1
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
2
|
DHCR24, a Key Enzyme of Cholesterol Synthesis, Serves as a Marker Gene of the Mouse Adrenal Gland Inner Cortex. Int J Mol Sci 2023; 24:ijms24020933. [PMID: 36674444 PMCID: PMC9867314 DOI: 10.3390/ijms24020933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Steroid hormones are synthesized through enzymatic reactions using cholesterol as the substrate. In steroidogenic cells, the required cholesterol for steroidogenesis can be obtained from blood circulation or synthesized de novo from acetate. One of the key enzymes that control cholesterol synthesis is 24-dehydrocholesterol reductase (encoded by DHCR24). In humans and rats, DHCR24 is highly expressed in the adrenal gland, especially in the zona fasciculata. We recently reported that DHCR24 was expressed in the mouse adrenal gland's inner cortex and also found that thyroid hormone treatment significantly upregulated the expression of Dhcr24 in the mouse adrenal gland. In the present study, we showed the cellular expression of DHCR24 in mouse adrenal glands in early postnatal stages. We found that the expression pattern of DHCR24 was similar to the X-zone marker gene 20αHSD in most developmental stages. This finding indicates that most steroidogenic adrenocortical cells in the mouse adrenal gland do not synthesize cholesterol locally. Unlike the 20αHSD-positive X-zone regresses during pregnancy, some DHCR24-positive cells remain present in parous females. Conditional knockout mice showed that the removal of Dhcr24 in steroidogenic cells did not affect the overall development of the adrenal gland or the secretion of corticosterone under acute stress. Whether DHCR24 plays a role in conditions where a continuous high amount of corticosterone production is needed requires further investigation.
Collapse
|
3
|
Harashima S, Yamazaki Y, Motomura N, Ono Y, Omata K, Tezuka Y, Morimoto R, Nakamura Y, Satoh F, Suzuki H, Kwon GE, Choi MH, Sasano H. Phenotype-genotype correlation in aldosterone-producing adenomas characterized by intracellular cholesterol metabolism. J Steroid Biochem Mol Biol 2022; 221:106116. [PMID: 35533918 DOI: 10.1016/j.jsbmb.2022.106116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
Aldosterone-producing adenoma (APA) is histologically composed of clear and compact tumor cells. KCNJ5- mutated APAs were reported to be associated with higher plasma aldosterone concentration and more abundant clear tumor cells containing lipid droplets than non-KCNJ5- mutated APAs. However, the association among cholesterol uptake and/or synthesis, cellular morphology and genotypes has remained unknown. Therefore, in order to explore these differences, 52 APA cases (KCNJ5 mt: n = 33, non-KCNJ5 mt: n = 19; ATP1A1: n = 3, ATP2B3: n = 3, CACNA1D: n = 5, CTNNB1: n = 1, tumors without any mutation above: n = 7), zona glomerulosa (ZG) tissue adjacent to APA and 10 non-pathological adrenal glands (NAs) were examined for quantitative histopathological analysis of tumor morphology and immunohistochemical analysis of cholesterol receptors (SR-B1, LDL-R), cholesterol metabolic enzymes (ACAT1, ACAT2, HSL, DHCR24, StAR), and the enzymes required for steroid synthesis (CYP11A1, CYP17A, 3βHSD, CYP11B1, CYP11B2). Gas chromatography-mass spectrometry (GC-MS) analysis was further performed to profile cholesterol precursors and metabolites in 21 APA cases (KCNJ5 mt: n = 16, non-KCNJ5 mt: n = 5) and 14 adrenal cortex of adjacent adrenal tissues. Results demonstrated that both SR-B1 and DHCR24 were significantly lower in the ZG than in fasciculata or reticularis of NAs but LDL-R was not significantly different among them in immunohistochemical analysis. SR-B1 and DHCR24 were both significantly higher in APAs than in ZG tissue adjacent to APA. In GC-MS analysis, most cholesterol precursors and metabolites, except for lanosterol, and their metabolic ratios (= concentration of cholesterol/ precursor) were higher in APAs than in the adjacent adrenal cortex tissue. LDL-R, ACAT1/2, HSL, DHCR24 were all significantly lower in clear than in compact tumor cells of APA. LDL-R was significantly lower and cholesterol/lanosterol ratio was significantly higher in KCNJ5- mutated than non-KCNJ5- mutated APAs. We demonstrated SR-B1 mediated selective uptake of cholesterol ester and de novo cholesterol synthesis were both enhanced in APAs. In addition, cholesterol uptake and metabolism were different between clear and compact tumor cells. KCNJ5- mutated APAs were predominantly composed of clear tumor cells containing abundant cholesteryl ester but less activated LDL-R mediated uptake and increased de novo synthesis. Those findings above indicated their more pronounced functional deviation from the normal ZG cells in terms of their steroidogenic and intracellular cholesterol metabolism.
