1
|
Hamden JE, Salehzadeh M, Bajaj H, Li MX, Soma KK. Lipopolysaccharide differentially alters systemic and brain glucocorticoid levels in neonatal and adult mice. J Neuroendocrinol 2025; 37:e13481. [PMID: 39694531 PMCID: PMC11791005 DOI: 10.1111/jne.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Glucocorticoids (GCs) are secreted by the adrenal glands and increase in response to stressors (e.g., infection). The brain regulates local GC levels via GC synthesis, regeneration and/or metabolism. Little is known about local GC regulation within discrete brain regions at baseline or in response to stress. We treated male and female C57BL/6J mice at postnatal day 5 (PND5) or PND90 with lipopolysaccharide (LPS; 50 μg/kg bw i.p.) or vehicle and collected blood and brain after 4 h. We microdissected the prefrontal cortex, hippocampus, hypothalamus and amygdala. We measured seven steroids, including corticosterone, via liquid chromatography-tandem mass spectrometry and measured transcripts for key steroidogenic enzymes (Cyp11b1, Hsd11b1, Hsd11b2) via qPCR. At both ages, LPS increased GC levels in blood and all brain regions; however, the increases were much greater at PND90 than at PND5. Interestingly, PND5 corticosterone levels were lower in prefrontal cortex than in blood, but higher in amygdala than in blood. These changes in corticosterone levels align with local changes in steroidogenic enzyme expression, demonstrating robust regional heterogeneity and a possible mechanism for the region-specific effects of early-life stress. In contrast, PND90 corticosterone levels were lower in all brain regions than in blood and similar among regions, and steroidogenic enzyme mRNA levels were generally not affected by LPS. Together, these data indicate that local GC levels within discrete brain regions are more heterogeneous at baseline and in response to LPS at PND5 than at PND90, as a result of increased local GC production and metabolism in the neonatal brain.
Collapse
Affiliation(s)
- Jordan E. Hamden
- Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Melody Salehzadeh
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Hitasha Bajaj
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Michael X. Li
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kiran K. Soma
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of PsychologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Graduate Program in NeuroscienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Boyle LD, Miguelez-Crespo A, Paul M, Villalobos E, Toews JNC, Ivatt L, Nagy B, Magennis M, Homer NZM, Andrew R, Viau V, Hammond GL, Stimson RH, Walker BR, Nixon M. The NE/AAT/CBG axis regulates adipose tissue glucocorticoid exposure. Nat Commun 2025; 16:545. [PMID: 39788946 PMCID: PMC11718191 DOI: 10.1038/s41467-024-55693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1). Using complementary approaches in mice and humans to manipulate NE or AAT, we show high-fat diet (HFD) increases the NE:AAT ratio specifically in murine visceral adipose tissue, an effect only observed in males. Notably, HFD-fed male mice lacking NE have reduced glucocorticoid levels and action specifically in visceral adipose tissue, with improved glucose tolerance and insulin sensitivity, independent of systemic changes in free glucocorticoids. The protective effect of NE deficiency is lost when the adrenals are removed. Moreover, human asymptomatic heterozygous carriers of deleterious mutations in SERPINA1 resulting in lower AAT levels have increased adipose tissue glucocorticoid levels and action. However, in contrast to mice, humans present with systemic increases in free circulating glucocorticoid levels, an effect independent of HPA axis activation. These findings show that NE and AAT regulate local tissue glucocorticoid bioavailability in vivo, providing crucial evidence of a mechanism linking inflammation and metabolism.
Collapse
Affiliation(s)
- Luke D Boyle
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Mhairi Paul
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Elisa Villalobos
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia N C Toews
- Life Sciences Centre, University of British Columbia, Vancouver, Canada
| | - Lisa Ivatt
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Boglarka Nagy
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marisa Magennis
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Natalie Z M Homer
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Victor Viau
- Life Sciences Centre, University of British Columbia, Vancouver, Canada
| | | | - Roland H Stimson
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Brian R Walker
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Nixon
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Lee JH, Meyer EJ, Nenke MA, Falhammar H, Torpy DJ. Corticosteroid-binding globulin (CBG): spatiotemporal distribution of cortisol in sepsis. Trends Endocrinol Metab 2023; 34:181-190. [PMID: 36681594 DOI: 10.1016/j.tem.2023.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
Corticosteroid-binding globulin (CBG) is a 50-60 kDa circulating glycoprotein with high affinity for cortisol. CBG is adapted for sepsis; its cortisol binding is reduced reversibly by pyrexia and acidaemia, and reduced irreversibly by neutrophil elastase (NE) cleavage, converting high cortisol-binding affinity CBG to a low affinity form. These characteristics allow for the targeted delivery of immunomodulatory cortisol to tissues at the time and body site where cortisol is required in sepsis and septic shock. In addition, high titer inflammatory cytokines in sepsis suppress CBG hepatic synthesis, increasing the serum free cortisol fraction. Recent clinical studies have highlighted the importance of CBG in septic shock, with CBG deficiency independently associated with mortality.
Collapse
Affiliation(s)
- Jessica H Lee
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emily J Meyer
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Marne A Nenke
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Department of Endocrine and Diabetes, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.
| | - David J Torpy
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Du S, Trakooljul N, Palma-Vera SE, Murani E, Schuler G, Schoen J, Chen S. Regulation of Porcine Oviduct Epithelium Functions via Progesterone and Estradiol Is Influenced by Cortisol. Endocrinology 2022; 164:6767905. [PMID: 36269722 DOI: 10.1210/endocr/bqac176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 01/16/2023]
Abstract
Preimplantation maternal stress, characterized by elevated glucocorticoids (GCs), has been linked to reproductive failures caused by impaired oviduct functionality, which is known to be predominantly regulated by the sex steroids, progesterone (P4) and (17)estradiol (E2). Although steroid receptors share analogous structures and binding preferences, the interaction between GCs and E2/P4 in the oviduct has attracted little attention. Using an air-liquid interface culture model, porcine oviduct epithelial cells were stimulated with single (cortisol, E2, P4) or hormone mixtures (cortisol/E2, cortisol/P4) for 12 hours and 72 hours. Cultures were subsequently assessed for epithelial morphometry, bioelectrical properties, and gene expression responses (steroid hormone signaling, oviductal function, immune response, and apoptosis). Results confirmed the suppressive role of P4 in regulating oviduct epithelium characteristics, which was partially opposed by E2. Besides increasing the ratio of ciliated cells, cortisol antagonized the effect of P4 on epithelial polarity and modified sex steroid-induced changes in transepithelial electrical properties. Both sex steroids affected the glucocorticoid receptor expression, while cortisol downregulated the expression of progesterone receptor. The overall gene expression pattern suggests that sex steroid dominates the cotreatment, but cortisol contributes by altering the gene responses to sex steroids. We conclude that besides its individual action, maternal cortisol interplays with sex steroids at phenotypic and molecular levels in the oviduct epithelium, thereby influencing the microenvironment of gametes and early embryos.
