1
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Di Muro G, Catalano R, Treppiedi D, Barbieri AM, Mangili F, Marra G, Di Bari S, Esposito E, Nozza E, Lania AG, Ferrante E, Locatelli M, Modena D, Steinkuhler C, Peverelli E, Mantovani G. The Novel SSTR3 Agonist ITF2984 Exerts Antimitotic and Proapoptotic Effects in Human Non-Functioning Pituitary Neuroendocrine Tumor (NF-PitNET) Cells. Int J Mol Sci 2024; 25:3606. [PMID: 38612419 PMCID: PMC11011875 DOI: 10.3390/ijms25073606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Somatostatin receptor ligands (SRLs) with high affinity for somatostatin receptors 2 and 5 (SSTR2 and SSTR5) are poorly efficacious in NF-PitNETs, expressing high levels of SSTR3. ITF2984 is a pan-SSTR ligand with high affinity for SSTR3, able to induce SSTR3 activation and to exert antitumoral activity in the MENX rat model. The aim of this study was to test ITF2984's antiproliferative and proapoptotic effects in NF-PitNET primary cultured cells derived from surgically removed human tumors and to characterize their SSTR expression profile. We treated cells derived from 23 NF-PitNETs with ITF2984, and a subset of them with octreotide, pasireotide (SRLs with high affinity for SSTR2 or 5, respectively), or cabergoline (DRD2 agonist) and we measured cell proliferation and apoptosis. SSTR3, SSTR2, and SSTR5 expression in tumor tissues was analyzed by qRT-PCR and Western blot. We demonstrated that ITF2984 reduced cell proliferation (-40.8 (17.08)%, p < 0.001 vs. basal, n = 19 NF-PitNETs) and increased cell apoptosis (+41.4 (22.1)%, p < 0.001 vs. basal, n = 17 NF-PitNETs) in all tumors tested, whereas the other drugs were only effective in some tumors. In our model, SSTR3 expression levels did not correlate with ITF2984 antiproliferative nor proapoptotic effects. In conclusion, our data support a possible use of ITF2984 in the pharmacological treatment of NF-PitNET.
Collapse
Affiliation(s)
- Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
- Department of Experimental Medicine, University Sapienza of Rome, 00100 Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
| | - Donatella Treppiedi
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.T.); (F.M.); (E.F.)
| | - Anna Maria Barbieri
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
| | - Federica Mangili
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.T.); (F.M.); (E.F.)
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
| | - Sonia Di Bari
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
- PhD Program in Experimental Medicine, University of Milan, 20100 Milan, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
- PhD Program in Experimental Medicine, University of Milan, 20100 Milan, Italy
| | - Andrea G. Lania
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy;
- Endocrinology and Diabetology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.T.); (F.M.); (E.F.)
| | - Marco Locatelli
- Neurosurgery Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Modena
- Preclinical R&D, Italfarmaco Group, Cinisello Balsamo, 20092 Milan, Italy; (D.M.)
| | | | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.T.); (F.M.); (E.F.)
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (G.D.M.); (R.C.); (A.M.B.); (G.M.); (S.D.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (D.T.); (F.M.); (E.F.)
| |
Collapse
|
3
|
Milewska-Kranc A, Ćwikła JB, Kolasinska-Ćwikła A. The Role of Receptor-Ligand Interaction in Somatostatin Signaling Pathways: Implications for Neuroendocrine Tumors. Cancers (Basel) 2023; 16:116. [PMID: 38201544 PMCID: PMC10778465 DOI: 10.3390/cancers16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Neuroendocrine tumors (NETs) arise from neuroendocrine cells and manifest in diverse organs. Key players in their regulation are somatostatin and its receptors (SSTR1-SSTR5). Understanding receptor-ligand interactions and signaling pathways is vital for elucidating their role in tumor development and therapeutic potential. This review highlights SSTR characteristics, localization, and expression in tissues, impacting physiological functions. Mechanisms of somatostatin and synthetic analogue binding to SSTRs, their selectivity, and their affinity were analyzed. Upon activation, somatostatin initiates intricate intracellular signaling, involving cAMP, PLC, and MAP kinases and influencing growth, differentiation, survival, and hormone secretion in NETs. This review explores SSTR expression in different tumor types, examining receptor activation effects on cancer cells. SSTRs' significance as therapeutic targets is discussed. Additionally, somatostatin and analogues' role in hormone secretion regulation, tumor growth, and survival is emphasized, presenting relevant therapeutic examples. In conclusion, this review advances the knowledge of receptor-ligand interactions and signaling pathways in somatostatin receptors, with potential for improved neuroendocrine tumor treatments.