Collapse
Affiliation(s)
- Shogo Harashima
- Department of Pathology, National Hospital Organization Sendai medical center, Sendai, Japan; Department of Pathology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Naoki Motomura
- Department of Pathology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan; Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology, National Hospital Organization Sendai medical center, Sendai, Japan
| | - Go Eun Kwon
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Man Ho Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Hironobu Sasano
- Department of Pathology, Tohoku Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Hasenmajer V, Bonaventura I, Minnetti M, Sada V, Sbardella E, Isidori AM. Non-Canonical Effects of ACTH: Insights Into Adrenal Insufficiency. Front Endocrinol (Lausanne) 2021; 12:701263. [PMID: 34489864 PMCID: PMC8416901 DOI: 10.3389/fendo.2021.701263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 01/13/2023] Open
Abstract
Introduction Adrenocorticotropic hormone (ACTH) is produced from proopiomelanocortin, which is predominantly synthetized in the corticotroph and melanotroph cells of the anterior and intermediate lobes of the pituitary gland and the arcuate nucleus of the hypothalamus. Although ACTH clearly has an effect on adrenal homeostasis and maintenance of steroid hormone production, it also has extra-adrenal effects that require further elucidation. Methods We comprehensively reviewed English language articles, regardless of whether they reported the presence or absence of adrenal and extra-adrenal ACTH effects. Results In the present review, we provide an overview on the current knowledge on adrenal and extra-adrenal effects of ACTH. In the section on adrenal ACTH effects, we focused on corticosteroid rhythmicity and effects on steroidogenesis, mineralocorticoids and adrenal growth. In the section on extra-adrenal effects, we have analyzed the effects of ACTH on the osteoarticular and reproductive systems, adipocytes, immune system, brain and skin. Finally, we focused on adrenal insufficiency. Conclusions The role of ACTH in maintaining the function of the hypothalamic-pituitary-adrenal axis is well known. Conversely, if we broaden our vision and analyze its role as a potential treatment strategy in other conditions, it will be evident in the literature that researchers seem to have abandoned this aspect in studies conducted several years ago. We believe it is worth re-evaluating the role of ACTH considering its noncanonical effects on the adrenal gland itself and on extra-adrenal organs and tissues; however, this would not have been possible without the recent advances in the pertinent technologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea M. Isidori
- Department of Experimental Medicine, Sapienza University of Rome - Policlinico Umberto I Hospital, Rome, Italy
| |
Collapse
|
5
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
6
|
Zhao Y, Zhang C, Zhou H, Song L, Wang J, Zhao J. Transcriptome changes for Nile tilapia (Oreochromis niloticus) in response to alkalinity stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100651. [PMID: 31923799 DOI: 10.1016/j.cbd.2019.100651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/10/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Nile tilapia is an important economic fish in the world because of its fast growth, high meat yield and strong adaptability. It is more adaptable to high alkalinity than common freshwater fish and provides valuable material for developing alkaline-tolerant strains and understanding the adaptation mechanism of fish to extreme environmental stress. In this study, we employed high throughput RNA sequencing to reveal the tissues (gill, kidney and liver) transcriptome differences of O. niloticus at different carbonate alkalinities (FW, AW40 and AW60). A total of 1,369,381,790 raw reads were obtained, including 496,441,232 reads in FW group, 437,907,696 reads in AW40 and 435,032,862 reads in AW60. In addition, 484,555,626 reads in gill, 451,618,224 reads in kidney and 433,207,940 reads in liver. A large number of stress-regulated changes were detected comprehensively. We focused on 3 significantly change pathways (steroid biosynthesis, drug