Collapse
Affiliation(s)
- Shuaizhi Du
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Sergio E Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| | - Eduard Murani
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen 35392, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Shuai Chen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research (IZW), Berlin 10315, Germany
| |
Collapse
|
6
|
Meyer EJ, Spangenberg L, Ramírez MJ, De Sousa SMC, Raggio V, Torpy DJ. CBG Montevideo: A Clinically Novel SERPINA6 Mutation Leading to Haploinsufficiency of Corticosteroid-binding Globulin. J Endocr Soc 2021; 5:bvab115. [PMID: 34308089 PMCID: PMC8294686 DOI: 10.1210/jendso/bvab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the main transport protein for cortisol, binding up to 90% in a 1:1 ratio. CBG provides transport of cortisol within the circulation and targeted cortisol tissue delivery. Here, we describe the clinically novel “CBG Montevideo” a SERPINA6 pathogenic variant that results in a 50% reduction in plasma CBG levels. This was associated with low serum total cortisol and clinical features of hypoglycemia, exercise intolerance, chronic fatigue, and hypotension in the proband, a 7-year-old boy, and his affected mother. Previous reports of 9 human CBG genetic variants affecting either CBG concentrations or reduced CBG-cortisol binding properties have outlined symptoms consistent with attenuated features of hypocortisolism, fatigue, and hypotension. Here, however, the presence of hypoglycemia, despite normal circulating free cortisol, suggests a specific role for CBG in effecting glucocorticoid function, perhaps involving cortisol-mediated hepatic glucose homeostasis and cortisol-brain communication.
Collapse
Affiliation(s)
- Emily Jane Meyer
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay.,Department of Informatics and Computer Science, Universidad Católica del Uruguay, Montevideo, 11600, Uruguay
| | - Maria José Ramírez
- Paediatric Endocrinology, Hospital Británico, Montevideo, 11600, Uruguay.,Paediatric Endocrinology, Centro Hospitalario Pereira Rossell, Montevideo, 11600, Uruguay
| | - Sunita Maria Christina De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia.,South Australian Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Victor Raggio
- Genetics Department, Facultad de Medicina, UDELAR, Montevideo, 11800, Uruguay
| | - David James Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Lin HY, Song G, Lei F, Li D, Qu Y. Avian corticosteroid-binding globulin: biological function and regulatory mechanisms in physiological stress responses. Front Zool 2021; 18:22. [PMID: 33926473 PMCID: PMC8086359 DOI: 10.1186/s12983-021-00409-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/19/2021] [Indexed: 12/04/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is a high-affinity plasma protein that binds glucocorticoids (GCs) and regulates their biological activities. The structural and functional properties of CBG are crucial to understanding the biological actions of GCs in mediating stress responses and the underlying mechanisms. In response to stress, avian CBGs modulate the free and bound fractions of plasma corticosterone (CORT, the main GC), enabling them to mediate the physiological and behavioral responses that are fundamental for balancing the trade-off of energetic investment in reproduction, immunity, growth, metabolism and survival, including adaptations to extreme high-elevation or high-latitude environments. Unlike other vertebrates, avian CBGs substitute for sex hormone-binding globulin (SHBG) in transporting androgens and regulating their bioavailability, since birds lack an Shbg gene. The three-dimensional structures of avian and mammalian CBGs are highly conserved, but the steroid-binding site topographies and their modes of binding steroids differ. Given that CBG serves as the primary transporter of both GCs and reproductive hormones in birds, we aim to review the biological properties of avian CBGs in the context of steroid hormone transportation, stress responses and adaptation to harsh environments, and to provide insight into evolutionary adaptations in CBG functions occurred to accommodate physiological and endocrine changes in birds compared with mammals.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
8
|
Corticosteroid-binding-globulin (CBG)-deficient mice show high pY216-GSK3β and phosphorylated-Tau levels in the hippocampus. PLoS One 2021; 16:e0246930. [PMID: 33592009 PMCID: PMC7886218 DOI: 10.1371/journal.pone.0246930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11β-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3β and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.
Collapse
|
9
|
de Bournonville C, McGrath A, Remage-Healey L. Testosterone synthesis in the female songbird brain. Horm Behav 2020; 121:104716. [PMID: 32061616 PMCID: PMC7198340 DOI: 10.1016/j.yhbeh.2020.104716] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 01/19/2023]
Abstract
Decades of work have established the brain as a source of steroid hormones, termed 'neurosteroids'. The neurosteroid neuroestradiol is produced in discrete brain areas and influences cognition, sensory processing, reproduction, neurotransmission, and disease. A prevailing research focus on neuroestradiol has essentially ignored whether its immediate synthesis precursor - the androgen testosterone - is also dynamically regulated within the brain. Testosterone itself can rapidly influence neurophysiology and behavior, and there is indirect evidence that the female brain may synthesize significant quantities of testosterone to regulate cognition, reproduction, and behavior. In songbirds, acoustic communication is regulated by neuroestrogens. Neuroestrogens are rapidly synthetized in the caudomedial nidopallium (NCM) of the auditory cortex of zebra finches in response to song and can influence auditory processing and song discrimination. Here, we examined the in vivo dynamics of NCM levels of the neuroestrogen synthesis precursor, testosterone. Unlike estradiol, testosterone did not appear to fluctuate in the female NCM during song exposure. However, a substantial song-induced elevation of testosterone was revealed in the left hemisphere NCM of females when local aromatization (i.e., conversion to estrogens) was locally blocked. This elevation was eliminated when local androgen synthesis was concomitantly blocked. Further, no parallel elevation was observed in the circulation in response to song playback, consistent with a local, neural origin of testosterone synthesis. To our knowledge, this study provides the first direct demonstration that testosterone fluctuates rapidly in the brain in response to socially-relevant environmental stimuli. Our findings suggest therefore that locally-derived 'neuroandrogens' can dynamically influence brain function and behavior. SIGNIFICANCE STATEMENT: This study demonstrates that androgen synthesis occurs rapidly in vivo in the brain in response to social cues, in a lateralized manner. Specifically, testosterone synthesis occurs within the left secondary auditory cortex when female zebra finches hear male song. Therefore, testosterone could act as a neuromodulator to rapidly shape sensory processing. Androgens have been linked to functions such as the control of female libido, and many steroidal drugs used for contraception, anti-cancer treatments, and sexual dysfunction likely influence the brain synthesis and action of testosterone. The current findings therefore establish a clear role for androgen synthesis in the female brain with implications for understanding neural circuit function and behavior in animals, including humans.
Collapse
Affiliation(s)
- Catherine de Bournonville
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Aiden McGrath
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, United States of America.
| |
Collapse
|
10
|
Rensel MA, Schlinger BA. The stressed brain: regional and stress-related corticosterone and stress-regulated gene expression in the adult zebra finch (Taeniopygia guttata). J Neuroendocrinol 2020; 32:e12852. [PMID: 32364267 PMCID: PMC7286616 DOI: 10.1111/jne.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
Glucocorticoids (CORT) are well-known as important regulators of behaviour and cognition at basal levels and under stress. However, the precise mechanisms governing CORT action and functional outcomes of this action in the brain remain unclear, particularly in model systems other than rodents. In the present study, we investigated the dynamics of CORT regulation in the zebra finch, an important model system for vocal learning, neuroplasticity and cognition. We tested the hypothesis that CORT is locally regulated in the zebra finch brain by quantifying regional and stress-related variation in total CORT across brain regions. In addition, we used an ex vivo slice culture system to test whether CORT regulates target gene expression uniquely in discrete regions of the brain. We documented a robust increase in brain CORT across regions after 30 minutes of restraint stress but, interestingly, baseline and stress-induced CORT levels varied between regions. In addition, CORT treatment of brain slice cultures differentially affected expression of three CORT target genes: it up-regulated expression of FKBP5 in most regions and SGK1 in the hypothalamus only, whereas GILZ was unaffected by CORT treatment across all brain regions investigated. The specific mechanisms producing regional variation in CORT and CORT-dependent downstream gene expression remain unknown, although these data provide additional support for the hypothesis that the songbird brain employs regulatory mechanisms that result in precise control over the influence of CORT on glucocorticoid-sensitive neural circuits.