Collapse
Affiliation(s)
| | - Jarosław B. Ćwikła
- School of Medicine, University of Warmia and Mazury, Aleja Warszawska 30, 10-082 Olsztyn, Poland
- Diagnostic Therapeutic Center–Gammed, Lelechowska 5, 02-351 Warsaw, Poland
| | | |
Collapse
|
4
|
Peverelli E, Treppiedi D, Mantovani G. Molecular mechanisms involved in somatostatin receptor regulation in corticotroph tumors: the role of cytoskeleton and USP8 mutations. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R24-R30. [PMID: 37435448 PMCID: PMC10259348 DOI: 10.1530/eo-22-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 07/13/2023]
Abstract
Adrenocorticotropic hormone (ACTH)-secreting pituitary tumors mainly express somatostatin receptor 5 (SSTR5) since SSTR2 is downregulated by the elevated levels of glucocorticoids that characterize patients with Cushing's disease (CD). SSTR5 is the molecular target of pasireotide, the only approved pituitary tumor-targeted drug for the treatment of CD. However, the molecular mechanisms that regulate SSTR5 are still poorly investigated. This review summarizes the experimental evidence supporting the role of the cytoskeleton actin-binding protein filamin A (FLNA) in the regulation of SSTR5 expression and signal transduction in corticotroph tumors. Moreover, the correlations between the presence of somatic USP8 mutations and the expression of SSTR5 will be reviewed. An involvement of glucocorticoid-mediated β-arrestins modulation in regulating SSTRs expression and function in ACTH-secreting tumors will also be discussed.
Collapse
Affiliation(s)
- Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
5
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
6
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
7
|
Tulipano G, Giustina A. Effects of octreotide on autophagy markers and cell viability markers related to metabolic activity in rat pituitary tumor cells. Pituitary 2020; 23:223-231. [PMID: 31997055 DOI: 10.1007/s11102-020-01028-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this work was to investigate possible direct effects of the somatostatin analog octreotide on autophagy markers and markers of cellular metabolic activity using in vitro cultured rat pituitary tumor cells (GH3 cell line). METHODS We measured two markers of the autophagic flux in cell lysates by Western blot and MTT reductive activity, total cellular ATP levels, pyruvate dehydrogenase (PDH) complex activity in cells lysates as markers of cell viability related to metabolic activity. RESULTS Octreotide (100 nM) treatment induced autophagy activation (increased LC3-I protein lipidation) and enhanced the autophagic flux (SQSTM1/p62 protein downregulation) in GH3 cells in different incubation media, in detail in Hank's balanced salt solution (HBSS) as well as in maintenance medium with serum. We did not observe any decrease of redox activity and energy production related to the induction of autophagy by octreotide. On the other hand, short-term treatments with octreotide in HBSS tended to enhance MTT reduction activity and to increase PDH complex enzymatic activity and ATP levels measured in GH3 cell lysates. CONCLUSIONS We provided evidence that octreotide can affect autophagy in pituitary tumor cells. The observed effects of octreotide were not related to a decrease of cellular metabolic activity. Finally, the induction of autophagy was either short-lived or overshadowed by other factors in the long term and this limit does not help clarifying their real impact on the pharmacological activity of somatostatin analogs.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Andrea Giustina
- Division of Endocrinology, IRCCS San Raffaele Hospital, San Raffaele Vita- Salute University - Head, Milan, Italy
| |
Collapse
|
8
