1
|
Appenroth D, West AC, Wood SH, Hazlerigg DG. Tanycytes from a bird's eye view: gene expression profiling of the tanycytic region under different seasonal states in the Svalbard ptarmigan. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:87-99. [PMID: 39299992 PMCID: PMC11846777 DOI: 10.1007/s00359-024-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
In mammals and birds, tanycytes are known to regulate thyroid hormone conversion, and this process is central to the control of seasonal reproduction. In mammals, this cell type is also implicated in retinoic acid signalling, neurogenesis, and nutritional gatekeeping, all of which have been linked to hypothalamic regulation of energy metabolism. Less is known about these potential wider roles of tanycytes in birds. To address this gap, we combined LASER capture microdissection and transcriptomics to profile the tanycytic region in male Svalbard ptarmigan, a High Arctic species with photoperiod-dependent seasonal rhythms in reproductive activation and body mass. Short photoperiod (SP) adapted birds were transferred to constant light (LL) to trigger breeding and body mass loss. After five months under LL, the development of photorefractoriness led to spontaneous re-emergence of the winter phenotype, marked by the termination of breeding and gain in body mass. The transfer from SP to LL initiated gene expression changes in both thyroid hormone and retinoic acid pathways, as described in seasonal mammals. Furthermore, transcriptomic signatures of cell differentiation and migration were observed. Comparison to data from Siberian hamsters demonstrated that a photoperiod-dependent re-organisation of the hypothalamic tanycytic region is likely a conserved feature. Conversely, the spontaneous development of photorefractoriness showed a surprisingly small number of genes that reverted in expression level, despite reversal of the reproductive and metabolic phenotype. Our data suggest general conservation of tanycyte biology between photoperiodic birds and mammals and raise questions about the mechanistic origins of the photorefractory state.
Collapse
Affiliation(s)
- Daniel Appenroth
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Alexander C West
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - Shona H Wood
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| | - David G Hazlerigg
- Arctic Seasonal Timekeeping Initiative (ASTI), Arctic Chronobiology & Physiology, Arctic & Marine Biology, BFE, UiT - Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Manocchio F, Bravo FI, Helfer G, Muguerza B. Cherries with Different Geographical Origins Regulate Neuroprotection in a Photoperiod-Dependent Manner in F344 Rats. Antioxidants (Basel) 2024; 13:72. [PMID: 38247496 PMCID: PMC10812723 DOI: 10.3390/antiox13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
The photoperiod is the main environmental cue that drives seasonal adaptive responses in reproduction, behavior, and metabolism in seasonal animals. Increasing evidence suggests that (poly)phenols contained in fruits can also modulate seasonal rhythms. (Poly)phenol-rich diets are associated with an improvement in cognitive function and neuroprotection due to their anti-inflammatory and antioxidative properties. However, it is unknown whether cherries affect neuroprotection in a photoperiod-dependent manner. To test this, F344 rats were exposed to L6 (6 h light/day), L12 (12 h light/day) and L18 (18 h light/day) photoperiods and fed a standard chow diet supplemented with either a control, lyophilized cherry 1 or cherry 2 with distinctive phenolic hallmarks. Physiological parameters (body weight, eating pattern index (EPI), testosterone, T4/T3) and hypothalamic key genes (Dio2, Dio3, Raldh1 and Ghrh) were strongly regulated by the photoperiod and/or fruit consumption. Importantly, we show for the first time that neurotrophs (Bdnf, Sod1 and Gpx1) in the hippocampus are also regulated by the photoperiod. Furthermore, the consumption of cherry 2, which was richer in total flavonols, but not cherry 1, which was richer in total anthocyanins and flavanols, enhanced neuroprotection in the hippocampus. Our results show that the seasonal consumption of cherry with a specific phenolic composition plays an important role in the hippocampal activation of neuroprotection in a photoperiod-dependent manner.
Collapse
Affiliation(s)
- Francesca Manocchio
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, C Marcel·lí Domingo s/n, 43007 Tarragona, Spain; (F.M.); (B.M.)
- Nutrigenomics Research Group, Institut d’Investigació Sanitària Pere Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Hou B, Mao M, Dong S, Deng M, Sun B, Guo Y, Li Y, Liu D, Liu G. Transcriptome analysis reveals mRNAs and long non-coding RNAs associated with fecundity in the hypothalamus of high-and low-fecundity goat. Front Vet Sci 2023; 10:1145594. [PMID: 37056233 PMCID: PMC10086355 DOI: 10.3389/fvets.2023.1145594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
As an important organ that coordinates the neuroendocrine system, the hypothalamus synthesizes and secretes reproductive hormones that act on the goat organism, thereby precisely regulating follicular development and reproductive processes in goats. However, it is still elusive to explore the mechanism of hypothalamic effects on goat fertility alone. Therefore, RNA-seq was used to analyze the gene expression in hypothalamic tissues of goats in high fertility group (HFG: litter size per litter ≥2) and low fertility group (LFG: litter size per litter = 1), and identified the differential lncRNAs and mRNAs and their associated pathways related to their fertility. The results showed that a total of 23 lncRNAs and 57 mRNAs were differentially expressed in the hypothalamic tissue of high and low fertility goats. GO terms and KEGG functional annotation suggest that DE lncRNAs and DE mRNAs were significantly enriched in hormone-related pathways regulating ovarian development, hormone synthesis and secretion, regulation of reproductive processes, Estrogen signaling pathway, Oxytocin signaling pathway and GnRH signaling pathway. And we constructed a co-expression network of lncRNAs and target genes, and identified reproduction-related genes such as NMUR2, FEZF1, and WT1. The sequencing results of the hypothalamic transcriptome have broadened our understanding of lncRNA and mRNA in goat hypothalamic tissue and provided some new insights into the molecular mechanisms of follicle development and regulation of its fertility in goats.
Collapse
|
4
|
Ashton A, Clark J, Fedo J, Sementilli A, Fragoso YD, McCaffery P. Retinoic Acid Signalling in the Pineal Gland Is Conserved across Mammalian Species and Its Transcriptional Activity Is Inhibited by Melatonin. Cells 2023; 12:286. [PMID: 36672220 PMCID: PMC9856906 DOI: 10.3390/cells12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
The pineal gland is integral to the circadian timing system due to its role in nightly melatonin production. Retinoic acid (RA) is a potent regulator of gene transcription and has previously been found to exhibit diurnal changes in synthesis and signalling in the rat pineal gland. This study investigated the potential for the interaction of these two systems. PCR was used to study gene expression in mouse and human pineal glands, ex-vivo organotypic cultured rat pineal gland and cell lines. The mouse and human pineal glands were both found to express the necessary components required for RA signalling. RA influences the circadian clock in the brain, therefore the short-term effect of RA on clock gene expression was determined in ex vivo rat pineal glands but was not found to rapidly regulate Per1, Per2, Bmal1, or Cry1. The interaction between RA and melatonin was also investigated and, unexpectedly, melatonin was found to suppress the induction of gene transcription by RA. This study demonstrates that pineal expression of the RA signalling system is conserved across mammalian species. There is no short-term regulation of the circadian clock but an inhibitory effect of melatonin on RA transcriptional activity was demonstrated, suggesting that there may be functional cross-talk between these systems.
Collapse
Affiliation(s)
- Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jason Clark
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Julia Fedo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Angelo Sementilli
- Department of Physiopathology, Universidade Metropolitana de Santos and Centro, Universitario Lusíada, Santos 11050-071, SP, Brazil
| | - Yara D. Fragoso
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Post Graduate Studies, Universidade Metropolitana de Santos, Santos 11045-002, SP, Brazil
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
5
|
Navarro-Masip È, Caron A, Mulero M, Arola L, Aragonès G. Photoperiodic Remodeling of Adiposity and Energy Metabolism in Non-Human Mammals. Int J Mol Sci 2023; 24:ijms24021008. [PMID: 36674520 PMCID: PMC9865556 DOI: 10.3390/ijms24021008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Energy homeostasis and metabolism in mammals are strongly influenced by seasonal changes. Variations in photoperiod patterns drive adaptations in body weight and adiposity, reflecting changes in the regulation of food intake and energy expenditure. Humans also show distinct patterns of energy balance depending on the season, being more susceptible to gaining weight during a specific time of the year. Changes in body weight are mainly reflected by the adipose tissue, which is a key metabolic tissue and is highly affected by circannual rhythms. Mostly, in summer-like (long-active) photoperiod, adipocytes adopt a rather anabolic profile, more predisposed to store energy, while food intake increases and energy expenditure is reduced. These metabolic adaptations involve molecular modifications, some of which have been studied during the last years and are summarized in this review. In addition, there is a bidirectional relation between obesity and the seasonal responses, with obesity disrupting some of the seasonal responses observed in healthy mammals, and altered seasonality being highly associated with increased risk of developing obesity. This suggests that changes in photoperiod produce important metabolic alterations in healthy organisms. Biological rhythms impact the regulation of metabolism to different extents, some of which are already known, but further research is needed to fully understand the relationship between energy balance and seasonality.