Collapse
Affiliation(s)
- Michelle A. Rensel
- Institute for Society and Genetics, the University of California Los Angeles, Los Angeles, CA
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Corresponding author (MAR)
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Integrative Biology and Physiology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Ecology and Evolutionary Biology, the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
Bonhomme D, Alfos S, Webster SP, Wolff M, Pallet V, Touyarot K. Vitamin A deficiency impairs contextual fear memory in rats: Abnormalities in the glucocorticoid pathway. J Neuroendocrinol 2019; 31:e12802. [PMID: 31613407 DOI: 10.1111/jne.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11β-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11β-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11β-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11β-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11β-HSD1.
Collapse
Affiliation(s)
- Damien Bonhomme
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
| | - Serge Alfos
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Scott P Webster
- The Queen's Medical Research Institute, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mathieu Wolff
- UMR 5287, CNRS, INCIA, Bordeaux, France
- UMR 5287, INCIA, Université de Bordeaux, Bordeaux, France
| | - Véronique Pallet
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| | - Katia Touyarot
- UMR 1286, Nutrition et Neurobiologie Intégrée, Université de Bordeaux, Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique (INRA), Bordeaux, France
- Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux INP, Bordeaux, France
| |
Collapse
|
12
|
Kim JS, Iremonger KJ. Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol Metab 2019; 30:783-792. [PMID: 31699237 DOI: 10.1016/j.tem.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
Activity of the hypothalamic-pituitary-adrenal (HPA) axis is tuned by corticosteroid feedback. Corticosteroids regulate cellular function via genomic and nongenomic mechanisms, which operate over diverse time scales. This review summarizes recent advances in our understanding of how corticosteroid feedback regulates hypothalamic stress neuron function and output through synaptic plasticity, changes in intrinsic excitability, and modulation of neuropeptide production. The temporal kinetics of corticosteroid actions in the brain versus the pituitary have important implications for how organisms respond to stress. Furthermore, we will discuss, some of the technical limitations and missing links in the field, and the potential implications these may have on our interpretations of corticosteroid negative feedback experiments.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
13
|
Corticosteroid-Binding Globulin is expressed in the adrenal gland and its absence impairs corticosterone synthesis and secretion in a sex-dependent manner. Sci Rep 2019; 9:14018. [PMID: 31570737 PMCID: PMC6769001 DOI: 10.1038/s41598-019-50355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Corticosteroid-binding globulin (CBG) is synthesized by the liver and secreted into the bloodstream where binds to glucocorticoids. Thus CBG has the role of glucocorticoid transport and free hormone control. In addition, CBG has been detected in some extrahepatic tissues without a known role. CBG-deficient mice show decreased total corticosterone levels with missing of classical sexual dimorphism, increased free corticosterone, higher adrenal gland size and altered HPA axis response to stress. Our aim was to ascertain whether CBG deficiency could affect the endocrine synthetic activity of adrenal gland and if the adrenal gland produces CBG. We determined the expression in adrenal gland of proteins involved in the cholesterol uptake and its transport to mitochondria and the main enzymes involved in the corticosterone, aldosterone and catecholamine synthesis. The results showed that CBG is synthesized in the adrenal gland. CBG-deficiency reduced the expression of ACTH receptor, SRB1 and the main genes involved in the adrenal hormones synthesis, stronger in females resulting in the loss of sexual dimorphism in corticosteroid adrenal synthesis, despite corticosterone content in adrenal glands from CBG-deficient females was similar to wildtype ones. In conclusion, these results point to an unexplored and relevant role of CBG in the adrenal gland functionality related to corticosterone production and release.
Collapse
|
14
|
de Medeiros GF, Lafenêtre P, Janthakhin Y, Cerpa JC, Zhang CL, Mehta MM, Mortessagne P, Helbling JC, Ferreira G, Moisan MP. Corticosteroid-Binding Globulin Deficiency Specifically Impairs Contextual and Recognition Memory Consolidation in Male Mice. Neuroendocrinology 2019; 109:322-332. [PMID: 30904918 DOI: 10.1159/000499827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/17/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS Glucocorticoids are essential in modulating memory processes of emotionally arousing experiences and we have shown that corticosteroid-binding globulin (CBG) influences glucocorticoid delivery to the brain. Here, we investigated the role of CBG in contextual and recognition long-term memory according to stress intensity. METHOD We used adult male mice totally deficient in CBG (Cbg KO) or brain-specific Cbg KO (CbgCamk KO) to examine their performance in contextual fear conditioning (CFC) and au-ditory fear conditioning, both at short (1 h) and long-term (24 h). Long-term memory in Cbg KO was further analyzed in conditioned odor aversion and in novel object recognition task (NORT) with different paradigms, that is, with and without prior habituation to the context, with a mild or strong stressor applied during consolidation. In the NORT experiments, total and free glucocorticoid levels were measured during consolidation. RESULTS Impaired memory was observed in the Cbg KO but not in the CbgCamk KO in the CFC and the NORT without habituation when tested 24 h later. However, Cbg KO displayed normal behavior in the NORT with previous habituation and in the NORT with a mild stressor. In condition of the NORT with a strong stressor, Cbg KO retained good 24 h memory performance while controls were impaired. Total and free glucocorticoids levels were always higher in controls than in Cbg KO except in NORT with mild stressor where free glucocorticoids were equivalent to controls. CONCLUSIONS These data indicate that circulating but not brain CBG influences contextual and recognition long-term memory in relation with glucocorticoid levels.
Collapse
Affiliation(s)
- Gabriela F de Medeiros
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Pauline Lafenêtre
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- Bordeaux INP, Nutrition and Integrative Neurobiology, UMR1286, Bordeaux, France
| | - Yoottana Janthakhin
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Juan-Carlos Cerpa
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Chun-Lei Zhang
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Marishka M Mehta
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Pierre Mortessagne
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Jean-Christophe Helbling
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Guillaume Ferreira
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France,
- University of Bordeaux, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France,
| |
Collapse
|
15
|
Rensel MA, Ding JA, Pradhan DS, Schlinger BA. 11β-HSD Types 1 and 2 in the Songbird Brain. Front Endocrinol (Lausanne) 2018; 9:86. [PMID: 29593652 PMCID: PMC5857549 DOI: 10.3389/fendo.2018.00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoid (GC) hormones act on the brain to regulate diverse functions, from behavior and homeostasis to the activity of the hypothalamic-pituitary-adrenal axis. Local regeneration and metabolism of GCs can occur in target tissues through the actions of the 11β-hydroxysteroid dehydrogenases [11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2), respectively] to regulate access to GC receptors. Songbirds have become especially important model organisms for studies of stress hormone action; however, there has been little focus on neural GC metabolism. Therefore, we tested the hypothesis that 11β-HSD1 and 11β-HSD2 are expressed in GC-sensitive regions of the songbird brain. Localization of 11β-HSD expression in these regions could provide precise temporal and spatial control over GC actions. We quantified GC sensitivity in zebra finch (Taeniopygia guttata) brain by measuring glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) expression across six regions, followed by quantification of 11β-HSD1 and 11β-HSD2 expression. We detected GR, MR, and 11β-HSD2 mRNA expression throughout the adult brain. Whereas 11β-HSD1 expression was undetectable in the adult brain, we detected low levels of expression in the brain of developing finches. Across several adult brain regions, expression of 11β-HSD2 covaried with GR and MR, with the exception of the cerebellum and hippocampus. It is possible that receptors in these latter two regions require direct access to systemic GC levels. Overall, these results suggest that 11β-HSD2 expression protects the adult songbird brain by rapid metabolism of GCs in a context and region-specific manner.