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
9
|
Coelho MCA, Vasquez ML, Wildemberg LE, Vázquez-Borrego MC, Bitana L, Camacho AHDS, Silva D, Ogino LL, Ventura N, Sánchez-Sánchez R, Chimelli L, Kasuki L, Luque RM, Gadelha MR. Clinical significance of filamin A in patients with acromegaly and its association with somatostatin and dopamine receptor profiles. Sci Rep 2019; 9:1122. [PMID: 30718563 PMCID: PMC6361919 DOI: 10.1038/s41598-018-37692-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2018] [Indexed: 11/15/2022] Open
Abstract
Filamin-A (FLNA) plays a crucial role in somatostatin receptor (sst) subtype-2 signaling in somatotropinomas. Our objective was to investigate the in vivo association between FLNA and sst2 expression, sst5 expression, dopamine receptor subtype-2 (D2) expression, somatostatin receptor ligand (SRL) responsiveness and tumor invasiveness in somatotropinomas. Quantitative real-time PCR was used to evaluate the absolute mRNA copy numbers of FLNA/sst2/sst5/D2 in 96 somatotropinomas. FLNA, sst2 and sst5 protein expression levels were also evaluated using immunohistochemistry. The Knosp-Steiner criteria were used to evaluate tumor invasiveness. Median FLNA, sst2, sst5 and D2 copy numbers were 4,244, 731, 156 and 3,989, respectively. Thirty-one of the 35 available tumors (89%) were immune positive for FLNA in the cytoplasm and membrane but not in the nucleus. FLNA and sst5 expression were positively correlated at the mRNA and protein levels (p < 0.001 and p = 0.033, respectively). FLNA was positively correlated with sst2 mRNA in patients who were responsive to SRL (p = 0.014, R = 0.659). No association was found between FLNA and tumor invasiveness. Our findings show that in somatotropinomas FLNA expression positively correlated with in vivo sst5 and D2 expression. Notably, FLNA was only correlated with sst2 in patients who were controlled with SRL. FLNA was not associated with tumor invasiveness.
Collapse
Affiliation(s)
- Maria Caroline Alves Coelho
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Universitário Pedro Ernesto, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Division, Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, Brazil
| | - Marina Lipkin Vasquez
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Luiz Eduardo Wildemberg
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Mari C Vázquez-Borrego
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Luciana Bitana
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Pathology Division, Instituto Nacional do Câncer, Rio de janeiro, Brazil
| | - Débora Silva
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Liana Lumi Ogino
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Nina Ventura
- Radiology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Rafael Sánchez-Sánchez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.,Endocrine Division, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Raul M Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain.,CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil. .,Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
11
|
Cambiaghi V, Vitali E, Morone D, Peverelli E, Spada A, Mantovani G, Lania AG. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line. Endocrine 2017; 56:146-157. [PMID: 27406390 DOI: 10.1007/s12020-016-1026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023]
Abstract
Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.
Collapse
Affiliation(s)
- Valeria Cambiaghi
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Diego Morone
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Erika Peverelli
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Andrea Gerardo Lania
- Endocrine Unit, Humanitas Clinical and Research Center, Rozzano, Italy.
