 induced glycogen depletion as well as significant nuclear accumulation of β-catenin in trophoblasts of labyrinthine and spongiotrophoblast layers, supporting the activation of the Wnt/β-catenin pathway. Transcriptomic analysis indicated that BPA05 promoted and BPA50 inhibited blood vessel development and branching; morphologically, maternal vessels were narrower in BPA05 placentas, whereas embryonic and maternal vessels were irregularly dilated in the labyrinth of BPA50 placentas. Quantitative polymerase chain reaction evidenced an estrogen receptor β induction by BPA50, which did not correspond to downstream genes activation; indeed, the transcription factor binding sites analysis supported the AhR/Arnt complex as regulator of BPA50-modulated genes. Conversely, Creb appeared as the main transcription factor regulating BPA05-modulated genes. Embryonic structures (head, forelimb) showed divergent perturbations upon BPA05 or BPA50 exposure, potentially related to unbalanced embryonic nutrition and/or to modulation of genes involved in embryo development. Our findings support placenta as an important target of BPA, even at environmentally relevant dose levels.
Collapse
Affiliation(s)
- Sabrina Tait
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Tassinari
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Maranghi
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Alberto Mantovani
- Food and Veterinary Toxicology Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
43
|
Than NG, Romero R, Balogh A, Karpati E, Mastrolia SA, Staretz-Chacham O, Hahn S, Erez O, Papp Z, Kim CJ. Galectins: Double-edged Swords in the Cross-roads of Pregnancy Complications and Female Reproductive Tract Inflammation and Neoplasia. J Pathol Transl Med 2015; 49:181-208. [PMID: 26018511 PMCID: PMC4440931 DOI: 10.4132/jptm.2015.02.25] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/25/2015] [Indexed: 02/07/2023] Open
Abstract
Galectins are an evolutionarily ancient and widely expressed family of lectins that have unique glycan-binding characteristics. They are pleiotropic regulators of key biological processes, such as cell growth, proliferation, differentiation, apoptosis, signal transduction, and pre-mRNA splicing, as well as homo- and heterotypic cell-cell and cell-extracellular matrix interactions. Galectins are also pivotal in immune responses since they regulate host-pathogen interactions, innate and adaptive immune responses, acute and chronic inflammation, and immune tolerance. Some galectins are also central to the regulation of angiogenesis, cell migration and invasion. Expression and functional data provide convincing evidence that, due to these functions, galectins play key roles in shared and unique pathways of normal embryonic and placental development as well as oncodevelopmental processes in tumorigenesis. Therefore, galectins may sometimes act as double-edged swords since they have beneficial but also harmful effects for the organism. Recent advances facilitate the use of galectins as biomarkers in obstetrical syndromes and in various malignancies, and their therapeutic applications are also under investigation. This review provides a general overview of galectins and a focused review of this lectin subfamily in the context of inflammation, infection and tumors of the female reproductive tract as well as in normal pregnancies and those complicated by the great obstetrical syndromes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eva Karpati
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
- Department of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | | | - Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Ben-Gurion University, Beer-Sheva, Israel
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hangary
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, USA
- Department of Pathology, Wayne State University, Detroit, MI, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Sağsöz H, Liman N, Alan E. Expression of vascular endothelial growth factor receptors and their ligands in rat uterus during the postpartum involution period. Biotech Histochem 2015; 90:361-74. [DOI: 10.3109/10520295.2015.1007482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
45
|
Kumar V, Maurya VK, Joshi A, Meeran SM, Jha RK. Integrin beta 8 (ITGB8) regulates embryo implantation potentially via controlling the activity of TGF-B1 in mice. Biol Reprod 2015; 92:109. [PMID: 25788663 DOI: 10.1095/biolreprod.114.122838] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Integrins (ITGs) are mediators of cell-cell and cell-matrix interactions, which are also associated with embryo implantation processes by controlling the interaction of blastocyst with endometrium. During early pregnancy, ITGbeta8 (ITGB8) has been shown to interact with latent transforming growth factor (TGF) beta 1 (TGFB1) at the fetomaternal interface. However, the precise role of ITGB8 in the uterus and its association with embryo implantation has not been elucidated. Therefore, we attempted to ascertain the role of ITGB8 during the window of embryo implantation process by inhibiting its function or protein expression. Uterine plasma membrane-anchored ITGB8 was augmented at peri-implantation and postimplantation stages. A similar pattern of mRNA expression was also found during the embryo implantation period. An immunolocalization study revealed the presence of ITGB8 on luminal epithelial cells along with mild expression on the stromal cells throughout the implantation period studied; however, an intense fluorescence was noted only during the peri- and postimplantation stages. Bioneutralization and mRNA silencing of the uterine Itgb8 at preimplantation stage reduced the rate/frequency of embryo implantation and subsequent pregnancy, suggesting its indispensable role during the embryo implantation period. ITGB8 can also regulate the liberation of active TGFB1 from its latent complex, which, in turn, acts on SMAD2/3 phosphorylation (activation) in the uterus during embryo implantation. This indicates involvement of ITGB8 in the embryo implantation process through regulation of activation of TGFB1.