Collapse
Affiliation(s)
- Michelle A. Rensel
- The Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jessica A. Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Devaleena S. Pradhan
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Meyer EJ, Nenke MA, Lewis JG, Torpy DJ. Corticosteroid-binding globulin: acute and chronic inflammation. Expert Rev Endocrinol Metab 2017; 12:241-251. [PMID: 30058887 DOI: 10.1080/17446651.2017.1332991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Corticosteroid-binding globulin (CBG) is the principal transport protein for cortisol binding 80% in a 1:1 ratio. Since its discovery in 1958, CBG's primary function has been considered to be cortisol transport within the circulation. More recent data indicate a cortisol tissue delivery function, particularly at inflammatory sites. CBG's structure as a non-inhibitory serine protease inhibitor allows allosteric structural change after reactive central loop (RCL) cleavage by neutrophil elastase (NE) and RCL insertion into CBG's protein core. Transition from the high to low affinity CBG form reduces cortisol-binding. Areas covered: In acute systemic inflammation, high affinity CBG (haCBG) is depleted proportionate to sepsis severity, with lowest levels seen in non-survivors. Conversely, in chronic inflammation, CBG cleavage is paradoxically reduced in proportion to disease severity, implying impaired targeted delivery of cortisol. CBG's structure allows thermosensitive release of bound cortisol, by reversible partial insertion of the RCL and loosening of CBG:cortisol binding. Recent studies indicate a significant frequency of function-altering single nucleotide polymorphisms of the SERPINA6 gene which may be important in population risk of inflammatory disease. Expert commentary: Further exploration of CBG in inflammatory disease may offer new avenues for treatment based on the model of optimal cortisol tissue delivery.
Collapse
Affiliation(s)
- Emily J Meyer
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| | - Marni A Nenke
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| | - John G Lewis
- c Steroid & Immunobiochemistry Laboratory , Canterbury Health Laboratories , Christchurch , New Zealand
| | - David J Torpy
- a Endocrine and Metabolic Unit , Royal Adelaide Hospital , Adelaide , Australia
- b Discipline of Medicine , University of Adelaide , Adelaide , Australia
| |
Collapse
|
17
|
Rincel M, Lépinay AL, Delage P, Fioramonti J, Théodorou VS, Layé S, Darnaudéry M. Maternal high-fat diet prevents developmental programming by early-life stress. Transl Psychiatry 2016; 6:e966. [PMID: 27898075 PMCID: PMC5290357 DOI: 10.1038/tp.2016.235] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/27/2016] [Accepted: 10/16/2016] [Indexed: 11/15/2022] Open
Abstract
Anxiety disorders and depression are well-documented in subjects exposed to adverse childhood events. Recently, maternal obesity and/or maternal consumption of high-fat diets (HFD) have been also proposed as risk factors for offspring mental health. Here using an animal model in rats, we explored the combinatorial effects of a maternal HFD (40% of energy from fat without impact on maternal weight; during gestation and lactation) and maternal separation (MS) in offspring. In the prefrontal cortex (PFC) of pups, MS led to changes in the expression of several genes such as Bdnf (brain derived neurotrophic factor), 5HT-r1a (serotonin receptor 1a) and Rest4 (neuron-restrictive silencer element, repressor element 1, silencing transcription factor (Rest), splicing variant 4). Surprisingly, perinatal HFD strongly attenuated the developmental alterations induced by MS. Furthermore, maternal HFD totally prevented the endophenotypes (anxiety, spatial memory, social behavior, hypothalamic-pituitary-adrenal (HPA) axis response to stress, hippocampal neurogenesis and visceral pain) associated with MS at adulthood. Finally, we also demonstrated that HFD intake reduced anxiety and enhanced maternal care in stressed dams. Overall, our data suggest that a HFD restricted to gestation and lactation, which did not lead to overweight in dams, had limited effects in unstressed offspring, highlighting the role of maternal obesity, rather than fat exposure per se, on brain vulnerability during development.
Collapse
Affiliation(s)
- M Rincel
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | - A L Lépinay
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | - P Delage
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | | | | | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| | - M Darnaudéry
- INRA, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR1286, Bordeaux, France
| |
Collapse
|
18
|
Chronic stress does not further exacerbate the abnormal psychoneuroendocrine phenotype of Cbg-deficient male mice. Psychoneuroendocrinology 2016; 70:33-7. [PMID: 27153522 DOI: 10.1016/j.psyneuen.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022]
Abstract
Chronic stress leads to a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which can constitute a base for pathophysiological consequences. Using mice totally deficient in Corticosteroid binding globulin (CBG), we have previously demonstrated the important role of CBG in eliciting an adequate response to an acute stressor. Here, we have studied its role in chronic stress situations. We have submitted Cbg ko and wild-type (WT) male mice to two different chronic stress paradigms - the unpredictable chronic mild stress and the social defeat. Then, their impact on neuroendocrine function - through corticosterone and CBG measurement - and behavioral responses - via anxiety and despair-like behavioral tests - was evaluated. Both chronic stress paradigms increased the display of despair-like behavior in WT mice, while that from Cbg ko mice - which was already high - was not aggravated. We have also found that control and defeated (stressed) Cbg ko mice show no difference in the social interaction test, while defeated WT mice reduce their interaction time when compared to unstressed WT mice. Interestingly, the same pattern was observed for corticosterone levels, where both chronic stress paradigms lowered the corticosterone levels of WT mice, while those from Cbg ko mice remained low and unaltered. Plasma CBG binding capacity remained unaltered in WT mice regardless of the stress paradigm. Through the use of the Cbg ko mice, which only differs genetically from WT mice by the absence of CBG, we demonstrated that CBG is crucial in modulating the effects of stress on plasma corticosterone levels and consequently on behavior. In conclusion, individuals with CBG deficiency, whether genetically or environmentally-induced, are vulnerable to acute stress but do not have their abnormal psychoneuroendocrine phenotype further affected by chronic stress.
Collapse
|
19
|
Gulfo J, Ledda A, Serra E, Cabot C, Esteve M, Grasa M. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity. Obesity (Silver Spring) 2016; 24:1677-86. [PMID: 27323695 DOI: 10.1002/oby.21543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. METHODS C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. RESULTS Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. CONCLUSIONS Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression.
Collapse
Affiliation(s)
- José Gulfo
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Angelo Ledda
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Elisabet Serra
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Cristina Cabot
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Montserrat Esteve
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| | - Mar Grasa
- Department of Nutrition and Food Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine of the University of Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Rensel MA, Schlinger BA. Determinants and significance of corticosterone regulation in the songbird brain. Gen Comp Endocrinol 2016; 227:136-42. [PMID: 26141145 PMCID: PMC4696926 DOI: 10.1016/j.ygcen.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022]
Abstract
Songbirds exhibit significant adult neuroplasticity that, together with other neural specializations, makes them an important model system for neurobiological studies. A large body of work also points to the songbird brain as a significant target of steroid hormones, including corticosterone (CORT), the primary avian glucocorticoid. Whereas CORT positively signals the brain for many functions, excess CORT may interfere with natural neuroplasticity. Consequently, mechanisms may exist to locally regulate CORT levels in brain to ensure optimal concentrations. However, most studies in songbirds measure plasma CORT as a proxy for levels at target tissues. In this paper, we review literature concerning circulating CORT and its effects on behavior in songbirds, and discuss recent work suggesting that brain CORT levels are regulated independently of changes in adrenal secretion. We review possible mechanisms for CORT regulation in the avian brain, including corticosteroid-binding globulins, p-glycoprotein activity in the blood-brain barrier and CORT metabolism by the 11ß hydroxysteroid dehydrogenases. Data supporting a role for CORT regulation within the songbird brain have only recently begun to emerge, suggesting that this is an avenue for important future research.
