1
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Oliveira JM, Zenzeluk J, Bargi-Souza P, Szawka RE, Romano MA, Romano RM. The effects of glyphosate-based herbicide on the hypothalamic-pituitary thyroid axis are tissue-specific and dependent on age exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122216. [PMID: 37479171 DOI: 10.1016/j.envpol.2023.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The significant increase in glyphosate-based herbicide (GBH) use raises concerns about residues in the environment and food, potentially jeopardizing human health. The involvement of GBHs in the increased incidence of thyroid disorders is speculated, since glyphosate has been linked to an increased risk of thyroid disease in farmers. In this sense, this study aims to investigate the potential effects of low levels of GBH exposure (0, 0.5 or 5 mg/kg) from weaning (postnatal day PND23) to adult life (PND60 and PND90) in male Wistar rats on hypothalamic-pituitary-thyroid (HPT) axis function. The serum levels of T4 were increased. The hypothalamus showed reduced expression of Dio2, Thra1, and Thra2. The pituitary showed reduced expression of Mct8 and Dio2 and increased expression of Thra1. The thyroid showed increased expression of Tshr and Thra1. The heart showed increased expression of Mct8 and Myh6. The liver showed reduced expression of Mct8 and Thra2 and increased expression of Thra1. In thyroid morphometry, a decrease in both follicular diameter and area and decreased follicular and colloid diameters and areas were observed. These results suggested that GBH may affect several steps of HPT axis regulation at the transcriptional level in an age-dependent manner and alter the morphometric parameters of the thyroid gland and TH synthesis, with potential repercussions in the TH-target organs.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Jamilli Zenzeluk
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil.
| |
Collapse
|
3
|
Nascimento Gomes S, do Carmo Corrêa DE, de Oliveira IM, Bargi-Souza P, Degraf Cavallin M, Dobner Mariano D, Maissar Khalil N, Alves Figueiredo DL, Romano MA, de Oliveira CA, Marino Romano R. Imbalanced testicular metabolism induced by thyroid disorders: New evidences from quantitative proteome. Endocrine 2020; 67:209-223. [PMID: 31256343 DOI: 10.1007/s12020-019-01989-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
Abstract
Thyroid dysfunctions, such as hypothyroidism and hyperthyroidism, are the second most prevalent endocrinopathies and are associated to reproductive disorders in men. Several genes are differentially modulated by thyroid hormones in testes and imbalances in thyroid hormone levels are also associated to alterations on sperm functionality. Imbalances on antioxidant defense mechanism and stress oxidative have been pointed out as the main factors for the impairments on male reproductive function. To clarify this issue, we investigated the expression and activity of antioxidant enzymes in testis, followed by their proteomic profile in attempt to characterize the mechanisms involved in the alterations induced by hypo- or hyperthyroidism in adult male rats. Hypothyroidism reduced the Gsr transcript expression and the activity of CAT and GSR enzymes, while the hyperthyroidism reduced the Gpx4 var2 transcript expression. Among 1082 identified proteins, 123 and 37 proteins were downregulated by hypothyroidism compared to euthyroid and hyperthyroid condition, respectively, being 36 proteins commonly reduced in both comparisons and one exclusively in hypo-hyperthyroidism comparison. A network containing 29 nodes and 68 edges was obtained in protein-protein interaction analysis and the functional enrichment analysis of differentially expressed proteins revealed significant alterations for several functions in hypo-euthyroid and hypo-hyperthyroid comparisons, such as ATP metabolic process, coenzyme binding, sperm part, peroxiredoxin activity, mitochondrial protein complex, intramolecular oxidoreductase activity, binding of sperm to zona pellucida, glutathione transferase activity, response to testosterone. Thus, there is a correlation between thyroid disorders and impaired antioxidant defense mechanism, resulting in reproductive dysfunctions, as infertility, mainly observed in hypothyroidism.