Collapse
Affiliation(s)
- Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Alexandre Caron
- Faculty of Pharmacy, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Correspondence:
| |
Collapse
|
6
|
Guo X, Wang H, Xu J, Hua H. Impacts of vitamin A deficiency on biological rhythms: Insights from the literature. Front Nutr 2022; 9:886244. [PMID: 36466383 PMCID: PMC9718491 DOI: 10.3389/fnut.2022.886244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/02/2022] [Indexed: 03/21/2024] Open
Abstract
Vitamin A is essential for brain function, in addition to its important roles in vision, immunity, and reproduction. Previous studies have shown that retinoic acid (RA), the bioactive form of vitamin A, is involved in the regulation of various intracellular responses related to biological rhythms. RA is reported to affect the circadian rhythm by binding to RA receptors, such as receptors in the circadian feedback loops in the mammalian suprachiasmatic nucleus. However, evidence of the impacts of vitamin A deficiency (VAD) on biological rhythms is limited, and most of the related studies were conducted on animals. In this review, we described the physiological functions of biological rhythms and physiological pathways/molecular mechanisms regulating the biological rhythms. We then discussed the current understanding of the associations of VAD with biological rhythm disorders/diseases (sleep disorders, impairments in learning/memory, emotional disorders, and other immune or metabolism diseases) and summarized the currently proposed mechanisms (mainly by retinoid nuclear receptors and related proteins) for the associations. This review may help recognize the role of VAD in biological rhythm disorders and stimulate clinical or epidemiological studies to confirm the findings of related animal studies.
Collapse
Affiliation(s)
- Xiangrong Guo
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- MOE-Shanghai Key Lab of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Xu
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Hua
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
8
|
Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster. Sci Rep 2022; 12:13552. [PMID: 35941167 PMCID: PMC9360046 DOI: 10.1038/s41598-022-16731-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology.
Collapse
|
9
|
McLean SL, Yun H, Tedder A, Helfer G. The effect of photoperiod and high fat diet on the cognitive response in photoperiod-sensitive F344 rats. Physiol Behav 2021; 239:113496. [PMID: 34118272 DOI: 10.1016/j.physbeh.2021.113496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
In many species, seasonal changes in day length (photoperiod) have profound effects on physiology and behavior. In humans, these include cognitive function and mood. Here we investigated the effect of photoperiod and high fat diets on cognitive deficits, as measured by novel object recognition, in the photoperiod-sensitive F344 rat, which exhibits marked natural changes in growth, body weight and food intake in response to photoperiod. 32 male juvenile F344 rats were housed in either long or short photoperiod and fed either a high fat or nutrient-matched chow diet. Rats were tested in the novel object recognition test before photoperiod and diet intervention and re-tested 28 days after intervention. In both tests during the acquisition trials there was no significant difference in exploration levels of the left and right objects in the groups. Before intervention, all groups showed a significant increase in exploration of the novel object compared to the familiar object. However, following the photoperiod and diet interventions the retention trial revealed that only rats in the long photoperiod-chow group explored the novel object significantly more than the familiar object, whereas all other groups showed no significant preference. These results suggest that changing rats to short photoperiod impairs their memory regardless of diet. The cognitive performance of rats on long photoperiod-chow remained intact, whereas the high fat diet in the long photoperiod group induced a memory impairment. In conclusion, our study suggests that photoperiod and high fat diet have an impact on object recognition in photoperiod-sensitive F344 rats.
Collapse
Affiliation(s)
- Samantha L McLean
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Haesung Yun
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Andrew Tedder
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK
| | - Gisela Helfer
- School of Chemistry and Bioscience, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, UK.
| |
Collapse
|
10
|
Boucsein A, Kamstra K, Tups A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol 2021; 33:e12944. [PMID: 33615588 DOI: 10.1111/jne.12944] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Energy homeostasis is controlled by an intricate regulatory system centred in the brain. The peripheral adiposity signals insulin and leptin play a crucial role in this system by informing the brain of the energy status of the body and mediating their catabolic effects through signal transduction in hypothalamic areas that control food intake, energy expenditure and glucose metabolism. Disruptions of insulin and leptin signalling can result in diabetes and obesity. The central signalling cross-talk between insulin and leptin is essential for maintenance of normal healthy energy homeostasis. An important role of leptin in glucoregulation has been revealed. Typically regarded as being controlled by insulin, the control of glucose homeostasis critically depends on functional leptin action. Leptin, on the other hand, is able to lower glucose levels in the absence of insulin, although insulin is necessary for long-term stabilisation of euglycaemia. Evidence from rodent models and human patients suggests that leptin improves insulin sensitivity in type 1 diabetes. The signalling cross-talk between insulin and leptin is likely conveyed by the WNT/β-catenin pathway. Leptin activates WNT/β-catenin signalling, leading to inhibition of glycogen synthase kinase-3β, a key inhibitor of insulin action, thereby facilitating improved insulin signal transduction and sensitisation of insulin action. Interestingly, insights into the roles of insulin and leptin in insects and fish indicate that leptin may have initially evolved as a glucoregulatory hormone and that its anorexigenic and body weight regulatory function was acquired throughout evolution. Furthermore, the regulation of both central and peripheral control of energy homeostasis is tightly controlled by the circadian clock, allowing adaptation of homeostatic processes to environmental cues.
Collapse
Affiliation(s)
- Alisa Boucsein
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Centre for Neuroendocrinology, Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
12
|
Taniguchi E, Tashiro A, Hattori A, Furuse M, Yasuo S. Photoperiodic changes in hippocampal neurogenesis and plasma metabolomic profiles in relation to depression-like behavior in mice. Behav Brain Res 2021; 403:113136. [PMID: 33482168 DOI: 10.1016/j.bbr.2021.113136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
Photoperiod alters affective behaviors and brain neuroplasticity in several mammalian species. We addressed whether neurogenesis and signaling pathways of insulin-like growth factor-I (IGF-I), a key modulator of neuroplasticity, are regulated by photoperiod in C57BL/6 J mice, a putative model of seasonal affective disorder. We also examined the effects of photoperiod on plasma metabolomic profiles in relation to depression-like behavior to understand a possible linkage between peripheral metabolism and behavior. Mice that were maintained under long-day conditions (LD) exhibited a higher number of 5-bromo-2'-deoxyuridine-positive cells and higher levels of astrocyte marker in the dentate gyrus of the hippocampus compared to that of mice under short-day conditions (SD). Plasma IGF-I levels and levels/expression of IGF-I signaling molecules in the hippocampus (Brn-4, NeuroD1, and phospho-Akt) involved in neuronal proliferation and differentiation were higher in the mice under LD. Metabolome analysis using plasma of the mice under LD and SD identified several metabolites that were highly correlated with immobility in the forced swim test, a depression-like behavior. Negative correlations with behavior occurred in the levels of 23 metabolites, including metabolites related to neurogenesis and antidepressant-like effects of exercise, metabolites in the biosynthesis of arginine, and the occurrence of branched chain amino acids. Three metabolites had positive correlations with the behavior, including guanidinosuccinic acid, a neurotoxin. Taken together, photoperiodic responses of neurogenesis and neuro-glial organization in the hippocampus may be involved in photoperiodic alteration of depression-like behavior, mediated through multiple pathways, including IGF-I and peripheral metabolites.