metabolism and protein digestion/absorption) and 17 DEGs (HMG-CoA reductase, UDP-glucuronosyltransferase, and carbonic anhydrase etc.) which were shared among compared groups (AW40 vs FW, AW60 vs FW, AW40 vs 60 AW60) in gill, kidney and liver, respectively. These pathways/genes are sensitive to alkalinity stress and crucial to the alkalinity adaptation of tilapia. Overall, we found a large number of candidate genes, which encode important regulators of stress tolerance and ultimately contribute to future alkaline-tolerant fish breeding. Among these genes, lipid metabolism (involving signal transduction), detoxification and immune related genes are more prominent to the response and adaptability of fish to alkalinity stress.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Chengshuo Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Haotian Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Lingyuan Song
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| | - Jinling Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 201306 Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 201306 Shanghai, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, 201306 Shanghai, China.
| |
Collapse
|
7
|
Fujimori H, Zhou YJ, Fukumura K, Matsumoto S, Tukamoto Y, Nagata S. Specific distribution of expression and enzymatic activity of cholesterol biosynthetic enzyme DHCR24 orthologs in the phytophagous insect. Biosci Biotechnol Biochem 2019; 84:126-133. [PMID: 31538545 DOI: 10.1080/09168451.2019.1667221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.
Collapse
Affiliation(s)
- Haruna Fujimori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yusuke Tukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| |
Collapse
|
8
|
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr Rev 2016; 37:467-520. [PMID: 27459230 PMCID: PMC5045492 DOI: 10.1210/er.2015-1104] [Citation(s) in RCA: 763] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Robert L Rosenfield
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| | - David A Ehrmann
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, The University of Chicago Pritzker School of Medicine, Chicago, Illinois 60637
| |
Collapse
|
9
|
Astort F, Repetto EM, Rocha-Viegas L, Mercau ME, Puch SS, Finkielstein CV, Pecci A, Cymeryng CB. Role of CREB on heme oxygenase-1 induction in adrenal cells: involvement of the PI3K pathway. J Mol Endocrinol 2016; 57:113-24. [PMID: 27412767 DOI: 10.1530/jme-16-0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
In addition to the well-known function of ACTH as the main regulator of adrenal steroidogenesis, we have previously demonstrated its effect on the transcriptional stimulation of HO-1 expression, a component of the cellular antioxidant defense system. In agreement, we hereby demonstrate that, in adrenocortical Y1 cells, HO-1 induction correlates with a significant prevention of the generation of reactive oxygen species induced by H2O2/Fe(2+) ACTH/cAMP-dependent activation of redox-imbalanced related factors such as NRF2 or NFκB and the participation of MAPKs in this mechanism was, however, discarded based on results with specific inhibitors and reporter plasmids. We suggest the involvement of CREB in HO-1 induction by ACTH/cAMP, as transfection of cells with a dominant-negative isoform of CREB (DN-CREB-M1) decreased, while overexpression of CREB increased HO-1 protein levels. Sequence screening of the murine HO-1 promoter revealed CRE-like sites located at -146 and -37 of the transcription start site and ChIP studies indicated that this region recruits phosphorylated CREB (pCREB) upon cAMP stimulation in Y1 cells. In agreement, H89 (PKA inhibitor) or cotransfection with DN-CREB-M1 prevented the 8Br-cAMP-dependent increase in luciferase activity in cells transfected with pHO-1[-295/+74].LUC. ACTH and cAMP treatment induced the activation of the PI3K/Akt signaling pathway in a PKA-independent mechanism. Inhibition of this pathway prevented the cAMP-dependent increase in HO-1 protein levels and luciferase activity in cells transfected with pHO-1[-295/+74].LUC. Finally, here we show a crosstalk between the cAMP/PKA and PI3K pathways that affects the binding of p-CREB to its cognate element in the murine promoter of the Hmox1 gene.