Collapse
Affiliation(s)
- Michelle A Rensel
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Moisan MP, Castanon N. Emerging Role of Corticosteroid-Binding Globulin in Glucocorticoid-Driven Metabolic Disorders. Front Endocrinol (Lausanne) 2016; 7:160. [PMID: 28066325 PMCID: PMC5165022 DOI: 10.3389/fendo.2016.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoid hormones (GCs) are critical for survival since they ensure the energy supply necessary to the body in an ever challenging environment. GCs are known to act on appetite, glucose metabolism, fatty acid metabolism, and storage. However, to be beneficial to the body, GC levels should be maintained in an optimal window of concentrations. Not surprisingly, conditions of GC excess or deficiency, e.g., Cushing's syndrome or Addison's disease, are associated with severe alterations of energy metabolism. Corticosteroid-binding globulin (CBG), through its high specific affinity for GCs, plays a critical role in regulating plasma GC levels and their access to target cells. Genetic studies in various species including humans have revealed that CBG is the major factor influencing interindividual genetic variability of plasma GC levels, both in basal and stress conditions. Some, but not all, of these genetic studies have also provided data linking CBG levels to body composition and insulin levels. The examination of CBG-deficient mice submitted to hyperlipidic diets unveiled specific roles for CBG in lipid storage and metabolism. An influence of CBG on appetite has not been reported but remains to be more finely analyzed. Finally, only male mice have been examined under high-fat diet, while obesity is affecting women even more than men. Overall, a role of CBG in GC-driven metabolic disorders is emerging in recent studies. Although subtle, the influence of CBG in these diseases could open the way to new therapeutic interventions since CBG is easily accessible in the blood.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- INRA, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- *Correspondence: Marie-Pierre Moisan,
| | - Nathalie Castanon
- INRA, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
- Université de Bordeaux, Nutrition and Integrative Neurobiology (NutrINeurO), UMR 1286, Bordeaux, France
| |
Collapse
|
22
|
Affiliation(s)
- V. Pallet
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| | - K. Touyarot
- Univ. Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
- INP, Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR, Bordeaux, France
| |
Collapse
|
23
|
Görres A, Ponsuksili S, Wimmers K, Muráni E. Analysis of non-synonymous SNPs of the porcine SERPINA6 gene as potential causal variants for a QTL affecting plasma cortisol levels on SSC7. Anim Genet 2015; 46:239-46. [PMID: 25754835 DOI: 10.1111/age.12276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/01/2022]
Abstract
Recently, the SERPINA6 gene encoding corticosteroid-binding globulin (CBG) has been proposed as a candidate gene for a quantitative trait locus (QTL) affecting cortisol level on pig chromosome 7. The QTL was repeatedly detected in different lines, including a Piétrain × (German Landrace × German Large White) cross (PiF1) and purebred German Landrace (LR). In this study, we investigated whether the known non-synonymous polymorphisms c.44G>T, c.622C>T, c.770C>T, c.793G>A, c.832G>A and c.919G>A of SERPINA6 are sufficient to explain the QTL in these two populations. Our investigations revealed that SNPs c.44G>T, c.622C>T, c.793G>A and c.919G>A are associated with cortisol level in PiF1 (P < 0.01). Haplotype analysis showed that these associations are largely attributable to differences between a major haplotype carrying SNPs c.793G>A and c.919G>A and a haplotype carrying SNPs c.44G>T and c.622C>T. Furthermore, some SNPs, particularly c.44G>T and c.622C>T and the carrier haplotype, showed association with meat quality traits including pH and conductivity (P < 0.05). In LR, the non-synonymous SNPs segregate at very low frequency (<5%) and/or show only weak association with cortisol level (SNPs c.832G>A and c.919G>A; P < 0.05). These findings suggest that the non-synonymous SNPs are not sufficient to explain the QTL across different breeds. Therefore, we examined whether the expression of SERPINA6 is affected by cis-regulatory polymorphisms in liver, the major organ for CBG production. We found allelic expression imbalance of SERPINA6, which suggests that its expression is indeed affected by genetic variation in cis-acting elements. This represents candidate causal variation for future studies of the molecular background of the QTL.
Collapse
Affiliation(s)
- A Görres
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196, Dummerstorf, Germany
| | | | | | | |
Collapse
|
24
|
Minni AM, de Medeiros GF, Helbling JC, Duittoz A, Marissal-Arvy N, Foury A, De Smedt-Peyrusse V, Pallet V, Moisan MP. Role of corticosteroid binding globulin in emotional reactivity sex differences in mice. Psychoneuroendocrinology 2014; 50:252-63. [PMID: 25244639 DOI: 10.1016/j.psyneuen.2014.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/31/2014] [Accepted: 07/31/2014] [Indexed: 12/31/2022]
Abstract
Sex differences exist for stress reactivity as well as for the prevalence of depression, which is more frequent in women of reproductive age and often precipitated by stressful events. In animals, the differential effect of stress on male's and female's emotional behavior has been well documented. Crosstalk between the gonadal and stress hormones, in particular between estrogens and glucocorticoids, underlie these sex differences on stress vulnerability. We have previously shown that corticosteroid binding globulin (CBG) deficiency in a mouse model (Cbg k.o.) leads, in males, to an increased despair-like behavior caused by suboptimal corticosterone stress response. Because CBG displays a sexual dimorphism and is regulated by estrogens, we have now investigated whether it plays a role in the sex differences observed for emotional reactivity in mice. By analyzing Cbg k.o. and wild-type (WT) animals of both sexes, we detected sex differences in despair-like behavior in WT mice but not in Cbg k.o. animals. We showed through ovariectomy and estradiol (E2) replacement that E2 levels explain the sex differences found in WT animals. However, the manipulation of E2 levels did not affect the emotional behavior of Cbg k.o. females. As Cbg k.o. males, Cbg k.o. females have markedly reduced corticosterone levels across the circadian cycle and also after stress. Plasma free corticosterone levels in Cbg k.o. mice measured immediately after stress were blunted in both sexes compared to WT mice. A trend for higher mean levels of ACTH in Cbg k.o. mice was found for both sexes. The turnover of a corticosterone bolus was increased in Cbg k.o. Finally, the glucocorticoid-regulated immediate early gene early growth response 1 (Egr1) showed a blunted mRNA expression in the hippocampus of Cbg k.o. mutants while mineralocorticoid and glucocorticoid receptors presented sex differences but equivalent mRNA expression between genotypes. Thus, in our experimental conditions, sex differences for despair-like behavior in WT mice are explained by estrogens levels. Also, in both sexes, the presence of CBG is required to attain optimal glucocorticoid concentrations and normal emotional reactivity, although in females this is apparent only under low E2 concentrations. These findings suggest a complex interaction of CBG and E2 on emotional reactivity in females.
Collapse
Affiliation(s)
- A M Minni
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - G F de Medeiros
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - J C Helbling
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Duittoz
- Université François Rabelais, Physiologie de la Reproduction et des Comportements INRA U85, CNRS UMR7247, IFCE, 37380 Nouzilly, France
| | - N Marissal-Arvy
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Foury
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - V De Smedt-Peyrusse
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - V Pallet
- Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; IPB, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France
| | - M P Moisan
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
25
|
Schlinger BA, Remage-Healey L, Rensel M. Establishing regional specificity of neuroestrogen action. Gen Comp Endocrinol 2014; 205:235-41. [PMID: 24726987 PMCID: PMC4348095 DOI: 10.1016/j.ygcen.2014.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 01/03/2023]
Abstract
The specificity of estrogen signaling in brain is defined at one level by the types and distributions of receptor molecules that are activated by estrogens. At another level, as our understanding of the neurobiology of the estrogen synthetic enzyme aromatase has grown, questions have emerged as to how neuroactive estrogens reach specific target receptors in functionally relevant concentrations. Here we explore the spatial specificity of neuroestrogen signaling with a focus on studies of songbirds to provide perspective on some as-yet unresolved questions. Studies conducted in both male and female songbirds have helped to clarify these interesting facets of neuroestrogen physiology.