Collapse
Affiliation(s)
- Samantha Nascimento Gomes
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Deborah Elzita do Carmo Corrêa
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Isabela Medeiros de Oliveira
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, 31270-901, Minas Gerais, Brazil
| | - Monica Degraf Cavallin
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Danielle Dobner Mariano
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - David Livingstone Alves Figueiredo
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Marco Aurelio Romano
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil
| | - Claudio Alvarenga de Oliveira
- Laboratory of Hormonal Dosages, Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo (USP), Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, Brazil
| | - Renata Marino Romano
- Grupo de Estudo e Pesquisa em Tireoide (GEPET), Department of Medicine, State University of Centro-Oeste (UNICENTRO), Rua Simeão Camargo Varela de Sa, 03, 85040-080, Parana, Brazil.
| |
Collapse
|
4
|
Bargi-Souza P, Peliciari-Garcia RA, Nunes MT. Disruption of the Pituitary Circadian Clock Induced by Hypothyroidism and Hyperthyroidism: Consequences on Daily Pituitary Hormone Expression Profiles. Thyroid 2019; 29:502-512. [PMID: 30747053 DOI: 10.1089/thy.2018.0578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The secretion of pituitary hormones oscillates throughout the 24-hour period, indicating that circadian clock-mediated mechanisms regulate this process in the gland. Additionally, pituitary hormone synthesis has been shown to be altered in hypo- and hyperthyroidism. Although thyroid hormones can modulate the other peripheral clocks, the interaction between thyroid hormone levels and circadian clock gene expression in the anterior pituitary has yet to be elucidated. METHODS Male Wistar rats were divided into three groups: control, hypothyroid, and hyperthyroid. Following the experimental procedures, animals were euthanized every three hours over the course of a 24-hour period. The anterior pituitary glands were excised and processed for mRNA expression analysis by quantitative reverse transcriptase polymerase chain reaction. One- and two-way analysis of variance as well as cosinor analysis were used to evaluate the time-of-day-dependent differential expression for each gene in each experimental group and their interactions. RESULTS Hyperthyroidism increased the mRNA expression of core clock genes and thyrotrophic embryonic factor (Tef), as well as the mesor and amplitude of brain and muscle Arnt-like protein-1 (Bmal1) and the mesor of nuclear receptor subfamily 1 (Nr1d1) group D member 1, when compared to euthyroid animals. Hypothyroidism disrupted the circadian expression pattern of Bmal1 and period circadian regulator 2 (Per2) and decreased the mesor of Nr1d1 and Tef. Furthermore, it was observed that the pituitary content of Dio2 mRNA was unaltered in hyperthyroidism but substantially elevated in hypothyroidism during the light phase. The upregulated expression was associated with an increased mesor and amplitude, along with an advanced acrophase. The gene expression of all the pituitary hormones was found to be altered in hypo- and hyperthyroidism. Moreover, prolactin (Prl) and luteinizing hormone beta subunit (Lhb) displayed circadian expression patterns in the control group, which were disrupted in both the hypo- and hyperthyroid states. CONCLUSION Taken together, the data demonstrate that hypo- and hyperthyroidism alter circadian clock gene expression in the anterior pituitary. This suggests that triiodothyronine plays an important role in the regulation of pituitary gland homeostasis, which could ultimately influence the rhythmic synthesis and/or secretion of all the anterior pituitary hormones.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo A Peliciari-Garcia
- 2 Morphophysiology and Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Maria Tereza Nunes
- 1 Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Panveloski-Costa AC, Serrano-Nascimento C, Bargi-Souza P, Poyares LL, Viana GDS, Nunes MT. Beneficial effects of thyroid hormone on adipose inflammation and insulin sensitivity of obese Wistar rats. Physiol Rep 2019; 6. [PMID: 29388360 PMCID: PMC5817825 DOI: 10.14814/phy2.13550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 10/09/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormones play an important role in glucose metabolism and there is evidence of increased prevalence of thyroid dysfunction in obese and diabetic patients. This study aimed at evaluating the thyroid function and the effects of the triiodothyronine (T3) treatment on glycemia control, insulin sensitivity and subclinical inflammation in cafeteria‐diet‐induced obesity in rats. Obesity was induced in male Wistar rats by offering a cafeteria diet and a subset of the obese rats was treated with T3 (1.5 μg per 100 g of body weight) for a 28‐day period. The pituitary‐thyroid axis was evaluated by molecular and biochemical parameters. Cytokine content was measured in the serum as well as in the mesenteric and epididymal white adipose tissue. Obese rats exhibited impairment of glycemia control, increased content of inflammatory cytokines in mesenteric white adipose tissue, decreased serum thyrotropin (TSH) concentration and increased sodium/iodide symporter (NIS) and TSH receptor (TSHR) protein content in thyroid gland. T3 treatment improved insulin sensitivity, glucose tolerance, and reduced inflammatory cytokine content in mesenteric white adipose tissue. In the thyroid gland NIS, TSHR, and thyroperoxidase (TPO) content were reduced while thyroglobulin (TG) content was increased by T3. The thyrotrophic response to negative feedback exerted by T3 was preserved in obese rats. The present data reinforce the beneficial effects of T3 treatment of obese rats on the improvement of insulin sensitivity and on the negative modulation of inflammatory cytokine expression in adipose tissue. Moreover, we have evidenced that the pituitary‐thyroid axis is affected in obese rats, as illustrated by the impaired TSH secretion.