Collapse
Affiliation(s)
- F Astort
- Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| | - E M Repetto
- Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| | - L Rocha-Viegas
- Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - M E Mercau
- Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| | - S Sanchez Puch
- Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| | - C V Finkielstein
- Integrated Cellular Responses LaboratoryDepartment of Biological Sciences, Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - A Pecci
- Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires, Argentina
| | - C B Cymeryng
- Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
10
|
Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol 2016; 36:801-9. [PMID: 26340949 DOI: 10.1007/s10571-015-0263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 08/27/2015] [Indexed: 11/27/2022]
Abstract
Various useful animal models, such as Alzheimer's disease and Niemann-Pick disease, were provided by U18666A. However, the pathogenesis of U18666A-induced diseases, including U18666A-mediated apoptosis, remains incompletely elucidated, and therapeutic strategies are still limited. Dihydrotestosterone (DHT) has been reported to contribute to the prevention and treatment of neurodegenerative disorders. Our study investigated the neuroprotective activity of DHT in U18666A-related diseases. Apoptosis of C6 cells was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. Cell viability was assessed using Cell Counting Kit-8. Expression of apoptosis-related proteins, such as Akt, seladin-1, Bcl-2 family proteins, and caspase-3, was determined using Western blot. Our results demonstrated that the apoptotic rate of C6 cells significantly increased after U18666A addition, but was remarkably reduced after DHT treatment. Pretreatment with DHT attenuated U18666A-induced cell viability loss. PI3K inhibitor LY294002 could suppress DHT anti-apoptotic effect. Furthermore, we discovered that U18666A could significantly downregulate seladin-1 expression in a dose-dependent manner, but no significant change was observed in Bcl-xL, Bax, and P-Akt protein expressions. Compared with U18666A-treated group, the expression of P-Akt, seladin-1, and Bcl-xL significantly increased, and the expression of Bax and caspase-3 remarkably reduced after DHT treatment. However, in the presence of LY294002, the effect of DHT was reversed. In conclusion, we found that seladin-1 may take part in U18666A-induced apoptosis. DHT may inhibit U18666A-induced apoptosis by regulating downstream apoptosis-related proteins including seladin-1, caspase-3, Bcl-xL, and Bax through activation of the PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Kai Yao
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Junfeng Wu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Jianfeng Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Jimei Bo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Zhen Hong
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No. 1508 Longhang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
11
|
Vinson GP. Functional Zonation of the Adult Mammalian Adrenal Cortex. Front Neurosci 2016; 10:238. [PMID: 27378832 PMCID: PMC4908136 DOI: 10.3389/fnins.2016.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/17/2016] [Indexed: 12/31/2022] Open
Abstract
The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts.