Collapse
Affiliation(s)
- Emi Taniguchi
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ayako Tashiro
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ayumi Hattori
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
13
|
Helfer G, Stevenson TJ. Pleiotropic effects of proopiomelanocortin and VGF nerve growth factor inducible neuropeptides for the long-term regulation of energy balance. Mol Cell Endocrinol 2020; 514:110876. [PMID: 32473184 DOI: 10.1016/j.mce.2020.110876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Seasonal rhythms in energy balance are well documented across temperate and equatorial zones animals. The long-term regulated changes in seasonal physiology consists of a rheostatic system that is essential to successful time annual cycles in reproduction, hibernation, torpor, and migration. Most animals use the annual change in photoperiod as a reliable and robust environmental cue to entrain endogenous (i.e. circannual) rhythms. Research over the past few decades has predominantly examined the role of first order neuroendocrine peptides for the rheostatic changes in energy balance. These anorexigenic and orexigenic neuropeptides in the arcuate nucleus include neuropeptide y (Npy), agouti-related peptide (Agrp), cocaine and amphetamine related transcript (Cart) and pro-opiomelanocortin (Pomc). Recent studies also indicate that VGF nerve growth factor inducible (Vgf) in the arcuate nucleus is involved in the seasonal regulation of energy balance. In situ hybridization, qPCR and RNA-sequencing studies have identified that Pomc expression across fish, avian and mammalian species, is a neuroendocrine marker that reflects seasonal energetic states. Here we highlight that long-term changes in arcuate Pomc and Vgf expression is conserved across species and may provide rheostatic regulation of seasonal energy balance.
Collapse
Affiliation(s)
- Gisela Helfer
- Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Ferreira MS, Alves PC, Callahan CM, Giska I, Farelo L, Jenny H, Mills LS, Hackländer K, Good JM, Melo‐Ferreira J. Transcriptomic regulation of seasonal coat color change in hares. Ecol Evol 2020; 10:1180-1192. [PMID: 32076506 PMCID: PMC7029059 DOI: 10.1002/ece3.5956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Color molts from summer brown to winter white coats have evolved in several species to maintain camouflage year-round in environments with seasonal snow. Despite the eco-evolutionary relevance of this key phenological adaptation, its molecular regulation has only recently begun to be addressed. Here, we analyze skin transcription changes during the autumn molt of the mountain hare (Lepus timidus) and integrate the results with an established model of gene regulation across the spring molt of the closely related snowshoe hare (L. americanus). We quantified differences in gene expression among three stages of molt progression-"brown" (early molt), "intermediate," and "white" (late molt). We found 632 differentially expressed genes, with a major pulse of expression early in the molt, followed by a milder one in late molt. The functional makeup of differentially expressed genes anchored the sampled molt stages to the developmental timeline of the hair growth cycle, associating anagen to early molt and the transition to catagen to late molt. The progression of color change was characterized by differential expression of genes involved in pigmentation, circadian, and behavioral regulation. We found significant overlap between differentially expressed genes across the seasonal molts of mountain and snowshoe hares, particularly at molt onset, suggesting conservatism of gene regulation across species and seasons. However, some discrepancies suggest seasonal differences in melanocyte differentiation and the integration of nutritional cues. Our established regulatory model of seasonal coat color molt provides an important mechanistic context to study the functional architecture and evolution of this crucial seasonal adaptation.
Collapse
Affiliation(s)
- Mafalda S. Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| | - Paulo C. Alves
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
| | | | - Iwona Giska
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Liliana Farelo
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Hannes Jenny
- Amt für Jagd und Fischerei GraubündenChurSwitzerland
| | - L. Scott Mills
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Office of Research and Creative ScholarshipUniversity of MontanaMissoulaMTUSA
| | - Klaus Hackländer
- Institute of Wildlife Biology and Game ManagementBOKU—University of Natural Resources and Life SciencesViennaAustria
| | - Jeffrey M. Good
- Wildlife Biology ProgramUniversity of MontanaMissoulaMTUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
| | - José Melo‐Ferreira
- CIBIOCentro de Investigação em Biodiversidade e Recursos GenéticosInBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
| |
Collapse
|
15
|
Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc Natl Acad Sci U S A 2019; 116:25214-25221. [PMID: 31767753 DOI: 10.1073/pnas.1913915116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.
Collapse
|
16
|
Gibert-Ramos A, Ibars M, Salvadó MJ, Crescenti A. Response to the photoperiod in the white and brown adipose tissues of Fischer 344 rats fed a standard or cafeteria diet. J Nutr Biochem 2019; 70:82-90. [DOI: 10.1016/j.jnutbio.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 03/24/2019] [Accepted: 04/25/2019] [Indexed: 01/30/2023]
|
17
|
Dardente H, Wood S, Ebling F, Sáenz de Miera C. An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 2019; 31:e12729. [PMID: 31059174 DOI: 10.1111/jne.12729] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/29/2022]
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Shona Wood
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway
| | - Francis Ebling
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
18
|
Helfer G, Barrett P, Morgan PJ. A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol 2019; 31:e12680. [PMID: 30585661 DOI: 10.1111/jne.12680] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Animals have evolved diverse seasonal variations in physiology and reproduction to accommodate yearly changes in environmental and climatic conditions. These changes in physiology are initiated by changes in photoperiod (daylength) and are mediated through melatonin, which relays photoperiodic information to the pars tuberalis of the pituitary gland. Melatonin drives thyroid-stimulating hormone transcription and synthesis in the pars tuberalis, which, in turn, regulates thyroid hormone and retinoic acid synthesis in the tanycytes lining the third ventricle of the hypothalamus. Seasonal variation in central thyroid hormone signalling is conserved among photoperiodic animals. Despite this, different species adopt divergent phenotypes to cope with the same seasonal changes. A common response amongst different species is increased hypothalamic cell proliferation/neurogenesis in short photoperiod. That cell proliferation/neurogenesis may be important for seasonal timing is based on (i) the neurogenic potential of tanycytes; (ii) the fact that they are the locus of striking seasonal morphological changes; and (iii) the similarities to mechanisms involved in de novo neurogenesis of energy balance neurones. We propose that a decrease in hypothalamic thyroid hormone and retinoic acid signalling initiates localised neurodegeneration and apoptosis, which leads to a reduction in appetite and body weight. Neurodegeneration induces compensatory cell proliferation from the neurogenic niche in tanycytes and new cells are born under short photoperiod. Because these cells have the potential to differentiate into a number of different neuronal phenotypes, this could provide a mechanistic basis to explain the seasonal regulation of energy balance, as well as reproduction. This cycle can be achieved without changes in thyroid hormone/retinoic acid and explains recent data obtained from seasonal animals held in natural conditions. However, thyroid/retinoic acid signalling is required to synchronise the cycles of apoptosis, proliferation and differentiation. Thus, hypothalamic neurogenesis provides a framework to explain diverse photoperiodic responses.
Collapse
Affiliation(s)
- Gisela Helfer
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Perry Barrett
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
19
|
Langlet F. Tanycyte Gene Expression Dynamics in the Regulation of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:286. [PMID: 31133987 PMCID: PMC6514105 DOI: 10.3389/fendo.2019.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Animal survival relies on a constant balance between energy supply and energy expenditure, which is controlled by several neuroendocrine functions that integrate metabolic information and adapt the response of the organism to physiological demands. Polarized ependymoglial cells lining the floor of the third ventricle and sending a single process within metabolic hypothalamic parenchyma, tanycytes are henceforth described as key components of the hypothalamic neural network controlling energy balance. Their strategic position and peculiar properties convey them diverse physiological functions ranging from blood/brain traffic controllers, metabolic modulators, and neural stem/progenitor cells. At the molecular level, these functions rely on an accurate regulation of gene expression. Indeed, tanycytes are characterized by their own molecular signature which is mostly associated to their diverse physiological functions, and the detection of variations in nutrient/hormone levels leads to an adequate modulation of genetic profile in order to ensure energy homeostasis. The aim of this review is to summarize recent knowledge on the nutritional control of tanycyte gene expression.