Collapse
Affiliation(s)
- Ana C Panveloski-Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Caroline Serrano-Nascimento
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonice L Poyares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela de S Viana
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria T Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Bargi-Souza P, Goulart-Silva F, Nunes MT. Posttranscriptional actions of triiodothyronine on Tshb expression in TαT1 cells: New insights into molecular mechanisms of negative feedback. Mol Cell Endocrinol 2018; 478:45-52. [PMID: 30031103 DOI: 10.1016/j.mce.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022]
Abstract
Rapid actions of triiodothyronine (T3) on thyrotropin (TSH) synthesis and secretion have been described in hypothyroid male rats. However, the molecular mechanisms remain unknown. TαT1 cells, a thyrotroph cell line, was used herein to characterize the possible non-genomic actions of T3 on the expression of alpha (Cga) and Tshb genes, and the posttranscriptional processing and translation of both transcripts. The involvement of αVβ3 integrin was also assessed. T3 quickly reduced Tshb mRNA content, poly(A) tail length and its association with ribosomes. The effect of T3 on Tshb gene expression was detected even in the presence of a transcription inhibitor. The decrease in Tshb mRNA content and polyadenylation depend on T3 interaction with αVβ3 integrin, while T3 reduced Cga mRNA content by transcriptional action. The translational rate of both transcripts was reduced by a mechanism, which does not depend on T3-αVβ3 integrin interaction. Results indicate that, in parallel with the inhibitory transcriptional action in Cga and Tshb gene expression, T3 rapidly triggers additional posttranscriptional mechanisms, reducing the TSH synthesis. These non-genomic actions partially depend on T3-αVβ3 integrin interaction at the plasma membrane of thyrotrophs and add new insights to the molecular mechanisms involved in T3 negative feedback loop.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, CEP 05508-000, Brazil.
| |
Collapse
|
7
|
Romano RM, Bargi-Souza P, Brunetto EL, Goulart-Silva F, Salgado RM, Zorn TMT, Nunes MT. Triiodothyronine differentially modulates the LH and FSH synthesis and secretion in male rats. Endocrine 2018; 59:191-202. [PMID: 29210006 DOI: 10.1007/s12020-017-1487-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
Hypothyroidism and thyrotoxicosis produce adverse effects in male reproduction by unknown mechanisms. We investigated whether triiodothyronine (T3) modulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) synthesis/secretion, by inducing different thyroid states. In hypothyroidism, the content of Lhb and Fshb mRNAs was increased, while their association to ribosomes and the protein content were reduced and the serum LH and FSH concentrations were augmented and decreased, respectively. Thyrotoxicosis reduced Lhb mRNA and LH serum concentration, and increased Lhb mRNA translational rate. The Fshb mRNA content and its association to ribosomes were also increased, whereas FSH serum concentrations were comparable to euthyroid levels. Acute T3 treatment decreased the total content of Lhb and Fshb mRNAs, and increased their association to ribosomes, as well as the LHB and FSHB contents in secretory granules. This study shows that T3 acts on gonadotrophs, resulting in direct effects on LH and FSH synthesis/secretion of male rats, suggesting that some reproductive disorders observed in men may be associated with thyroid hormone imbalances.