Collapse
Affiliation(s)
- Gavin P Vinson
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
12
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
13
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
14
|
Luu W, Zerenturk EJ, Kristiana I, Bucknall MP, Sharpe LJ, Brown AJ. Signaling regulates activity of DHCR24, the final enzyme in cholesterol synthesis. J Lipid Res 2013; 55:410-20. [PMID: 24363437 DOI: 10.1194/jlr.m043257] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The role of signaling in regulating cholesterol homeostasis is gradually becoming more widely recognized. Here, we explored how kinases and phosphorylation sites regulate the activity of the enzyme involved in the final step of cholesterol synthesis, 3β-hydroxysterol Δ24-reductase (DHCR24). Many factors are known to regulate DHCR24 transcriptionally, but little is known about its posttranslational regulation. We developed a system to specifically test human ectopic DHCR24 activity in a model cell-line (Chinese hamster ovary-7) using siRNA targeted only to hamster DHCR24, thus ensuring that all activity could be attributed to the human enzyme. We determined the effect of known phosphorylation sites and found that mutating certain residues (T110, Y299, and Y507) inhibited DHCR24 activity. In addition, inhibitors of protein kinase C ablated DHCR24 activity, although not through a known phosphorylation site. Our data indicate a novel mechanism whereby DHCR24 activity is regulated by signaling.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Desmosterol and DHCR24: unexpected new directions for a terminal step in cholesterol synthesis. Prog Lipid Res 2013; 52:666-80. [PMID: 24095826 DOI: 10.1016/j.plipres.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/25/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023]
Abstract
3β-Hydroxysterol Δ(24)-reductase (DHCR24) catalyzes the conversion of desmosterol to cholesterol. This ultimate step of cholesterol biosynthesis appears to be remarkable in its diverse functions and the number of diseases it is implicated in from vascular disease to Hepatitis C virus (HCV) infection to cancer to Alzheimer's disease. This review summarizes the present knowledge on the DHCR24 gene, sterol Δ(24)-reductase protein and the regulation of both. In addition, the functions of desmosterol, DHCR24 and their roles in human diseases are discussed. It is apparent that DHCR24 exerts more complex effects than what would be expected based on the enzymatic activity of sterol Δ(24)-reduction alone, such as its influence in modulating oxidative stress. Increasing information about DHCR24 membrane association, processing, enzymatic regulation and interaction partners will provide further fundamental insights into DHCR24 and its many and varied biological roles.
Collapse
|
16
|
Lu X, Li Y, Liu J, Cao X, Wang X, Wang D, Seo H, Gao B. The membrane topological analysis of 3β-hydroxysteroid-Delta24 reductase (DHCR24) on endoplasmic reticulum. J Mol Endocrinol 2012; 48:1-9. [PMID: 22010141 DOI: 10.1530/jme-11-0132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DHCR24 encodes 3β-hydroxysteroid-Δ24 reductase, catalyzing the conversion of desmosterol to cholesterol. Our previous study demonstrated that DHCR24 exerts an anti-apoptotic function as a reactive oxygen species (ROS) scavenger, for which it needs its FAD-binding domain. The membrane topology of DHCR24 on endoplasmic reticulum (ER) and the functional significance of its FAD-binding domain are not completely understood. Based on the structure predicted by bioinformatics, we studied the membrane topology of DHCR24 in murine neuroblastoma cells (N2A), using the fluorescent protease protection (FPP) technique. We showed that full-length DHCR24 is localized to the membrane of ER, whereas the predicted transmembrane (TM) domain-deleted DHCR24 mutation is localized to the cytoplasm. The change of DHCR24 localization suggests that the N-terminal TM domain is essential for the ER membrane targeting of DHCR24. The FPP assay demonstrated the membrane topology of DHCR24 with an N-terminal luminal/C-terminal cytoplasmic orientation. Measurement of intracellular ROS using H(2)DCFDA revealed that the ROS levels of cells infected by plasmids driving expression of full-length DHCR24 or the TM domain-deleted DHCR24 mutation after H(2)O(2) exposure were lower than those of control cells, suggesting that the ER membrane targeting of DHCR24 is not required for its enzymatic ROS scavenging activity. Confocal fluorescence microscopy revealed that the DHCR24-overexpressed cells were protected from apoptosis in response to oxidative stress, which was accompanied by a decrease in DHCR24 content on the ER and activation of caspase-3, suggesting that the anti-apoptotic function of DHCR24 is associated with its cleavage by caspase.