Collapse
|
20
|
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient Sensing by Hypothalamic Tanycytes. Front Endocrinol (Lausanne) 2019; 10:244. [PMID: 31040827 PMCID: PMC6476911 DOI: 10.3389/fendo.2019.00244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nutritional signals have long been implicated in the control of cellular processes that take place in the hypothalamus. This includes food intake regulation and energy balance, inflammation, and most recently, neurogenesis. One of the main glial cells residing in the hypothalamus are tanycytes, radial glial-like cells, whose bodies are located in the lining of the third ventricle, with processes extending to the parenchyma and reaching neuronal nuclei. Their unique anatomical location makes them directly exposed to nutrients in the cerebrospinal fluid. Several research groups have shown that tanycytes can respond to nutritional signals by different mechanisms, such as calcium signaling, metabolic shift, and changes in proliferation/differentiation potential. Despite cumulative evidence showing tanycytes have the molecular components to participate in nutrient detection and response, there are no enough functional studies connecting tanycyte nutrient sensing with hypothalamic functions, nor that highlight the relevance of this process in physiological and pathological context. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes in the hypothalamus, highlighting the need for more detailed analysis on the actual implications of tanycyte-nutrient sensing and how this process can be modulated, which might allow the discovery of new metabolic and signaling pathways as therapeutic targets, for the treatment of hypothalamic related diseases.
Collapse
Affiliation(s)
- Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Karina Oyarce
| |
Collapse
|
21
|
Korf HW. Signaling pathways to and from the hypophysial pars tuberalis, an important center for the control of seasonal rhythms. Gen Comp Endocrinol 2018; 258:236-243. [PMID: 28511899 DOI: 10.1016/j.ygcen.2017.05.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
Seasonal (circannual) rhythms play an important role for the control of body functions (reproduction, metabolism, immune responses) in nearly all living organisms. Also humans are affected by the seasons with regard to immune responses and mental functions, the seasonal affective disorder being one of the most prominent examples. The hypophysial pars tuberalis (PT), an important interface between the hypophysial pars distalis and neuroendocrine centers in the brain, plays an essential role in the regulation of seasonal functions and may even be the seat of the circannual clock. Photoperiodic signals provide a major input to the PT. While the perception of these signals involves extraocular photoreceptors in non-mammalian species (birds, fish), mammals perceive photoperiodic signals exclusively in the retina. A multisynaptic pathway connects the retina with the pineal organ where photoperiodic signals are translated into the neurohormone melatonin that is rhythmically produced night by night and encodes the length of the night. Melatonin controls the functional activity of the mammalian PT by acting upon MT1 melatonin receptors. The PT sends its output signals via retrograde and anterograde pathways. The retrograde pathway targetting the hypothalamus employs TSH as messenger and controls a local hypothalamic T3 system. As discovered in Japanese quail, TSH triggers molecular cascades mediating thyroid hormone conversion in the ependymal cell layer of the infundibular recess of the third ventricle. The local accumulation of T3 in the mediobasal hypothalamus (MBH) appears to activate the gonadal axis by affecting the neuro-glial interaction between GnRH terminals and tanycytes in the median eminence. This retrograde pathway is conserved in photoperiodic mammals (sheep and hamsters), and even in non-photoperiodic laboratory mice provided that they are capable to synthesize melatonin. The anterograde pathway is implicated in the control of prolactin secretion, targets cells in the PD and supposedly employs small molecules as signal substances collectively denominated as "tuberalins". Several "tuberalin" candidates have been proposed, such as tachykinins, the secretory protein TAFA and endocannabinoids (EC). The PT-intrinsic EC system was first demonstrated in Syrian hamsters and shown to respond to photoperiodic changes. Subsequently, the EC system was also demonstrated in the PT of mice, rats and humans. To date, 2-arachidonoylglycerol (2-AG) appears as the most important endocannabinoid from the PT. Likely targets for the EC are folliculo-stellate cells that contain the CB1 receptor and appear to contact lactotroph cells. The CB1 receptor was also found on corticotroph cells which appear as a further target of the EC. Recently, the CB1 receptor was also localized to CRF-containing nerve fibers running in the outer zone of the median eminence. This finding suggests that the EC system of the PT contributes not only to the anterograde, but also to the retrograde pathway. Taken together, the results support the concept that the PT transmits its signals via a "cocktail" of messenger molecules which operate also in other brain areas and systems rather than through PT-specific "tuberalins". Furthermore, they may attribute a novel function to the PT, namely the modulation of the stress response and immune functions.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Bank JHH, Wilson D, Rijntjes E, Barrett P, Herwig A. Alternation between short- and long photoperiod reveals hypothalamic gene regulation linked to seasonal body weight changes in Djungarian hamsters (Phodopus sungorus). J Neuroendocrinol 2017; 29. [PMID: 28514514 DOI: 10.1111/jne.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/28/2023]
Abstract
Djungarian hamsters are able to reduce their body weight by more than 30% in anticipation of the winter season. This particular adaptation to extreme environmental conditions is primarily driven by a natural reduction in day length and conserved under laboratory conditions. We used this animal model to investigate hypothalamic gene expression linked to body weight regulation behind this physiological phenomenon. After an initial collective short photoperiod (SP) adaptation for 14 weeks from a preceding long photoperiod (LP), hamsters were re-exposed to LP for either 6 or 14 weeks, followed by a second re-exposure to SP for 8 weeks. Our data showed that re-exposure to LP led to an increase in body weight. In the hypothalamus Dio2, Vimentin, Crbp1 and Grp50 expression increased, whereas expression of Dio3, Mct8 and Srif decreased. The changes in body weight and gene expression were reversible in most hamsters after a further re-exposure to SP following 6 or 14 weeks in LP. Interestingly, after 14 weeks in LP, body weight loss was pronounced in six hamsters re-exposed to SP, but five hamsters did not respond. In nonresponding hamsters, a different gene expression pattern was manifested, with the exception of Dio2, which was reduced not only in SP re-exposed hamsters, but also in hamsters maintained in LP. Taken together, these data suggest that body weight regulation appears to be tightly linked to a co-ordinated regulation of several genes in the hypothalamus, including those involved in thyroid hormone metabolism.
Collapse
Affiliation(s)
- J H H Bank
- Zoologisches Institut, Universität Hamburg, Hamburg, Germany
| | - D Wilson
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - E Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P Barrett
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - A Herwig
- Zoologisches Institut, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Freire-Regatillo A, Argente-Arizón P, Argente J, García-Segura LM, Chowen JA. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals. Front Endocrinol (Lausanne) 2017; 8:51. [PMID: 28377744 PMCID: PMC5359311 DOI: 10.3389/fendo.2017.00051] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Collapse
Affiliation(s)
- Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Department of Pediatrics, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
- IMDEA Food Institute, Campus of International Excellence (CEI) UAM + CSIC, Madrid, Spain
| | - Luis Miguel García-Segura
- Laboratory of Neuroactive Steroids, Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red: Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| |
Collapse
|
24
|
Lewis JE, Ebling FJP. Tanycytes As Regulators of Seasonal Cycles in Neuroendocrine Function. Front Neurol 2017; 8:79. [PMID: 28344570 PMCID: PMC5344904 DOI: 10.3389/fneur.2017.00079] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Annual cycles of physiology and behavior are highly prevalent in organisms inhabiting temperate and polar regions. Examples in mammals include changes in appetite and body fat composition, hibernation and torpor, growth of antlers, pelage and horns, and seasonal reproduction. The timing of these seasonal cycles reflects an interaction of changing environmental signals, such as daylength, and intrinsic rhythmic processes: circannual clocks. As neuroendocrine signals underlie these rhythmic processes, the focus of most mechanistic studies has been on neuronal systems in the hypothalamus. Recent studies also implicate the pituitary stalk (pars tuberalis) and hypothalamic tanycytes as key pathways in seasonal timing. The pars tuberalis expresses a high density of melatonin receptors, so is highly responsive to changes in the nocturnal secretion of melatonin from the pineal gland as photoperiod changes across the year. The pars tuberalis in turn regulates tanycyte function in the adjacent hypothalamus via paracrine signals. Tanycytes are radial glial cells that persist into adulthood and function as a stem cell niche. Their cell soma are embedded in the ependymal lining of the third ventricle, and they also send elaborate projections through the arcuate nucleus, many of which terminate on capillaries in the median eminence. This anatomy underlies their function as sensors of nutrients in the circulation, and as regulators of transport of hormones and metabolites into the hypothalamus. In situ hybridization studies reveal robust seasonal changes in gene expression in tanycytes, for example, those controlling transport and metabolism of thyroid hormone and retinoic acid. These hormonal signals play a key role in the initial development of the brain, and experimental manipulation of thyroid hormone availability in the adult hypothalamus can accelerate or block seasonal cyclicity in sheep and Siberian hamsters. We hypothesize that seasonal rhythms depends upon reuse of developmental mechanisms in the adult hypothalamus and that tanycytes are key orchestrators of these processes.