- Humanitas University, School of Medicine, Rozzano, Italy.
| |
Collapse
|
12
|
Treppiedi D, Peverelli E, Giardino E, Ferrante E, Calebiro D, Spada A, Mantovani G. Somatostatin Receptor Type 2 (SSTR2) Internalization and Intracellular Trafficking in Pituitary GH-Secreting Adenomas: Role of Scaffold Proteins and Implications for Pharmacological Resistance. Horm Metab Res 2017; 49:259-268. [PMID: 27632151 DOI: 10.1055/s-0042-116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSomatostatin receptor type 2 (SSTR2), together with SSTR5, represents the main
target of medical treatment for growth hormone (GH)-secreting pituitary tumors,
since it is expressed in most of these tumors and exerts both antiproliferative
and cytostatic effects, and reduces hormone secretion, as well. However,
clinical practice indicates a great variability in the frequency and entity of
favorable responses of acromegalic patients to long-acting somatostatin
analogues (SSAs), but the molecular mechanisms regulating this pharmacological
resistance are not completely understood. So far, several potentially implied
mechanisms have been suggested, including impaired expression of SSTRs, or
post-receptor signal transduction alterations. More recently, new studies
exploited the molecular factors involved in SSTRs intracellular trafficking
regulation, this being a critical point for the modulation of the available
active G-coupled receptors (GPCRs) amount at the cell surface. In this respect,
the role of the scaffold proteins such as β-arrestins, and the cytoskeleton
protein Filamin A (FLNA), have become of relevant importance for GH-secreting
pituitary tumors. In fact, β-arrestins are linked to SSTR2 desensitization and
internalization, and FLNA is able to regulate SSTR2 trafficking and stability at
the plasma membrane. Therefore, the present review will summarize emerging
evidence highlighting the role of β-arrestins and FLNA, as possible novel
players in the modulation of agonist activated-SSTR2 receptor trafficking and
response in GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- D Treppiedi
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Peverelli
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Ferrante
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, and Rudolf Virchow Center, Bio-Imaging Center, Würzburg, Germany
| | - A Spada
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Peverelli E, Treppiedi D, Giardino E, Vitali E, Lania AG, Mantovani G. Dopamine and Somatostatin Analogues Resistance of Pituitary Tumors: Focus on Cytoskeleton Involvement. Front Endocrinol (Lausanne) 2015; 6:187. [PMID: 26733942 PMCID: PMC4686608 DOI: 10.3389/fendo.2015.00187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Pituitary tumors, that origin from excessive proliferation of a specific subtype of pituitary cell, are mostly benign tumors, but may cause significant morbidity in affected patients, including visual and neurologic manifestations from mass-effect, or endocrine syndromes caused by hormone hypersecretion. Dopamine (DA) receptor DRD2 and somatostatin (SS) receptors (SSTRs) represent the main targets of pharmacological treatment of pituitary tumors since they mediate inhibitory effects on both hormone secretion and cell proliferation, and their expression is retained by most of these tumors. Although long-acting DA and SS analogs are currently used in the treatment of prolactin (PRL)- and growth hormone (GH)-secreting pituitary tumors, respectively, clinical practice indicates a great variability in the frequency and entity of favorable responses. The molecular basis of the pharmacological resistance are still poorly understood, and several potential molecular mechanisms have been proposed, including defective expression or genetic alterations of DRD2 and SSTRs, or an impaired signal transduction. Recently, a role for cytoskeleton protein filamin A (FLNA) in DRD2 and SSTRs receptors expression and signaling in PRL- and GH-secreting tumors, respectively, has been demonstrated, first revealing a link between FLNA expression and responsiveness of pituitary tumors to pharmacological therapy. This review provides an overview of the known molecular events involved in SS and DA resistance, focusing on the role played by FLNA.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Donatella Treppiedi
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Eleonora Vitali
- Laboratory of Cellular and Molecular Endocrinology, IRCCS Clinical and Research Institute Humanitas, Milan, Italy
| | - Andrea G. Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- *Correspondence: Giovanna Mantovani,
| |
Collapse
|
14
|
Abstract
The cyclic nucleotide cAMP is a universal regulator of a variety of cell functions in response to activated G-protein coupled receptors. In particular, cAMP exerts positive or negative effects on cell proliferation in different cell types. As demonstrated by several in vitro studies, in somatotrophs and in other endocrine cells, cAMP is a mitogenic factor. In agreement with this notion, it has been found that the mutations of genes coding for proteins that contribute to increases in the cAMP signaling cascade may cause endocrine tumor development. This review will discuss the central role of cAMP signaling in the pituitary, focusing on the cAMP pathway alterations involved in pituitary tumorigenesis, as well as on poorly investigated the aspects of cAMP cascade, such as crosstalk with the ERK signaling pathway and new cAMP effectors.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrine Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Endocrine Unit, IRCCS Humanitas Clinical Institute, Rozzano, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
15
|
Theodoropoulou M, Stalla GK. Somatostatin receptors: from signaling to clinical practice. Front Neuroendocrinol 2013; 34:228-52. [PMID: 23872332 DOI: 10.1016/j.yfrne.2013.07.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/13/2013] [Accepted: 07/12/2013] [Indexed: 02/08/2023]
Abstract
Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors.