Collapse
Affiliation(s)
- Vijay Kumar
- Division of Endocrinology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Vineet Kumar Maurya
- Division of Endocrinology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Anubha Joshi
- Division of Endocrinology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Syed Musthapa Meeran
- Division of Endocrinology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| | - Rajesh Kumar Jha
- Division of Endocrinology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Jankipuram Extension, Lucknow, Uttar Pradesh, India
| |
Collapse
|
46
|
Shan N, Zhang X, Xiao X, Zhang H, Chen Y, Luo X, Liu X, Zhuang B, Peng W, Qi H. The Role of Laminin α4 in Human Umbilical Vein Endothelial Cells and Pathological Mechanism of Preeclampsia. Reprod Sci 2015; 22:969-79. [DOI: 10.1177/1933719115570913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuemei Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Research, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ying Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiru Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Baimei Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wei Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
47
|
García Fernández R, Sánchez Pérez M, Sánchez Maldonado B, García-Palencia P, Naranjo Freixa C, Palomo Yagüe A, Flores J. Iberian pig early pregnancy: Vascular endothelial growth factor receptor system expression in the maternofetal interface in healthy and arresting conceptuses. Theriogenology 2015; 83:334-43. [DOI: 10.1016/j.theriogenology.2014.07.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 11/29/2022]
|
48
|
Liu H, Chen Y, Yan F, Han X, Wu J, Liu X, Zheng H. Ultrasound molecular imaging of vascular endothelial growth factor receptor 2 expression for endometrial receptivity evaluation. Theranostics 2015; 5:206-17. [PMID: 25553109 PMCID: PMC4279005 DOI: 10.7150/thno.9847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/05/2014] [Indexed: 12/17/2022] Open
Abstract
Purpose: Ultrasound (US) molecular imaging by examining the expression of vascular endothelial growth factor receptor 2 (VEGFR2) on uterus vascular endothelium was applied to evaluate the endometrial receptivity. Methods: VEGFR2-targeted ultrasound contrast agents (UCA) and the control UCA (without VEGFR2) were prepared and characterized. Adhesion experiment in vitro was performed with mouse microvascular endothelial cells (bEnd.3) and the ratio of the number of UCA to that of cells at the same field was compared. In vivo study, randomized boluses of targeted or control UCA were injected into the animals of non-pregnancy (D0), pregnancy on day 2 (D2) and day 4 (D4), respectively. Sonograms were acquired by an ultrasound equipment with a 40-MHz high-frequency transducer (Vevo 2100; VisualSonics, Toronto, Canada). The ultrasonic imaging signals were quantified as the video intensity amplitudes generated by the attachment of VEGFR2-targeted UCA. Immunoblotting and immunofluorescence assays were used for confirmation of VEGFR2 expression. Results: Our results showed that VEGFR2-targeted UCA could bind to bEnd.3 cells with significantly higher affinity than the control UCA (9.8 ± 1.0 bubbles/cell versus 0.7 ± 0.3 bubbles/cell, P < 0.01) in vitro. The mean video intensity from the US backscattering of the retained VEGFR2-targeted UCA was significantly higher than that of the control UCA in D2 and D4 mice (D2, 10.5 ± 2.5 dB versus 1.5 ± 1.1 dB, P < 0.01; D4, 15.7 ± 4.0 dB versus 1.5 ± 1.2 dB, P < 0.01), but not significantly different in D0 mice (1.0 ± 0.8 dB versus 0.9 ± 0.6 dB, P > 0.05). Moreover, D4 mice showed the highest video intensity amplitude, indicating the highest VEGFR2 expression when compared with D2 and D0 mice (P < 0.01). This was further confirmed by our immunoblotting and immunofluorescence experiments. Conclusion: Ultrasound molecular imaging with VEGFR2-targeted UCA may be used for noninvasive evaluation of endometrial receptivity in murine models.