Collapse
Affiliation(s)
- Jo E Lewis
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| | - Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre , Nottingham , UK
| |
Collapse
|
25
|
Stoney PN, Rodrigues D, Helfer G, Khatib T, Ashton A, Hay EA, Starr R, Kociszewska D, Morgan P, McCaffery P. A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways. Brain Behav Immun 2017; 61:340-352. [PMID: 27993690 PMCID: PMC5325119 DOI: 10.1016/j.bbi.2016.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022] Open
Abstract
Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions.
Collapse
Affiliation(s)
- Patrick N. Stoney
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Diana Rodrigues
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK,Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anna Ashton
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Elizabeth A. Hay
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Robert Starr
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Dagmara Kociszewska
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
26
|
Carpenter S, Rothwell CM, Wright ML, de Hoog E, Walker S, Hudson E, Spencer GE. Extending the duration of long-term memories: Interactions between environmental darkness and retinoid signaling. Neurobiol Learn Mem 2016; 136:34-46. [PMID: 27646787 DOI: 10.1016/j.nlm.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
Abstract
Retinoid signaling plays an important role in hippocampal-dependent vertebrate memories. However, we have previously demonstrated that retinoids are also involved in the formation of long-term implicit memory following operant conditioning of the invertebrate mollusc Lymnaea stagnalis. Furthermore, we have discovered an interaction between environmental light/dark conditions and retinoid signaling and the ability of both to convert intermediate-term memory into long-term memory. In this study, we extend these findings to show that retinoid receptor agonists and environmental darkness can both also extend the duration of long-term memory. Interestingly, exposure to constant environmental darkness significantly increased the expression of retinoid receptors in the adult central nervous system, as well as induced specific changes in a key neuron mediating the conditioned behaviour. These studies not only shed more light on how retinoids influence memory formation, but also further link environmental light conditions to the retinoid signaling pathway.
Collapse
Affiliation(s)
- Sevanne Carpenter
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cailin M Rothwell
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Michelle L Wright
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Eric de Hoog
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Sarah Walker
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Emma Hudson
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Gaynor E Spencer
- Dept. Biological Sciences, Brock University, 1812 Sir Isaac Brock's Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
27
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
28
|
Nishiwaki-Ohkawa T, Yoshimura T. Molecular basis for regulating seasonal reproduction in vertebrates. J Endocrinol 2016; 229:R117-27. [PMID: 27068698 DOI: 10.1530/joe-16-0066] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
Abstract
Animals that inhabit mid- to high-latitude regions exhibit various adaptive behaviors, such as migration, reproduction, molting and hibernation in response to seasonal cues. These adaptive behaviors are tightly regulated by seasonal changes in photoperiod, the relative day length vs night length. Recently, the regulatory pathway of seasonal reproduction has been elucidated using quail. In birds, deep brain photoreceptors receive and transmit light information to the pars tuberalis in the pituitary gland, which induces the secretion of thyroid-stimulating hormone. Thyroid-stimulating hormone locally activates thyroid hormone via induction of type 2 deiodinase in the mediobasal hypothalamus. Thyroid hormone then induces morphological changes in the terminals of neurons that express gonadotropin-releasing hormone and facilitates gonadotropin secretion from the pituitary gland. In mammals, light information is received by photoreceptors in the retina and neurally transmitted to the pineal gland, where it inhibits the synthesis and secretion of melatonin, which is crucial for seasonal reproduction. Importantly, the signaling pathway downstream of light detection and signaling is fully conserved between mammals and birds. In fish, the regulatory components of seasonal reproduction are integrated, from light detection to neuroendocrine output, in a fish-specific organ called the saccus vasculosus. Various physiological processes in humans are also influenced by seasonal environmental changes. The findings discussed herein may provide clues to addressing human diseases, such as seasonal affective disorder.
Collapse
Affiliation(s)
- Taeko Nishiwaki-Ohkawa
- Laboratory of Animal PhysiologyGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Nagoya, Japan
| | - Takashi Yoshimura
- Laboratory of Animal PhysiologyGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University, Nagoya, Japan Division of Seasonal BiologyNational Institute for Basic Biology, Okazaki, Japan Avian Bioscience Research CenterGraduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
29
|
Helfer G, Tups A. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation. J Neuroendocrinol 2016; 28:12368. [PMID: 26802435 PMCID: PMC4797366 DOI: 10.1111/jne.12368] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders.
Collapse
Affiliation(s)
- G. Helfer
- Rowett Institute of Nutrition and HealthUniversity of AberdeenBucksburnAberdeenUK
| | - A. Tups
- Centre for Neuroendocrinology and Brain Health Research CentreDepartment of PhysiologySchool of Medical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
30
|
Lewis JE, Brameld JM, Hill P, Wilson D, Barrett P, Ebling FJP, Jethwa PH. Thyroid hormone and vitamin D regulate VGF expression and promoter activity. J Mol Endocrinol 2016; 56:123-34. [PMID: 26643910 PMCID: PMC4705542 DOI: 10.1530/jme-15-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
Abstract
The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure.
Collapse
Affiliation(s)
- Jo E Lewis
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - John M Brameld
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Phil Hill
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Dana Wilson
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Perry Barrett
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Francis J P Ebling
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Preeti H Jethwa
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
31
|
Boucsein A, Benzler J, Hempp C, Stöhr S, Helfer G, Tups A. Photoperiodic and Diurnal Regulation of WNT Signaling in the Arcuate Nucleus of the Female Djungarian Hamster, Phodopus sungorus. Endocrinology 2016; 157:799-809. [PMID: 26646203 DOI: 10.1210/en.2015-1708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The WNT pathway was shown to play an important role in the adult central nervous system. We previously identified the WNT pathway as a novel integration site of the adipokine leptin in mediating its neuroendocrine control of metabolism in obese mice. Here we investigated the implication of WNT signaling in seasonal body weight regulation exhibited by the Djungarian hamster (Phodopus sungorus), a seasonal mammal that exhibits profound annual changes in leptin sensitivity. We furthermore investigated whether crucial components of the WNT pathway are regulated in a diurnal manner. Gene expression of key components of the WNT pathway in the hypothalamus of hamsters acclimated to either long day (LD) or short day (SD) photoperiod was analyzed by in situ hybridization. We detected elevated expression of the genes WNT-4, Axin-2, Cyclin-D1, and SFRP-2, in the hypothalamic arcuate nucleus, a key energy balance integration site, during LD compared with SD as well as a diurnal regulation of Axin-2, Cyclin-D1, and DKK-3. Investigating the effect of photoperiod as well as leptin on the activation (phosphorylation) of the WNT coreceptor LRP-6-(Ser1490) by immunohistochemistry, we found elevated activity in the arcuate nucleus during LD relative to SD as well as after leptin treatment (2 mg/kg body weight). These findings indicate that differential WNT signaling may be associated with seasonal body weight regulation and is partially regulated in a diurnal manner in the adult brain. Furthermore, they suggest that this pathway plays a key role in the neuroendocrine regulation of body weight and integration of the leptin signal.