Collapse
Affiliation(s)
- Marily Theodoropoulou
- Department of Endocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany.
| | | |
Collapse
|
16
|
Deciphering the specific role of Gαi/o isoforms: functional selective oxytocin ligands and somatostatin SST5 receptor mutants. Biochem Soc Trans 2013; 41:166-71. [DOI: 10.1042/bst20120306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Receptor coupling to different G-proteins and β-arrestins has been described for a number of GPCRs (G-protein-coupled receptors), suggesting a multi-state model of receptor activation in which each receptor can assume a number of different active conformations, each capable of promoting the coupling to a specific effector. Consistently, functional-selective ligands and biased agonists have been described to be able to induce and/or stabilize only a subset of specific active conformations. Furthermore, GPCR mutants deficient in selective coupling have been reported. Functional selective ligands and receptor mutants thus constitute unique tools to dissect the specific roles of different effectors, in particular among the Gi/o family. In the present mini-review, we focus on (i) the identification of functional selective OXT (oxytocin)-derived peptides capable of activating single Gi/o isoforms, namely Gi1 or Gi3; and (ii) the characterization of an SS (somatostatin) receptor SST5 mutant selectively impaired in its GoA coupling. These analogues and receptor mutants represent unique tools for examining the contribution of Gi/o isoforms in complex biological responses and open the way for the development of drugs with peculiar selectivity profiles.
Collapse
|
17
|
Peverelli E, Busnelli M, Vitali E, Giardino E, Galés C, Lania AG, Beck-Peccoz P, Chini B, Mantovani G, Spada A. Specific roles of G(i) protein family members revealed by dissecting SST5 coupling in human pituitary cells. J Cell Sci 2012. [PMID: 23178946 DOI: 10.1242/jcs.116434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite intensive investigation over the past 20 years, the specific role played by individual G(i) protein family members in mediating complex cellular effects is still largely unclear. Therefore, we investigated the role of specific G(i) proteins in mediating somatostatin (SS) effects in somatotroph cells. Because our previous data showed that SS receptor type 5 (SST5) carrying a spontaneous R240W mutation in the third intracellular loop had a similar ability to inhibit intracellular cAMP levels to the wild-type protein but failed to mediate inhibition of growth hormone (GH) release and cell proliferation, we used this model to check specific receptor-G-protein coupling by a bioluminescent resonance energy transfer analysis. In HEK293 cells, wild-type SST5 stimulated the activation of Gα(i1-3) and Gα(oA), B, whereas R240W SST5 maintained the ability to activate Gα(i1-3) and Gα(oB), but failed to activate the splicing variant Gα(oA). To investigate the role of the selective deficit in Gα(oA) coupling, we co-transfected human adenomatous somatotrophs with SST5 and a pertussis toxin (PTX)-resistant Gα(oA) (Gα(oA(PTX-r))) protein. In PTX-treated cells, Gα(oA(PTX-r)) rescued the ability of the selective SST5 analog BIM23206 to inhibit extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation, GH secretion and intracellular cAMP levels. Moreover, we demonstrated that silencing of Gα(oA) completely abolished SST5-mediated inhibitory effects on GH secretion and ERK1/2 phosphorylation, but not on cAMP levels. In conclusion, by analysing the coupling specificity of human SST5 to individual Gα(i) and Gα(o) subunits, we identified a crucial role for Gα(oA) signalling in human pituitary cells.