Collapse
Affiliation(s)
- Barney A Schlinger
- Dept. of Integrative Biology and Physiology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA.
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Molecular and Cellular Biology Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA
| | - Michelle Rensel
- Dept. of Integrative Biology and Physiology and the Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Dominguez G, Faucher P, Henkous N, Krazem A, Piérard C, Béracochéa D. Stress induced a shift from dorsal hippocampus to prefrontal cortex dependent memory retrieval: role of regional corticosterone. Front Behav Neurosci 2014; 8:166. [PMID: 24860451 PMCID: PMC4030165 DOI: 10.3389/fnbeh.2014.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022] Open
Abstract
Most of the deleterious effects of stress on memory retrieval are due to a dysfunction of the hippocampo-prefrontal cortex interplay. The role of the stress-induced regional corticosterone increase in such dysfunction remains however unclear, since there is no published study as yet dedicated to measuring corticosterone concentrations simultaneously in both the prefrontal cortex (mPFC) and the hippocampus (dHPC) in relation with memory impairments. To that aim, we first showed in Experiment 1 that an acute stress (3 electric footschocks; 0.9 mA each) delivered before memory testing reversed the memory retrieval pattern (MRP) in a serial discrimination task in which mice learned two successive discriminations. More precisely, whereas non-stressed animals remembered accurately the first learned discrimination and not the second one, stressed mice remembered more accurately the second discrimination but not the first one. We demonstrated that local inactivation of dHPC or mPFC with the anesthetic lidocaine recruited the dHPC activity in non-stress conditions whereas the stress-induced MRP inversion recruited the mPFC activity. In a second experiment, we showed that acute stress induced a very similar time-course evolution of corticosterone rises within both the mPFC and dHPC. In a 3rd experiment, we found however that in situ injections of corticosterone either within the mPFC or the dHPC before memory testing favored the emergence of the mPFC-dependent MRP but blocked the emergence of the dHPC-dependent one. Overall, our study evidences that the simultaneous increase of corticosterone after stress in both areas induces a shift from dHPC (non-stress condition) to mPFC-dependent MRP and that corticosterone is critically involved in mediating the deleterious effects of stress on cognitive functions involving the mPFC-HPC interplay.
Collapse
Affiliation(s)
- Gaelle Dominguez
- INSERM U-930, Université François Rabelais, Parc Grandmont Tours, France
| | - Pierre Faucher
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Nouvelle Université de Bordeaux Talence, France
| | - Nadia Henkous
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Nouvelle Université de Bordeaux Talence, France
| | - Ali Krazem
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Nouvelle Université de Bordeaux Talence, France
| | | | - Daniel Béracochéa
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Nouvelle Université de Bordeaux Talence, France
| |
Collapse
|
27
|
Regulation of corticosterone function during early weaning and effects on gastric cell proliferation. Nutrition 2014; 30:343-9. [DOI: 10.1016/j.nut.2013.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/14/2013] [Accepted: 09/07/2013] [Indexed: 10/25/2022]
|
28
|
Sivukhina EV, Jirikowski GF. Adrenal steroids in the brain: role of the intrinsic expression of corticosteroid-binding globulin (CBG) in the stress response. Steroids 2014; 81:70-3. [PMID: 24246737 DOI: 10.1016/j.steroids.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The complex interaction between hypothalamus, pituitary and adrenal glands is a key component of the neuroendocrine stress response. The major stress hormones--glucocorticoids--have both central and peripheral effects. Among the factors regulating their availability to target tissues are levels of corticosteroid-binding globulin, as the major transport protein for glucocorticoids in systemic circulation. Our recent findings demonstrated expression of corticosteroid-binding globulin in various brain regions and in different cell populations (neurons and glial cells). We showed at the cellular level the presence of corticosteroid-binding globulin in the human hypothalamus, where it was co-localized with the classical neurohypophyseal neurohormones--vasopressin and oxytocin. For the first time we demonstrated in mouse that the same gene encodes brain and liver corticosteroid-binding globulin. The full-length sequencing of hypothalamic corticosteroid-binding globulin revealed a full homology with liver corticosteroid-binding globulin cDNA. Thus, we confirmed that corticosteroid-binding globulin mRNA is produced locally within various cerebral regions and thus not transported from blood. However, the amounts of mRNA encoding corticosteroid-binding globulin are in liver about 200 times higher than in brain. The wide distribution of corticosteroid-binding globulin, distinct from the localization of glucocorticoid receptors, observed in our comparative study in rodents, led us to propose two possibilities: (1) corticosteroid-binding globulin is made in certain neurons to deliver glucocorticoids into the cell and within the cell in the absence of cytoplasmic glucocorticoid receptors or (2) is internalized into neurons specifically to deliver glucocorticoids to classical glucocorticoid receptors. Brain corticosteroid-binding globulin may be involved in the response to changing systemic glucocorticoid levels either additionally to known nuclear and membrane corticosteroid receptors or in glucocorticoid responsive brain regions devoid of these receptors. Clearly the multiple locations of corticosteroid-binding globulin within the central nervous system of humans and rodents imply multiple functional properties in normal and/or pathological conditions, which are yet to be determined. Most likely, the importance of brain corticosteroid-binding globulin exceeds the function of a mere steroid transporter.
Collapse
Affiliation(s)
- Elena V Sivukhina
- Institute of Anatomy II, Friedrich-Schiller University Jena, Germany
| | | |
Collapse
|
29
|
Moisan MP, Minni AM, Dominguez G, Helbling JC, Foury A, Henkous N, Dorey R, Béracochéa D. Role of corticosteroid binding globulin in the fast actions of glucocorticoids on the brain. Steroids 2014; 81:109-15. [PMID: 24252379 DOI: 10.1016/j.steroids.2013.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corticosteroid binding globulin (CBG) is a glycoprotein synthesized in liver and secreted in the blood where it binds with a high affinity but low capacity glucocorticoid hormones, cortisol in humans and corticosterone in laboratory rodents. In mammals, 95% of circulating glucocorticoids are bound to either CBG (80%) or albumin (15%) and only the 5% free fraction is able to enter the brain. During stress, the concentration of glucocorticoids rises significantly and the free fraction increases even more because CBG becomes saturated. However, glucocorticoids unbound to CBG are cleared from the blood more quickly. Our studies on mice totally devoid of CBG (Cbg k.o.) showed that during stress these mutant mice display a lower rise of glucocorticoids than the wild-type controls associated with altered emotional reactivity. These data suggested that CBG played a role in the fast actions of glucocorticoids on behavior. Further analyses demonstrated that stress-induced memory retrieval impairment, an example of the fast action of glucocorticoids on the brain is abolished in the Cbg k.o. mice. This effect of stress on memory retrieval could be restored in the Cbg k.o. mice by infusing corticosterone directly in the hippocampus. The mechanisms explaining these effects involved an increased clearance but no difference in corticosterone production. Thus, CBG seems to have an important role in maintaining in blood a glucocorticoid pool that will be able to access the brain for the fast effects of glucocorticoids.