Collapse
|
49
|
Blois SM, Dechend R, Barrientos G, Staff AC. A potential pathophysiological role for galectins and the renin-angiotensin system in preeclampsia. Cell Mol Life Sci 2015; 72:39-50. [PMID: 25192660 PMCID: PMC11113509 DOI: 10.1007/s00018-014-1713-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 12/21/2022]
Abstract
This review discusses a potential role of galectins and the renin-angiotensin system (RAS) in the pathophysiology of preeclampsia (PE). Preeclampsia affects between 3 and 5 % of all pregnancies and is a heterogeneous disease, which may be caused by multiple factors. The only cure is the delivery of the placenta, which may result in a premature delivery and baby. Probably due to its heterogeneity, PE studies in human have hitherto only led to the identification of a limited number of factors involved in the pathogenesis of the disease. Animal models, particularly in mice and rats, have been used to gain further insight into the molecular pathology behind PE. In this review, we discuss the picture emerging from human and animal studies pointing to galectins and the RAS being associated with the PE syndrome and affecting a broad range of cellular signaling components. Moreover, we review the epidemiological evidence for PE increasing the risk of future cardiovascular disease later in life.
Collapse
Affiliation(s)
- Sandra M Blois
- Charité Center 12 Internal Medicine and Dermatology, Reproductive Medicine Research Group, Universitätsmedizin Berlin, Berlin, Germany,
| | | | | | | |
Collapse
|
50
|
Liu G, Dong Y, Wang Z, Cao J, Chen Y. Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation. Stress 2015; 18:699-709. [PMID: 26365550 DOI: 10.3109/10253890.2015.1078305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In mice, previously, we showed that restraint stress reduces the number of embryo implantation sites in the endometrium. Here, we hypothesized that the uterine microenvironment is altered by restraint stress and consequently is suboptimal for embryo implantation. On embryonic day 1 (E1), 60 of 154 pregnant CD1 mice underwent restraint stress (4 h), repeated daily to E3, E5 or E7 (n = 10 mice per group). Restraint stress decreased food intake and suppressed body weight gain on E3, E5 and E7. Restraint stress decreased the actual and relative weight (percent body weight) of uterus and ovary on E5 (by 14.9%, p = 0.03; 16.1%, p = 0.004) and E7 (by 16.8%, p = 0.03; 20.0%, p = 0.01). Morphologically, restraint stress decreased relative endometrial area (by 8.94-18.8%, p = 0.003-0.021) and uterine gland area (by 30.6%, p < 0.01 on E3 and 44.5%, p < 0.01 on E5). Immunohistochemistry showed that restraint stress decreased microvessel density (by 12.9-70.5%, p < 0.01) and vascular endothelial growth factor expression (by 14.6-45.9%, p = 0.007-0.02). Restraint stress decreased by 32.4-39.8% (p = 0.002-0.01) the mean optical density ratio for proliferating cell nuclear antigen/terminal deoxynucleotidyl transferase dUTP nick end labeling. Methyl thiazolyl tetrazolium assay showed a dose-dependent decrease in proliferative activity of endometrial stromal cells (from 52 of 154 pregnant E5 control mice) incubated with H2O2 (100-1000 μM) in vitro. These findings supported the hypothesis that restraint stress negatively influences endometrial adaptive remodeling via an oxidative stress pathway, which resulted in fewer implantation sites.
Collapse
Affiliation(s)
- Guanhui Liu
- a Laboratory of Veterinary Anatomy , College of Animal Medicine, China Agricultural University , Beijing , China
| | - Yulan Dong
- a Laboratory of Veterinary Anatomy , College of Animal Medicine, China Agricultural University , Beijing , China
| | - Zixu Wang
- a Laboratory of Veterinary Anatomy , College of Animal Medicine, China Agricultural University , Beijing , China
| | - Jing Cao
- a Laboratory of Veterinary Anatomy , College of Animal Medicine, China Agricultural University , Beijing , China
| | - Yaoxing Chen
- a Laboratory of Veterinary Anatomy , College of Animal Medicine, China Agricultural University , Beijing , China
| |
Collapse
|