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology and Diabetology Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda Policlinico, 20122-Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shpakov AO. Somatostatin receptors and signaling cascades coupled to them. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shpakov AO, Shpakova EA. [Development of non-hormonal regulators of adenylyl cyclase signaling system on the basis of peptides, derivatives of the third intracellular loop of somatostatin receptors]. BIOMEDITSINSKAIA KHIMIIA 2012; 58:446-456. [PMID: 23413689 DOI: 10.18097/pbmc20125804446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the majority of the serpentine type receptors the third intracellular loop (ICL-3) is responsible for interaction with heterotrimeric G-proteins and for transduction of hormonal signal to the enzymes, generators of the second messengers. It was found that the peptides corresponding to ICL-3 influence functional activity of hormonal signaling systems in the absence of the hormone and, in consequence, can be considered as prototypes for the development of selective regulators of these systems. We have originally synthesized peptides corresponding to C-terminal regions 255-269 and 240 254 of ICL-3 of type 1 and 2 rat somatostatin receptors (Som1R and Som2R). Micromolar concentrations of these peptides activated Gi-proteins and inhibited forskolin-stimulated activity of adenylyl cyclase (AC) in rat brain tissues. The peptide 255-269 of Som1R is a selective antagonist of Som1R, and the peptide 240-254 of Som2R is an agonist of Som1R. So, the peptide 255-269 of Som1R decreased the regulatory effects of somatostatin and selective Som1R-agonist CH-275 realized via the receptor homologous to them, while the peptide 240-254 of Som2R, on the contrary, increased AC inhibitory action of CH-275. Both peptides insignificantly influenced regulatory effects of the Som2R-agonist octreotide. Summing up, the peptides studied by us are selective regulators of somatostatin-sensitive AC system. Using the peptides it was shown that ICL-3 of Som1R and Som2R includes the main molecular determinants that are responsible for activation of Gi-proteins and regulation of AC system by somatostatin and its analogues.
Collapse
|
20
|
Lania A, Mantovani G, Spada A. cAMP pathway and pituitary tumorigenesis. ANNALES D'ENDOCRINOLOGIE 2012; 73:73-5. [PMID: 22525824 DOI: 10.1016/j.ando.2012.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The pituitary is the target of different neurohormones that have a crucial role in the control of cell differentiation, cell proliferation and hormone secretion by recognizing specific receptors belonging to the G Protein-Coupled Receptor super-family (GPCR). Evidence from in vitro studies and naturally occurring human diseases indicate that several endocrine cells, and particularly somatotrophs, recognize cAMP as a growth factor. Accordingly, mutations of the alpha subunit of the stimulatory G protein gene (GNAS) leading to the constitutive activation of adenylyl cyclase (i.e. gsp oncogene) have been recognized in a significant proportion of GH-secreting pituitary adenomas. The role of cAMP in the control of cell proliferation in selected cell types and in particular in somatotroph cells has been further confirmed by identification of genetics defect affecting the regulatory subunit IA of PKA. The role of cAMP in the control of cell proliferation as well as the crosstalk with different intracellular signalling pathways will be discussed.