Collapse
Affiliation(s)
- M P Moisan
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France.
| | - A M Minni
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - G Dominguez
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France; UFR Sciences et Technique, Université de Tours, Parc de Grandmont, 37200 Tours, France
| | - J C Helbling
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - A Foury
- INRA, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France; Univ Bordeaux, Nutrition & Neurobiologie Intégrée (NutriNeuro), UMR 1286, 33076 Bordeaux, France
| | - N Henkous
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| | - R Dorey
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| | - D Béracochéa
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), UMR 5287, Universités de Bordeaux1 et 2, 33400 Talence, France
| |
Collapse
|
30
|
Helbling JC, Minni AM, Pallet V, Moisan MP. Stress and glucocorticoid regulation of NR4A genes in mice. J Neurosci Res 2014; 92:825-34. [PMID: 24753204 DOI: 10.1002/jnr.23366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 12/27/2022]
Abstract
The NR4A nuclear receptors subgroup, comprising Nur77 (NR4A1), Nurr1 (NR4A2), and Nor1 (NR4A3), are orphan receptors induced by a variety of signals, including stress. These receptors are described as early response genes and in vitro studies have shown that they take part in regulation of the hypothalamic-pituitary-adrenal (HPA) axis, the major stress-responsive neuroendocrine system. This study analyzes further the interweaving of NR4A receptors with the HPA axis at rest and after a restraint stress in vivo in mice. We show that each NR4A member has a similar mRNA expression pattern and low levels of expression at rest except, in particular in hippocampus for Nurr1 and in adrenals for Nur77. After restraint stress, mRNA expression of each NR4A is markedly induced in adrenals and pituitary and significantly in hypothalamus. In higher cerebral regions, such as cortex, hippocampus, and amygdala, induction of NR4A mRNA elicited by stress was very moderate or undetected. The influence of glucocorticoids on NR4A mRNA expression was analyzed by comparing wild-type and Cbg k.o. mice used as a model of glucocorticoid hyposignaling. Nur77 mRNA and protein expression and a downstream Nur77 target gene were found to be affected in the hypothalamus and pituitary of the Cbg k.o. mice but not in hippocampus and cortex. These results further support a physiological role of NR4A orphan receptors in the glucocorticoid response to stress.
Collapse
Affiliation(s)
- Jean-Christophe Helbling
- INRA, Nutrition and Integrative Neurobiology, Bordeaux, France; Univ Bordeaux, Nutrition & Integrative Neurobiology, Bordeaux, France
| | | | | | | |
Collapse
|
31
|
Bonhomme D, Minni AM, Alfos S, Roux P, Richard E, Higueret P, Moisan MP, Pallet V, Touyarot K. Vitamin A status regulates glucocorticoid availability in Wistar rats: consequences on cognitive functions and hippocampal neurogenesis? Front Behav Neurosci 2014; 8:20. [PMID: 24550796 PMCID: PMC3912436 DOI: 10.3389/fnbeh.2014.00020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/13/2014] [Indexed: 12/21/2022] Open
Abstract
A disruption of the vitamin A signaling pathway has been involved in age-related memory decline and hippocampal plasticity alterations. Using vitamin A deficiency (VAD), a nutritional model leading to a hyposignaling of the retinoid pathway, we have recently demonstrated that retinoic acid (RA), the active metabolite of vitamin A, is efficient to reverse VAD-induced spatial memory deficits and adult hippocampal neurogenesis alterations. Besides, excess of glucocorticoids (GCs) occurring with aging is known to strongly inhibit hippocampal plasticity and functions and few studies report on the counteracting effects of RA signaling pathway on GCs action. Here, we have addressed whether the modulation of brain GCs availability could be one of the biological mechanisms involved in the effects of vitamin A status on hippocampal plasticity and functions. Thus, we have studied the effects of a vitamin A-free diet for 14 weeks and a 4-week vitamin A supplementation on plasma and hippocampal corticosterone (CORT) levels in Wistar rats. We have also investigated corticosteroid binding globulin (CBG) binding capacity and 11beta-Hydrosteroid Dehydrogenase type 1 (11β-HSD1) activity, both important modulators of CORT availability at the peripheral and hippocampal levels respectively. Interestingly, we show that the vitamin A status regulates levels of free plasma CORT and hippocampal CORT levels, by acting through a regulation of CBG binding capacity and 11β-HSD1 activity. Moreover, our results suggest that increased CORT levels in VAD rats could have some deleterious consequences on spatial memory, anxiety-like behavior and adult hippocampal neurogenesis whereas these effects could be corrected by a vitamin A supplementation. Thus, the modulation of GCs availability by vitamin A status is an important biological mechanism that should be taken into account in order to prevent age-related cognitive decline and hippocampal plasticity alterations.
Collapse
Affiliation(s)
- Damien Bonhomme
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Amandine M Minni
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Serge Alfos
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Pascale Roux
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Emmanuel Richard
- INSERM, Biothérapie des Maladies Génétiques et Cancer, U1035 Bordeaux, France
| | - Paul Higueret
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Marie-Pierre Moisan
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| | - Katia Touyarot
- INRA, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France ; University of Bordeaux, Nutrition et Neurobiologie Intégrée (NutriNeuro), UMR 1286 Bordeaux, France
| |
Collapse
|
32
|
Sotgiu I, Rusconi ML. Why Autobiographical Memories for Traumatic and Emotional Events Might Differ: Theoretical Arguments and Empirical Evidence. THE JOURNAL OF PSYCHOLOGY 2014; 148:523-47. [DOI: 10.1080/00223980.2013.814619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
33
|
Mattos GE, Heinzmann JM, Norkowski S, Helbling JC, Minni AM, Moisan MP, Touma C. Corticosteroid-binding globulin contributes to the neuroendocrine phenotype of mice selected for extremes in stress reactivity. J Endocrinol 2013; 219:217-29. [PMID: 24048966 DOI: 10.1530/joe-13-0255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Increasing evidence indicates an important role of steroid-binding proteins in endocrine functions, including hypothalamic-pituitary-adrenal (HPA) axis activity and regulation, as they influence bioavailability, local delivery, and cellular signal transduction of steroid hormones. In the plasma, glucocorticoids (GCs) are mainly bound to the corticosteroid-binding globulin (CBG) and to a lesser extend to albumin. Plasma CBG levels are therefore involved in the adaptive stress response, as they determine the concentration of free, biologically active GCs. In this study, we investigated whether male mice with a genetic predisposition for high-reactivity (HR), intermediate-reactivity (IR), or low-reactivity (LR) stress-induced corticosterone (CORT) secretion present different levels of free CORT and CORT-binding proteins, basally and in response to stressors of different intensity. Our results suggest a fine control interaction between plasma CBG expression and stress-induced CORT release. Although plasma CBG levels, and therefore CBG binding capacity, were higher in HR animals, CORT secretion overloaded the CBG buffering function in response to stressors, resulting in clearly higher free CORT levels in HR compared with IR and LR mice (HR>IR>LR), resembling the pattern of total CORT increase in all three lines. Both stressors, restraint or forced swimming, did not evoke fast CBG release from the liver into the bloodstream and therefore CBG binding capacity was not altered in our three mouse lines. Thus, we confirm CBG functions in maintaining a dynamic equilibrium between CBG-bound and unbound CORT, but could not verify its role in delaying the rise of plasma free CORT immediately after stress exposure.