Collapse
Affiliation(s)
- Alisa Boucsein
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| | - Jonas Benzler
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| | - Cindy Hempp
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| | - Sigrid Stöhr
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| | - Gisela Helfer
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| | - Alexander Tups
- Department of Physiology (A.B., A.T.), Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; Department of Animal Physiology (A.B., J.B., C.H., S.S., A.T.), Faculty of Biology, Philipps University of Marburg, D-35032 Marburg, Germany; and Rowett Institute of Nutrition and Health (G.H.), University of Aberdeen, Aberdeen AB21 9SB, Scotland, United Kingdom
| |
Collapse
|
32
|
Melatonin, bone regulation and the ubiquitin-proteasome connection: A review. Life Sci 2015; 145:152-60. [PMID: 26706287 DOI: 10.1016/j.lfs.2015.12.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
Recently, investigators have shown that ubiquitin-proteasome-mediated protein degradation is critical in regulating the balance between bone formation and bone resorption. The major signal transduction pathways regulating bone formation are the RANK/NF-κB pathway and the Wnt/β-catenin pathway. These signal transduction pathways regulate the activity of mature osteoblasts and osteoclasts. In addition, the Wnt/β-catenin pathway is one of the major signaling pathways in the differentiation of osteoblasts. The ubiquitin ligases that are reported to be of major significance in regulating these pathways are the ubiquitin SCF(B-TrCP) ligase (which regulates activation of NF-κB via degradation of IkBα in osteoclasts, and regulates bone transcription factors via degradation of β-catenin), the Keap-Cul3-Rbx1 ligase (which regulates degradation of IkB kinase, Nrf2, and the antiapoptotic factor Bcl-2), and Smurf1. Also of significance in regulating osteoclastogenesis is the deubiquitinase, CYLD (cylindramatosis protein), which facilitates the separation of NF-κB from IkBα. The degradation of CYLD is also under the regulation of SCF(B-TrCP). Proteasome inhibitors influence the activity of mature osteoblasts and osteoclasts, but also modulate the differentiation of precursor cells into osteoblasts. Preclinical studies show that melatonin also influences bone metabolism by stimulating bone growth and inhibiting osteoclast activity. These actions of melatonin could be interpreted as being mediated by the ubiquitin ligases SCF(B-TrCP) and Keap-Cul3-Rbx, or as an inhibitory effect on proteasomes. Clinical trials of the use of melatonin in the treatment of bone disease, including multiple myeloma, using both continuous and intermittent modes of administration, are warranted.
Collapse
|
33
|
Stoney PN, Helfer G, Rodrigues D, Morgan PJ, McCaffery P. Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytes. Glia 2015; 64:425-39. [PMID: 26527258 PMCID: PMC4949630 DOI: 10.1002/glia.22938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/11/2022]
Abstract
Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus. Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems has the capability to mediate some of the functions of TH in the hypothalamus.
Collapse
Affiliation(s)
- Patrick N Stoney
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Diana Rodrigues
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, Scotland, AB21 9SB, United Kingdom
| | - Peter McCaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, United Kingdom
| |
Collapse
|
34
|
Goodman T, Hajihosseini MK. Hypothalamic tanycytes-masters and servants of metabolic, neuroendocrine, and neurogenic functions. Front Neurosci 2015; 9:387. [PMID: 26578855 PMCID: PMC4624852 DOI: 10.3389/fnins.2015.00387] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
There is a resurgent interest in tanycytes, a radial glial-like cell population occupying the floor and ventro-lateral walls of the third ventricle (3V). Tanycytes reside in close proximity to hypothalamic neuronal nuclei that regulate appetite and energy expenditure, with a subset sending projections into these nuclei. Moreover, tanycytes are exposed to 3V cerebrospinal fluid and have privileged access to plasma metabolites and hormones, through fenestrated capillaries. Indeed, some tanycytes act as conduits for trafficking of these molecules into the brain parenchyma. Tanycytes can also act as neural stem/progenitor cells, supplying the postnatal and adult hypothalamus with new neurons. Collectively, these findings suggest that tanycytes regulate and integrate important trophic and metabolic processes and possibly endow functional malleability to neuronal circuits of the hypothalamus. Hence, manipulation of tanycyte biology could provide a valuable tool for modulating hypothalamic functions such as energy uptake and expenditure in order to tackle prevalent eating disorders such as obesity and anorexia.
Collapse
Affiliation(s)
- Timothy Goodman
- School of Biological Sciences, University of East Anglia Norwich, UK
| | | |
Collapse
|
35
|
Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis. Brain Struct Funct 2015; 221:3315-26. [PMID: 26374207 PMCID: PMC4920859 DOI: 10.1007/s00429-015-1102-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/27/2015] [Indexed: 11/29/2022]
Abstract
Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2–7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2–7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.
Collapse
|
36
|
Affiliation(s)
- V. Pallet
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| | - K. Touyarot
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| |
Collapse
|
37
|
Lucock M, Jones P, Martin C, Beckett E, Yates Z, Furst J, Veysey M. Vitamin D. J Evid Based Complementary Altern Med 2015; 20:310-22. [DOI: 10.1177/2156587215580491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022] Open
Abstract
Interest in vitamin D and the VDR gene is increasing as putative roles in human health and evolutionary processes are explored. This review looks beyond the classic biochemistry that links vitamin D to calcium homeostasis; it explores how vitamin D interacts with light in a broader perspective than simple skin photosynthesis. It examines how the vitamin influences circadian rhythm, and how it may have helped drive the evolution of skin pigmentation. To this end, the nutrient–nutrient relationship with folate is also explored. The VDR gene is additionally examined as a factor in the evolutionary selection of skin depigmentation at higher latitudes to allow vitamin D synthesis. Evidence is given to show that VDR polymorphisms exhibit a latitudinal gradient in allele prevalence consistent with such a paradigm. Overall, the review examines new evo-devo ideas that link light-sensitive vitamins to human health/phenotype, both within and across the lifecycle.
Collapse
Affiliation(s)
- Mark Lucock
- University of Newcastle, Ourimbah, New South Wales, Australia
| | - Patrice Jones
- University of Newcastle, Ourimbah, New South Wales, Australia
| | | | - Emma Beckett
- University of Newcastle, Ourimbah, New South Wales, Australia
| | - Zoe Yates
- University of Newcastle, Ourimbah, New South Wales, Australia
| | - John Furst
- University of Newcastle, Ourimbah, New South Wales, Australia
| | - Martin Veysey
- Central Coast Local Health District, Gosford, New South Wales, Australia
| |
Collapse
|
38
|
Ebling FJP. Hypothalamic control of seasonal changes in food intake and body weight. Front Neuroendocrinol 2015; 37:97-107. [PMID: 25449796 DOI: 10.1016/j.yfrne.2014.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
Seasonal cycles of fattening and body weight reflecting changes in both food intake and energy expenditure are a core aspect of the biology of mammals that have evolved in temperate and arctic latitudes. Identifying the neuroendocrine mechanisms that underlie these cycles has provided new insights into the hypothalamic control of appetite and fuel oxidation. Surprisingly, seasonal cycles do not result from changes in the leptin-responsive and homeostatic pathways located in the mediobasal and lateral hypothalamus that regulate meal timing and compensatory responses to starvation or caloric restriction. Rather, they result from changes in tanycyte function, which locally regulates transport and metabolism of thyroid hormone and retinoic acid. These signals are crucial for the initial development of the brain, so it is hypothesized that seasonal neuroendocrine cycles reflect developmental mechanisms in the adult hypothalamus, manifest as changes in neurogenesis and plasticity of connections.
Collapse
Affiliation(s)
- Francis J P Ebling
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
39
|
Ross AW, Russell L, Helfer G, Thomson LM, Dalby MJ, Morgan PJ. Photoperiod regulates lean mass accretion, but not adiposity, in growing F344 rats fed a high fat diet. PLoS One 2015; 10:e0119763. [PMID: 25789758 PMCID: PMC4366045 DOI: 10.1371/journal.pone.0119763] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/16/2015] [Indexed: 01/10/2023] Open
Abstract
In this study the effects of photoperiod and diet, and their interaction, were examined for their effects on growth and body composition in juvenile F344 rats over a 4-week period. On long (16L:8D), relative to short (8L:16D), photoperiod food intake and growth rate were increased, but percentage adiposity remained constant (ca 3-4%). On a high fat diet (HFD), containing 22.8% fat (45% energy as fat), food intake was reduced, but energy intake increased on both photoperiods. This led to a small increase in adiposity (up to 10%) without overt change in body weight. These changes were also reflected in plasma leptin and lipid levels. Importantly while both lean and adipose tissue were strongly regulated by photoperiod on a chow diet, this regulation was lost for adipose, but not lean tissue, on HFD. This implies that a primary effect of photoperiod is the regulation of growth and lean mass accretion. Consistent with this both hypothalamic GHRH gene expression and serum IGF-1 levels were photoperiod dependent. As for other animals and humans, there was evidence of central hyposomatotropism in response to obesity, as GHRH gene expression was suppressed by the HFD. Gene expression of hypothalamic AgRP and CRH, but not NPY nor POMC, accorded with the energy balance status on long and short photoperiod. However, there was a general dissociation between plasma leptin levels and expression of these hypothalamic energy balance genes. Similarly there was no interaction between the HFD and photoperiod at the level of the genes involved in thyroid hormone metabolism (Dio2, Dio3, TSHβ or NMU), which are important mediators of the photoperiodic response. These data suggest that photoperiod and HFD influence body weight and body composition through independent mechanisms but in each case the role of the hypothalamic energy balance genes is not predictable based on their known function.