Collapse
Affiliation(s)
- Andrea Lania
- Department of Medical Sciences, University of Milan, Endocrine Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Italy.
| | | | | |
Collapse
|
21
|
Novel GαS-protein signaling associated with membrane-tethered amyloid precursor protein intracellular domain. J Neurosci 2012; 32:1714-29. [PMID: 22302812 DOI: 10.1523/jneurosci.5433-11.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous physiological functions, including a role as a cell surface receptor, have been ascribed to Alzheimer's disease-associated amyloid precursor protein (APP). However, detailed analysis of intracellular signaling mediated by APP in neurons has been lacking. Here, we characterized intrinsic signaling associated with membrane-bound APP C-terminal fragments, which are generated following APP ectodomain release by α- or β-secretase cleavage. We found that accumulation of APP C-terminal fragments or expression of membrane-tethered APP intracellular domain results in adenylate cyclase-dependent activation of PKA (protein kinase A) and inhibition of GSK3β signaling cascades, and enhancement of axodendritic arborization in rat immortalized hippocampal neurons, mouse primary cortical neurons, and mouse neuroblastoma. We discovered an interaction between BBXXB motif of APP intracellular domain and the heterotrimeric G-protein subunit Gα(S), and demonstrate that Gα(S) coupling to adenylate cyclase mediates membrane-tethered APP intracellular domain-induced neurite outgrowth. Our study provides clear evidence that APP intracellular domain can have a nontranscriptional role in regulating neurite outgrowth through its membrane association. The novel functional coupling of membrane-bound APP C-terminal fragments with Gα(S) signaling identified in this study could impact several brain functions such as synaptic plasticity and memory formation.
Collapse
|
22
|
Carrel D, Simon A, Emerit MB, Rivals I, Leterrier C, Biard M, Hamon M, Darmon M, Lenkei Z. Axonal Targeting of the 5-HT1B Serotonin Receptor Relies on Structure-Specific Constitutive Activation. Traffic 2011; 12:1501-20. [DOI: 10.1111/j.1600-0854.2011.01260.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Shpakov AO, Shpakova EA. Development of non-hormonal regulators of the adenylyl cyclase signaling system based on the peptides, derivatives of the third intracellular loop of somatostatin receptors. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s1990750811030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Shpakova EA, Shpakov AO. Peptides corresponding to intracellular regions of somatostatin receptors with agonist and antagonist activity. DOKL BIOCHEM BIOPHYS 2011; 437:68-71. [PMID: 21590378 DOI: 10.1134/s1607672911020049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Indexed: 11/23/2022]
Affiliation(s)
- E A Shpakova
- Institute of High-Molecular-Weight Compounds, Russian Academy of Sciences St. Petersburg, 199004, Russia
| | | |
Collapse
|
25
|
Yu Y, Chang JP. Involvement of protein kinase C and intracellular Ca2+ in goldfish brain somatostatin-28 inhibitory action on growth hormone release in goldfish. Gen Comp Endocrinol 2010; 168:71-81. [PMID: 20403359 DOI: 10.1016/j.ygcen.2010.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/17/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
Goldfish brain somatostatin-28 (gbSS-28) is present in brain and pituitary tissues of goldfish. We assessed whether gbSS-28 targets Ca(2+) and/or protein kinase C (PKC)-dependent signaling cascades in inhibiting growth hormone (GH) release. gbSS-28 decreased basal GH release from primary cultures of dispersed goldfish pituitary cells and intracellular free calcium levels ([Ca(2+)](i)) in goldfish somatotropes. gbSS-28 partially reduced [Ca(2+)](i) and GH responses induced by two endogeneous gonadotropin-releasing hormones (GnRHs), salmon (s)GnRH and chicken (c)GnRH-II. Furthermore, gbSS-28 reduced GH increases and abolished [Ca(2+)](i) elevations elicited by two PKC activators, tetradecanoyl 4beta-phorbol-13-acetate and dioctanyl glycerol. The PKC inhibitors Gö6976 and Bis II abolished [Ca(2+)](i) responses to PKC activators, but only attenuated GnRH-induced increases in [Ca(2+)](i) and did not alter basal [Ca(2+)](i). In cells pretreated with Bis II, gbSS-28 further reduced basal [Ca(2+)](i). Our results suggest that gbSS-28 inhibits GnRH-induced GH release in part by attenuating PKC-mediated GnRH [Ca(2+)](i) signals. gbSS-28 reduces basal GH release also via reduction in [Ca(2+)](i) but PKC is not involved in this regard.