Collapse
MESH Headings
- Adaptation, Psychological
- Animals
- Behavior, Animal
- Corticosterone/blood
- Corticosterone/metabolism
- Disease Models, Animal
- Genetic Predisposition to Disease
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Kinetics
- Liver/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/physiopathology
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- Restraint, Physical
- Serum Albumin/metabolism
- Stress, Physiological
- Stress, Psychological/blood
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Transcortin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Gabriele E Mattos
- Max Planck Institute of Psychiatry, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany Institut National de la Recherche Agronomique (INRA), Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, 146 Rue Leo Saignat, 33076 Bordeaux, France University of Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, UMR 1286, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Dayger CA, Cease AJ, Lutterschmidt DI. Responses to capture stress and exogenous corticosterone vary with body condition in female red-sided garter snakes (Thamnophis sirtalis parietalis). Horm Behav 2013; 64:748-54. [PMID: 24075831 DOI: 10.1016/j.yhbeh.2013.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/20/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
This study examined whether hormonal and behavioral responses to capture stress and exogenous corticosterone (CORT) vary with body condition in female red-sided garter snakes (Thamnophis sirtalis parietalis). Female snakes were collected during the spring mating season and treated with 4 h of capture stress. We measured plasma CORT and estradiol before, during and after capture stress treatment followed by latency to copulate, a measure of female receptivity. Body condition was determined as the residual from a regression of body mass on snout-vent-length. Baseline CORT did not differ between females in positive and negative body condition, but females in negative body condition showed a significantly larger increase in plasma CORT in response to capture stress. Estradiol, which is generally low during the mating season in this population, did not change in response to capture stress. Body condition, but not capture stress, influenced latency to copulate, suggesting that females are resistant to the behavioral effects of capture stress during the spring mating season. In a second experiment, only females in negative body condition increased latency to copulate in response to injection of a physiological (15 μg) dose of exogenous CORT, while all females responded to a pharmacological (60 μg) dose. These results indicate that behavioral responses to exogenous CORT vary with female body condition during the short mating season. Taken together, our data suggest that variation in body condition may be associated with differences in HPA axis sensitivity and/or glucocorticoid receptor density in the brain.
Collapse
Affiliation(s)
- Catherine A Dayger
- Department of Biology, Portland State University, 1719 SW 10th Ave., Portland, OR, 97201, USA.
| | | | | |
Collapse
|
35
|
Analysis of baseline hypothalamic-pituitary-adrenal activity in late adolescence reveals gender specific sensitivity of the stress axis. Psychoneuroendocrinology 2013; 38:1271-80. [PMID: 23218518 DOI: 10.1016/j.psyneuen.2012.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 11/07/2012] [Indexed: 11/23/2022]
Abstract
Dysfunctional regulation of the hypothalamic-pituitary-adrenal (HPA) axis has been proposed as an important biological mechanism underlying stress-related diseases; however, a better understanding of the interlinked neuroendocrine events driving the release of cortisol by this stress axis is essential for progress in preventing or halting irreversible development of adverse HPA-function. We aimed to investigate basal HPA-activity in a normal population in late adolescence, the time of life believed to overlap with HPA-axis maturation and establishment of a lasting set point level of HPA function. A total of 1258 participants (mean age 16.6 years) recruited from the Western Australian Pregnancy (Raine) Cohort provided fasting morning blood and saliva samples for basal HPA activity assessment. Irrespective of gender, linear regression modelling identified a positive correlation between the main components of the HPA-cascade of events, ACTH, total cortisol and free cortisol in saliva. Corticosteroid binding globulin (CBG) was inversely associated with free cortisol in saliva, an effect most clearly observed in boys. ACTH levels were lower, but cortisol levels were higher in girls than in boys. Girls may also be exposed to more bioactive cortisol, based on higher average free cortisol measured in saliva at awakening. These relatively higher female free cortisol levels were significantly reduced by oral contraceptive use, eliminating the gender specific difference in salivary cortisol. Free plasma cortisol, calculated from total circulating cortisol and CBG concentrations, was also significantly reduced in girls using oral contraceptives, possibly via an enhancing effect of oral contraceptives on blood CBG content. This study highlights a clear gender difference in HPA activity under non-stressful natural conditions. This finding may be relevant for research into sex-specific stress-related diseases with a typical onset in late adolescence.
Collapse
|
36
|
|
37
|
Stress-induced memory retrieval impairments: different time-course involvement of corticosterone and glucocorticoid receptors in dorsal and ventral hippocampus. Neuropsychopharmacology 2012; 37:2870-80. [PMID: 22948976 PMCID: PMC3499833 DOI: 10.1038/npp.2012.170] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study was aimed at determining the relative contribution of the dorsal (DH) and ventral (VH) hippocampus in stress-induced memory retrieval impairments. Thus, we studied the temporal involvement of corticosterone and its receptors, i.e. mineralocorticoid (MR) and glucocorticoid (GR) in the DH and VH, in relation with the time-course evolution of stress-induced memory retrieval impairments. In a first experiment, double microdialysis allowed showing on the same animal that an acute stress (electric footshocks) induced an earlier corticosterone rise in the DH (15-60 min post-stress) and then in the VH (90-105 min post-stress). The return to baseline was faster in the DH (105 min) than in the VH (120 min). Memory deficits assessed by delayed alternation occurred at 15-, 60-, and 105-min delays after stress and were closely related to the kinetic of corticosterone rises within the DH and VH. In a second experiment, the GR antagonist RU-38486 and the MR antagonist RU-28318 were administered in the DH or VH 15 min before stress. RU-38486 restored memory at 60 but not at 105 min post-stress delays in the DH, whereas the opposite pattern was observed in the VH. By contrast, RU-28318 had no effect on memory impairments at both the 60- and 105-min post-stress delays, showing that MR receptors are not involved at these delays. However, RU-28318 administered in the DH restored memory when administered at a shorter post-stress delay (15 min). Overall, our data are first to evidence that stress induces a functional switch from the DH to VH via different corticosterone time-course evolutions in these areas and the sequential GR receptors involvement in the DH and then in the VH, as regards the persistence of stress-induced memory retrieval deficits over time.
Collapse
|
38
|
Sivukhina E, Helbling JC, Minni AM, Schäfer HH, Pallet V, Jirikowski GF, Moisan MP. Intrinsic expression of transcortin in neural cells of the mouse brain: a histochemical and molecular study. J Exp Biol 2012; 216:245-52. [DOI: 10.1242/jeb.076893] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Summary
Corticosteroid binding globulin (CBG, transcortin) has been shown to be expressed in the brain of rat and human species. In this study we examined the CBG brain expression and cDNA structure in mice, comparing wild-type (Cbg+/+) and Cbg knockout mice (Cbg-/-, obtained by genetic disruption of the SerpinA6 alias Cbg gene). We used double immunofluorescence labelling with specific neuronal and glial markers to analyze the cellular localization of CBG in various regions of the mouse brain. In wild-type (Cbg+/+) mice we found CBG immunoreactivity in neuronal perikarya of the magnocellular hypothalamic nuclei, amygdala, hippocampus, cerebral cortex, cerebellum and pituitary. A portion of glial cells (astrocytes, oligodendrocytes) contained CBG immunoreactivity, including some of the ependymal cells and choroid plexus cells. No CBG immunoreactivity was detected in Cbg-/- brain tissues. We showed by RT-PCR that the full-length Cbg mRNA is present in those regions, indicating an intrinsic expression of the steroid-binding globulin. Furthermore, we found by sequencing analysis that Cbg cDNA obtained from the mouse hypothalamus was homologous to Cbg cDNA obtained from the liver. Finally, we have evaluated the relative levels of CBG expression by quantitative PCR in various brain regions and in the liver. We found that brain levels of Cbg mRNA are low compared to the liver but significantly higher than in CBG-deficient mice. Although derived from the same gene than liver CBG, brain CBG protein may play a specific or complementary role that requires the production and analysis of brain-specific Cbg knockout models.
Collapse
Affiliation(s)
- Elena Sivukhina
- Institute of Anatomy II, Friedrich-Schiller University, Germany
| | | | | | | | | | | | | |
Collapse
|