Collapse
Affiliation(s)
- Alexander W. Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Laura Russell
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Gisela Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Lynn M. Thomson
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Matthew J. Dalby
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Peter J. Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Dalgard CL, Jacobowitz DM, Singh VK, Saleem KS, Ursano RJ, Starr JM, Pollard HB. A novel analytical brain block tool to enable functional annotation of discriminatory transcript biomarkers among discrete regions of the fronto-limbic circuit in primate brain. Brain Res 2015; 1600:42-58. [DOI: 10.1016/j.brainres.2014.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|
41
|
Tavolaro FM, Thomson LM, Ross AW, Morgan PJ, Helfer G. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats. J Neuroendocrinol 2015; 27:79-87. [PMID: 25443173 PMCID: PMC4329330 DOI: 10.1111/jne.12241] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/14/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
Seasonal or photoperiodically sensitive animals respond to altered day length with changes in physiology (growth, food intake and reproductive status) and behaviour to adapt to predictable yearly changes in the climate. Typically, different species of hamsters, voles and sheep are the most studied animal models of photoperiodism. Although laboratory rats are generally considered nonphotoperiodic, one rat strain, the inbred Fischer 344 (F344) rat, has been shown to be sensitive to the length of daylight exposure by changing its physiological phenotype and reproductive status according to the season. The present study aimed to better understand the nature of the photoperiodic response in the F344 rat. We examined the effects of five different photoperiods on the physiological and neuroendocrine responses. Young male F344 rats were held under light schedules ranging from 8 h of light/day to 16 h of light/day, and then body weight, including fat and lean mass, food intake, testes weights and hypothalamic gene expression were compared. We found that rats held under photoperiods of ≥ 12 h of light/day showed increased growth and food intake relative to rats held under photoperiods of ≤ 10 h of light/day. Magnetic resonance imaging analysis confirmed that these changes were mainly the result of a change in lean body mass. The same pattern was evident for reproductive status, with higher paired testes weight in photoperiods of ≥ 12 h of light/day. Accompanying the changes in physiological status were major changes in hypothalamic thyroid hormone (Dio2 and Dio3), retinoic acid (Crabp1 and Stra6) and Wnt/β-Catenin signalling genes (sFrp2 and Mfrp). Our data demonstrate that a photoperiod schedule of 12 h of light/day is interpreted as a stimulatory photoperiod by the neuroendocrine system of young male F344 rats.
Collapse
Affiliation(s)
- F M Tavolaro
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - L M Thomson
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - A W Ross
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - P J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - G Helfer
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
- Correspondence to: Gisela Helfer, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK (e-mail: )
| |
Collapse
|
42
|
Jeong JK, Lee JH, Moon JH, Lee YJ, Park SY. Melatonin-mediated β-catenin activation protects neuron cells against prion protein-induced neurotoxicity. J Pineal Res 2014; 57:427-34. [PMID: 25251028 DOI: 10.1111/jpi.12182] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/19/2014] [Indexed: 01/03/2023]
Abstract
Activation of β-catenin in neurons regulates mitochondrial function and protects against protein misfolding disorders, including Alzheimer's disease and Huntington's disease. Melatonin, a natural secretory product of the pineal gland, exerts neuroprotective effects through the activation of β-catenin. In this study, melatonin increased β-catenin protein expression and activation in human neuroblastoma cell lines SH-SY5Y cells. Melatonin also inhibited PrP (106-126)-induced neurotoxicity and the inhibition attenuated by treatment of β-catenin inhibitor ICG-001. Activation of β-catenin blocked PrP (106-126)-mediated downregulation of anti-apoptotic protein survivin and Bcl-2. Reduction of mitochondrial membrane potential, translocation of Bax, and cytochrome c release which induced by PrP (106-126) treatment were inhibited by β-catenin activation, which contributed to prevented PrP (106-126)-induced neuronal cell death. In conclusion, β-catenin activation by melatonin prevented PrP (106-126)-induced neuronal cell death through regulating anti-apoptotic proteins and mitochondrial pathways. These results also suggest the therapeutic value of Wnt/β-catenin signaling in prion-related disorders as influenced by melatonin.
Collapse
Affiliation(s)
- Jae-Kyo Jeong
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | | | | | | | | |
Collapse
|
43
|
Rothwell CM, Simmons J, Peters G, Spencer GE. Novel interactive effects of darkness and retinoid signaling in the ability to form long-term memory following aversive operant conditioning. Neurobiol Learn Mem 2014; 114:251-63. [PMID: 25062644 DOI: 10.1016/j.nlm.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
The vitamin A metabolite, retinoic acid, is important for memory formation and hippocampal synaptic plasticity in vertebrate species. In our studies in the mollusc Lymnaea stagnalis, we have shown that retinoic acid plays a role in memory formation following operant conditioning of the aerial respiratory behaviour. Inhibition of either retinaldehyde dehydrogenase (RALDH) or the retinoid receptors prevents long-term memory (LTM) formation, whereas synthetic retinoid receptor agonists promote memory formation by converting intermediate-term memory (ITM) into LTM. In this study, animals were exposed to constant darkness in order to test whether light-sensitive retinoic acid would promote memory formation. However, we found that exposure to constant darkness alone (in the absence of retinoic acid) enhanced memory formation. To determine whether the memory-promoting effects of darkness could override the memory-inhibiting effects of the retinoid signaling inhibitors, we exposed snails to RALDH inhibitors or a retinoid receptor antagonist in constant darkness. We found that darkness overcame the inhibitory effects of RALDH inhibition, but did not overcome the inhibitory effects of the retinoid receptor antagonist. We also tested whether constant darkness and training affected the mRNA levels of the retinoid metabolic enzymes RALDH and Cyp26, or the mRNA levels of the retinoid receptors, but found no significant effect. Overall, these data demonstrate an interaction between environmental light conditions and the retinoid signaling pathway, which influence long-term memory formation in a mollusc.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Jason Simmons
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Grace Peters
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
44
|
He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Exp Eye Res 2014; 123:56-71. [PMID: 24742494 PMCID: PMC4155741 DOI: 10.1016/j.exer.2014.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 01/19/2023]
Abstract
Gene expression in tree shrew choroid was examined during the development of minus-lens induced myopia (LIM, a GO condition), after completion of minus-lens compensation (a STAY condition), and early in recovery (REC) from induced myopia (a STOP condition). Five groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye-opening (days of visual experience [DVE]), one minus-lens group wore a monocular -5 D lens for 2 days (LIM-2), another minus-lens group achieved stable lens compensation while wearing a monocular -5 D lens for 11 days (LIM-11); a recovery group also wore a -5 D lens for 11 days and then received 2 days of recovery starting at 35 DVE (REC-2). Two age-matched normal groups were examined at 26 DVE and 37 DVE. Quantitative PCR was used to measure the relative differences in mRNA levels in the choroid for 77 candidate genes that were selected based on previous studies or because a whole-transcriptome analysis suggested their expression would change during myopia development or recovery. Small myopic changes were observed in the treated eyes of the LIM-2 group (-1.0 ± 0.2 D; mean ± SEM) indicating eyes were early in the process of developing LIM. The LIM-11 group exhibited complete refractive compensation (-5.1 ± 0.2 D) that was stable for five days. The REC-2 group recovered by 1.3 ± 0.3 D from full refractive compensation. Sixty genes showed significant mRNA expression differences during normal development, LIM, or REC conditions. In LIM-2 choroid (GO), 18 genes were significantly down-regulated in the treated eyes relative to the fellow control eyes and 10 genes were significantly up-regulated. In LIM-11 choroid (STAY), 10 genes were significantly down-regulated and 12 genes were significantly up-regulated. Expression patterns in GO and STAY were similar, but not identical. All genes that showed differential expression in GO and STAY were regulated in the same direction in both conditions. In REC-2 choroid (STOP), 4 genes were significantly down-regulated and 18 genes were significantly up-regulated. Thirteen genes showed bi-directional regulation in GO vs. STOP. The pattern of differential gene expression in STOP was very different from that in GO or in STAY. Significant regulation was observed in genes involved in signaling as well as extracellular matrix turnover. These data support an active role for the choroid in the signaling cascade from retina to sclera. Distinctly different treated eye vs. control eye mRNA signatures are present in the choroid in the GO, STAY, and STOP conditions. The STAY signature, present after full compensation has occurred and the GO visual stimulus is no longer present, may participate in maintaining an elongated globe. The 13 genes with bi-directional expression differences in GO and STOP responded in a sign of defocus-dependent manner. Taken together, these data further suggest that a network of choroidal gene expression changes generate the signal that alters scleral fibroblast gene expression and axial elongation rate.