Collapse
Affiliation(s)
- Y Yu
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
26
|
van der Hoek J, Lamberts SWJ, Hofland LJ. The somatostatin receptor subtype 5 in neuroendocrine tumours. Expert Opin Investig Drugs 2010; 19:385-99. [PMID: 20151855 DOI: 10.1517/13543781003604710] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD In recent years, scientific work has been intensified to unravel new (patho-) physiological insights, particularly regarding the functional role of somatostatin (SRIF) receptor subtype 5 (sst) and the development of novel sst(5)-targeted SRIF analogues, in order to broaden medical therapeutic opportunities in patients suffering from neuroendocrine diseases. AREAS COVERED IN THIS REVIEW The scope of this review is primarily focused upon recent insights in sst(5)-receptor physiology, novel sst(5)-targeted treatment options predominantly directed towards pituitary adenomas, and gastroenteropancreatic neuroendocrine tumours. WHAT THE READER WILL GAIN An understanding of the potential that novel sst(5)-targeted SRIF analogues might have in the medical treatment of Cushing's disease and acromegaly, as demonstrated by translational research, based on pathophysiological data combined with results from clinical trials. TAKE HOME MESSAGE The role of targeting sst(5) in gastroenteropancreatic neuroendocrine tumours remains to be established. The sst(5) subtype might function as sst(2) modulator in terms of receptor internalization and desensitization, and seems less important compared with sst(2)-preferring SRIF analogues in the regulation of human insulin secretion by the pancreas. Finally, absence of sst(5) in corticotroph adenomas could be related to tumour aggressiveness in Cushing's disease.
Collapse
Affiliation(s)
- Joost van der Hoek
- Department of Internal Medicine, Division of Endocrinology, Room Ee530b, Erasmus MC, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Córdoba-Chacón J, Gahete MD, Duran-Prado M, Pozo-Salas AI, Malagón MM, Gracia-Navarro F, Kineman RD, Luque RM, Castaño JP. Identification and characterization of new functional truncated variants of somatostatin receptor subtype 5 in rodents. Cell Mol Life Sci 2010; 67:1147-63. [PMID: 20063038 PMCID: PMC11115927 DOI: 10.1007/s00018-009-0240-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/08/2009] [Accepted: 12/18/2009] [Indexed: 12/11/2022]
Abstract
Somatostatin and cortistatin exert multiple biological actions through five receptors (sst1-5); however, not all their effects can be explained by activation of sst1-5. Indeed, we recently identified novel truncated but functional human sst5-variants, present in normal and tumoral tissues. In this study, we identified and characterized three novel truncated sst5 variants in mice and one in rats displaying different numbers of transmembrane-domains [TMD; sst5TMD4, sst5TMD2, sst5TMD1 (mouse-variants) and sst5TMD1 (rat-variant)]. These sst5 variants: (1) are functional to mediate ligand-selective-induced variations in [Ca(2+)]i and cAMP despite being truncated; (2) display preferential intracellular distribution; (3) mostly share full-length sst5 tissue distribution, but exhibit unique differences; (4) are differentially regulated by changes in hormonal/metabolic environment in a tissue- (e.g., central vs. systemic) and ligand-dependent manner. Altogether, our results demonstrate the existence of new truncated sst5-variants with unique ligand-selective signaling properties, which could contribute to further understanding the complex, distinct pathophysiological roles of somatostatin and cortistatin.
Collapse
Affiliation(s)
- Jose Córdoba-Chacón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Manuel D. Gahete
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Mario Duran-Prado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Ana I. Pozo-Salas
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - F. Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Rhonda D. Kineman
- Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, IL USA
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL USA
| | - Raul M. Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| | - Justo P. Castaño
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Edificio Severo Ochoa. Planta 3. Campus de Rabanales, 14014 Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn 06/03), Córdoba, Spain
| |
Collapse
|