Collapse
Affiliation(s)
- Xiuli Lu
- Department of Biochemistry and Cell Biology, School of Life Science, Liaoning University, Huang-Gu-Qu, Chong-Shang-Zhong-Lu No. 66, Shenyang 110036, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Endo S, Matsunaga T, Fujita A, Tajima K, El-Kabbani O, Hara A. Rat aldose reductase-like protein (AKR1B14) efficiently reduces the lipid peroxidation product 4-oxo-2-nonenal. Biol Pharm Bull 2011; 33:1886-90. [PMID: 21048316 DOI: 10.1248/bpb.33.1886] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the substrate specificity, inhibitor sensitivity and kinetic mechanism of a rat aldose reductase-like protein, which is named AKR1B14 in the aldo-keto reductase (AKR) superfamily. AKR1B14 catalyzed the nicotinamide adenine dinucleotide phosphate reduced form (NADPH)-dependent reduction of carbonyl compounds (derived from lipid peroxidation and glycation), xenobiotic aromatic aldehydes and some aromatic ketones. 4-Oxo-2-nonenal, the best substrate showing a K(m) value of 0.16 µM, was reduced into less reactive 4-oxo-2-nonenol, and its cytotoxicity was attenuated by the overexpression of the enzyme in cultured cells. The enzyme also showed low K(m) values (0.9-10 µM) for medium-chain aliphatic aldehydes (such as 4-hydroxynonenal, 1-hexenal and farnesal) and 3-deoxyglucosone, although the K(m) values for short-chain substrates (such as isocaproaldehyde, acrolein and methylglyoxal) were high (16-600 µM). In the reverse reaction, aliphatic and aromatic alcohols were oxidized by AKR1B14 at low rates. AKR1B14 was inhibited by aldose reductase inhibitors such as tolrestat and epalrestat, and their inhibition patterns were noncompetitive versus the aldehyde substrate and competitive with respect to the alcohol substrate. Kinetic analyses of the oxidoreduction and dead-end inhibition suggest that the reaction follows an ordered sequential mechanism.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Daigaku-Nishi, Gifu 501–1196, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Endo S, Matsunaga T, Fujita A, Kuragano T, Soda M, Sundaram K, Dhagat U, Tajima K, El-Kabbani O, Hara A. Activation of aldo-keto reductase family member 1B14 (AKR1B14) by bile acids: Activation mechanism and bile acid-binding site. Biochimie 2011; 93:1476-86. [PMID: 21586312 DOI: 10.1016/j.biochi.2011.04.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022]
Abstract
Aldo-keto reductase (AKR) 1B14, a rat ortholog of mouse androgen-dependent vas deferens protein (AKR1B7), is involved in the synthesis of prostaglandin F(2α) and detoxification of 4-oxononenal formed by lipid peroxidation. The NADPH-linked reductase activity of AKR1B14 was activated by various bile acids. Although the activation was increased by decreasing pH from 9.0 to 6.0, the concentrations giving maximum stimulation (2- to 18-fold) were 0.2-6.0 μM for bile acids at pH 7.4. Kinetic analyses of the activation by glycochenodeoxycholic acid in the forward and reverse reactions, together with fluorescence changes and protection against 4-oxononenal-induced inactivation by bile acid, indicate that the bile acid binds to the enzyme and its coenzyme binary complex as a non-essential activator. The bile acid binding to AKR1B14 mainly accelerates the NADP(+) dissociation, the rate-limited step of the enzyme reaction. AKR1B7 was also activated by bile acids, but the activation was low and independent of pH. The mutagenesis of His269 and Leu267 of AKR1B14 into the corresponding residues (Arg and Pro, respectively) of AKR1B7 resulted in low and pH-independent activation by bile acids. The results, together with the docking of the bile acid in the recently determined crystal structure of AKR1B14, identify the bile acid-binding site of which His269 plays a key role in significant activation through its electrostatic interaction with the carboxyl group of bile acid, facilitating the release of NADP(+).