Collapse
Affiliation(s)
- Li He
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA.
| | - Michael R Frost
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| |
Collapse
|
45
|
Login H, Butowt R, Bohm S. Activity-dependent and graded BACE1 expression in the olfactory epithelium is mediated by the retinoic acid metabolizing enzyme CYP26B1. Brain Struct Funct 2014; 220:2143-57. [PMID: 24797530 DOI: 10.1007/s00429-014-0783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/17/2014] [Indexed: 11/24/2022]
Abstract
It is well established that environmental influences play a key role in sculpting neuronal connectivity in the brain. One example is the olfactory sensory map of topographic axonal connectivity. While intrinsic odorant receptor signaling in olfactory sensory neurons (OSN) determines anterior-posterior counter gradients of the axonal guidance receptors Neuropilin-1 and Plexin-A1, little is known about stimulus-dependent gradients of protein expression, which correlates with the functional organization of the olfactory sensory map along its dorsomedial (DM)-ventrolateral (VL) axis. Deficiency of the Alzheimer's β-secretase BACE1, which is expressed in a DM(low)-VL(high) gradient, results in OSN axon targeting errors in a DM > VL and gene dose-dependent manner. We show that expression of BACE1 and the all-trans retinoic acid (RA)-degrading enzyme Cyp26B1 form DM-VL counter gradients in the olfactory epithelium. Analyses of mRNA and protein levels in OSNs after naris occlusion, in mice deficient in the olfactory cyclic nucleotide-gated channel and in relation to onset of respiration, show that BACE1 and Cyp26B1 expression in OSNs inversely depend on neuronal activity. Overexpression of a Cyp26B1 or presence of a dominant negative RA receptor transgene selectively in OSNs, inhibit BACE1 expression while leaving the DM(low)-VL(high) gradient of the axonal guidance protein Neuropilin-2 intact. We conclude that stimulus-dependent neuronal activity can control the expression of the RA catabolic enzyme Cyp26B1 and downstream genes such as BACE1. This result is pertinent to an understanding of the mechanisms by which a topographic pattern of connectivity is achieved and modified as a consequence of graded gene expression and sensory experience.
Collapse
Affiliation(s)
- Hande Login
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | | |
Collapse
|
46
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
47
|
Dardente H, Hazlerigg DG, Ebling FJP. Thyroid hormone and seasonal rhythmicity. Front Endocrinol (Lausanne) 2014; 5:19. [PMID: 24616714 PMCID: PMC3935485 DOI: 10.3389/fendo.2014.00019] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/15/2022] Open
Abstract
Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity.
Collapse
Affiliation(s)
- Hugues Dardente
- Physiologie de la Reproduction et des Comportements, INRA, UMR085, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut français du cheval et de l’équitation, Nouzilly, France
- *Correspondence: Hugues Dardente, INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, UMR7247, Université François Rabelais de Tours, IFCE, F-37380 Nouzilly, France e-mail:
| | - David G. Hazlerigg
- Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway
| | | |
Collapse
|
48
|
Oyarce K, Bongarzone ER, Nualart F. Unconventional Neurogenic Niches and Neurogenesis Modulation by Vitamins. ACTA ACUST UNITED AC 2014. [PMID: 26203401 DOI: 10.4172/2157-7633.1000184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the generation of new neurons occurs in adult mammals, it has been classically described in two defined regions of the brain denominated neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. In these regions, neural stem cells give rise to new neurons and glia, which functionally integrate into the existing circuits under physiological conditions. However, accumulating evidence indicates the presence of neurogenic potential in other brain regions, from which multipotent precursors can be isolated and differentiated in vitro. In some of these regions, neuron generation occurs at low levels; however, the addition of growth factors, hormones or other signaling molecules increases the proliferation and differentiation of precursor cells. In addition, vitamins, which are micronutrients necessary for normal brain development, and whose deficiency produces neurological impairments, have a regulatory effect on neural stem cells in vitro and in vivo. In the present review, we will describe the progress that has been achieved in determining the neurogenic potential in other regions, known as unconventional niches, as well as the characteristics of the neural stem cells described for each region. Finally, we will revisit the roles of commonly known vitamins as modulators of precursor cell proliferation and differentiation, and their role in the complex and tight molecular signaling that impacts these neurogenic niches.
Collapse
Affiliation(s)
- Karina Oyarce
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, USA
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, Center for Advanced Microscopy CMA BIO BIO, Concepcion University, Concepción, Chile
| |
Collapse
|
49
|
Helfer G, Ross AW, Morgan PJ. Neuromedin U partly mimics thyroid-stimulating hormone and triggers Wnt/β-catenin signalling in the photoperiodic response of F344 rats. J Neuroendocrinol 2013; 25:1264-1272. [PMID: 24164054 PMCID: PMC4253136 DOI: 10.1111/jne.12116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/11/2013] [Accepted: 10/20/2013] [Indexed: 01/22/2023]
Abstract
In seasonal animals, photoperiod exerts profound effects on physiology, such as growth, energy balance and reproduction, via changes in the neuroendocrine axes. A key element of the photoperiodic response is the thyroid hormone level in the hypothalamus, which is controlled via retrograde transport of thyroid-stimulating hormone (TSH) from the pars tuberalis of the pituitary. TSH regulates type II deiodinase (Dio2) expression, which transforms inactive thyroid hormone to its active form, via TSH receptors expressed in the ependymal cells of the hypothalamus. In the present study, we hypothesised that a second peptide hormone, neuromedin U (NMU), may play a role in the photoperiodic response alongside TSH because the gene for NMU is also expressed in a strongly photoperiod-dependent manner in the pars tuberalis and its receptor NMU2 is expressed in the ependymal layer of the third ventricle in photoperiod-sensitive F344 rats. Consistent with other studies conducted in nonseasonal mammals, we found that acute i.c.v. injections of NMU into the hypothalamus negatively regulated food intake and body weight and increased core body temperature in F344 rats. At the same time, NMU increased Dio2 mRNA expression in the ependymal region of the hypothalamus similar to the effects of TSH. These data suggest that NMU may affect acute and photoperiodically controlled energy balance through distinct pathways. We also showed that TSH inhibits the expression of type III deiodinase (Dio3) in F344 rats, a response not mimicked by NMU. Furthermore, NMU also increased the expression of genes from the Wnt/β-catenin pathway within the ependymal layer of the third ventricle. This effect was not influenced by TSH. These data indicate that, although NMU acts with some similarities to TSH, it also has completely distinct signalling functions that do not overlap. In summary, the present study of NMU signalling reveals the potential for a new player in the control of seasonal biology.
Collapse
Affiliation(s)
- G Helfer
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| | - A W Ross
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| | - P J Morgan
- Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, UK
| |
Collapse
|
50
|
Herwig A, de Vries EM, Bolborea M, Wilson D, Mercer JG, Ebling FJP, Morgan PJ, Barrett P. Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the Siberian hamster (Phodopus sungorus). PLoS One 2013; 8:e62003. [PMID: 23637944 PMCID: PMC3630139 DOI: 10.1371/journal.pone.0062003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/15/2013] [Indexed: 01/11/2023] Open
Abstract
Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response.
Collapse
Affiliation(s)
- Annika Herwig
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Emmely M. de Vries
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Matei Bolborea
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
- School of Biomedical Sciences, University of Nottingham Medical School, Queen Medical Centre, Nottingham, United Kingdom
| | - Dana Wilson
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Julian G. Mercer
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Francis J. P. Ebling
- School of Biomedical Sciences, University of Nottingham Medical School, Queen Medical Centre, Nottingham, United Kingdom
| | - Peter J. Morgan
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, United Kingdom
| |
Collapse
|