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Battista MC, Guimond MO, Roberge C, Doueik AA, Fazli L, Gleave M, Sabbagh R, Gallo-Payet N. Inhibition of DHCR24/seladin-1 impairs cellular homeostasis in prostate cancer. Prostate 2010; 70:921-33. [PMID: 20166102 DOI: 10.1002/pros.21126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Seladin-1 belongs to a subgroup of androgen-dependent genes associated with anti-proliferative, pro-differentiation, and pro-apoptotic functions and plays a protective role against oncogenic stress. The present study aims to investigate the localization and expression of Seladin-1 protein in normal and tumoral human prostatic tissues as well as to explore its role in proliferation and steroid secretion in androgen-dependent (LnCaP) and androgen-independent (DU145) cell lines and in human prostate primary cell culture. METHODS Seladin-1 protein localization and expression were assessed on whole tissue sections by tissue array/immunohistochemistry and following immunofluorescence and Western blotting. Proliferation (Ki67 fluorescence labeling and cell counts) and steroid secretion (ELISA) were assessed in cell lines and primary epithelial cell cultures. RESULTS In human prostatic tissue and cells, Seladin-1 was mostly localized within epithelial and rarely within stromal cells and primarily present in secretory luminal cells of normal and tumoral prostate cells. Its expression was increased in low-risk prostate cancer but reduced in advanced prostate cancers when compared to normal tissues. Seladin-1 was highly expressed in LnCaP, whereas its expression level was lower in DU145 cells. Seladin-1 inhibition by treatment with its specific inhibitor, U18666A (75 nM), increased proliferation in LnCaP and primary cell culture, as well as testosterone and dihydrotestosterone levels in both LnCaP and DU145 cell lines. CONCLUSIONS Seladin-1 involvement in proliferation and secretion suggests that its downregulation may be a major mechanism causing prostate cancer evolution. Seladin-1 may thus potentially decrease cell growth and steroid dependency in low-grade prostate cancer.
Collapse
Affiliation(s)
- Marie-Claude Battista
- Faculté de Médecine et des Sciences de la Santé, Service of Endocrinology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Agulleiro MJ, Roy S, Sánchez E, Puchol S, Gallo-Payet N, Cerdá-Reverter JM. Role of melanocortin receptor accessory proteins in the function of zebrafish melanocortin receptor type 2. Mol Cell Endocrinol 2010; 320:145-52. [PMID: 20138960 DOI: 10.1016/j.mce.2010.01.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/08/2010] [Accepted: 01/23/2010] [Indexed: 12/29/2022]
Abstract
In this paper, we identify three different MRAPs in zebrafish, zfMRAP1, zfMRAP2a and zfMRAP2b, and demonstrate that zfMC2R is not functional in the absence of MRAP expression. ZfMRAP1 expression was restricted to adipose tissue and the anterior kidney whereas MRAP2a and MRAP2b were expressed in all the tissues tested. Quantification of surface receptor and immunofluorescence studies indicated that the receptor is unable to translocate to membrane in the absence of MRAP isoforms. MRAP1 and MRAP2b are localized in the plasma membrane in the absence of zfMC2R expression but MRAP2b is retained in perinuclear position. MRAP1 and MRAP2a displayed an equivalent translocation capacity to the membrane of zfMC2R but only zfMRAP1 expression led to intracellular cAMP increases after ACTH stimulation. ZfMRAP2b had no effect on zfMC2R activity but both zfMRAP2 isoforms enhanced the zfMRAP1-assisted cAMP intracellular increase, suggesting an interaction between zfMRAP1 and zfMRAP2s when regulating zfMC2R activity.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Ribera de Cabanes, Castellón, Spain
| | | | | | | | | | | |
Collapse
|