Collapse
Affiliation(s)
- Renata Marino Romano
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Erika Lia Brunetto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Renato M Salgado
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Telma Maria Tenorio Zorn
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, CEP 05508-000, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Peliciari-Garcia RA, Bargi-Souza P, Young ME, Nunes MT. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int 2017; 35:147-159. [PMID: 29111822 DOI: 10.1080/07420528.2017.1388253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myocardial gene expression and metabolism fluctuate over the course of the day in association with changes in energy supply and demand. Time-of-day-dependent oscillations in myocardial processes have been linked to the intrinsic cardiomyocyte circadian clock. Triiodothyronine (T3) is an important modulator of heart metabolism and function. Recently, our group has reported time-of-day-dependent rhythms in cardiac T3 sensitivity, as well as, T3-mediated acute alterations on core clock components. Hypo and hyperthyroidism are the second most prevalent endocrine disease worldwide. Considering the importance of the cardiomyocyte circadian clock and T3 to cardiac physiology, the aim of this study was to investigate the consequences of chronic hypo and hyperthyroidism on 24-h rhythms of circadian clock genes in the heart. Hypo and hyperthyroidism was induced in rats by thyroidectomy (Tx) and i.p. injections of supraphysiological dose of T3, respectively. Here we report alterations in mRNA levels of the major core clock components (Bmal1, Per2, Nr1d1, and Rora) for both experimental conditions (with the exception of Per2 during hyperthyroid condition). Oscillations in mRNA levels of key glucose and fatty-acid metabolism genes known to be clock controlled (Pdk4, Ucp3, Acot1, and Cd36) were equally affected by the experimental conditions, especially during the hypothyroid state. These findings suggest that chronic alterations in thyroid status significantly impacts 24-h rhythms in circadian clock and metabolic genes in the heart. Whether these perturbations contribute toward the pathogenesis of cardiac dysfunction associated with hypo and hyperthyroidism requires further elucidation.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- a Morphophysiology & Pathology Sector, Department of Biological Sciences , Federal University of São Paulo , Diadema , Brazil.,b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Paula Bargi-Souza
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Martin E Young
- c Division of Cardiovascular Diseases, Department of Medicine , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Maria Tereza Nunes
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
9
|
Bargi-Souza P, Goulart-Silva F, Nunes MT. Novel aspects of T 3 actions on GH and TSH synthesis and secretion: physiological implications. J Mol Endocrinol 2017; 59:R167-R178. [PMID: 28951438 DOI: 10.1530/jme-17-0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Thyroid hormones (THs) classically regulate the gene expression by transcriptional mechanisms. In pituitary, the encoding genes for growth hormone (GH) and thyroid-stimulating hormone (TSH) are examples of genes regulated by triiodothyronine (T3) in a positive and negative way, respectively. Recent studies have shown a rapid adjustment of GH and TSH synthesis/secretion induced by T3 posttranscriptional actions. In somatotrophs, T3 promotes an increase in Gh mRNA content, poly(A) tail length and binding to the ribosome, associated with a rearrangement of actin cytoskeleton. In thyrotrophs, T3 reduces Tshb mRNA content, poly(A) tail length and its association with the ribosome. In parallel, it promotes a redistribution of TSH secretory granules to more distal regions of the cell periphery, indicating a rapid effect of T3 inhibition of TSH secretion. T3 was shown to affect the content of tubulin and the polymerization of actin and tubulin cytoskeletons in the whole anterior pituitary gland, and to increase intracellular alpha (CGA) content. This review summarizes genomic and non-genomic/posttranscriptional actions of TH on the regulation of several steps of GH and TSH synthesis and secretion. These distinct mechanisms induced by T3 can occur simultaneously, even though non-genomic effects are promptly elicited and precede the genomic actions, coexisting in a functional network within the cells.
Collapse
Affiliation(s)
| | | | - M T Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical SciencesUniversity of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Serrano-Nascimento C, Salgueiro RB, Vitzel KF, Pantaleão T, Corrêa da Costa VM, Nunes MT. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocr Connect 2017; 6:510-521. [PMID: 28814477 PMCID: PMC5597975 DOI: 10.1530/ec-17-0106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus-pituitary-thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Pantaleão
- Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Tereza Nunes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Romano RM, Gomes SN, Cardoso NCS, Schiessl L, Romano MA, Oliveira CA. New insights for male infertility revealed by alterations in spermatic function and differential testicular expression of thyroid-related genes. Endocrine 2017; 55:607-617. [PMID: 27066791 DOI: 10.1007/s12020-016-0952-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/02/2016] [Indexed: 12/31/2022]
Abstract
The impact of thyroid hormone (TH) disorders on male reproductive biology has been a controversial issue for many years. Recently, we reported that hypothyroid male rats have a disruption of the seminiferous epithelium, which may compromise spermatogenesis. To improve the understanding of the reproductive pathogenesis of hypothyroidism and hyperthyroidism, male Wistar rats that developed these dysfunctions in adulthood were used as an experimental model. We evaluated the sperm production, reserves, transit time, morphology, and functionality (acrosome integrity, plasma membrane integrity, and mitochondrial activity), and the testicular expression of the TH receptors (Thra1 and Thra2, Thrb1, and Thrb2), deiodinases (Dio2 and Dio3), and the Mct8 transporter (Slc16a2) were assessed by reverse transcription followed by real-time quantitative PCR (RT-qPCR). The results were evaluated statistically by ANOVA and Tukey HSD test (P < 0.05). Hypothyroidism decreased the total and daily sperm productions and increased the sperm transit time through the epididymis, while the sperm functionality was reduced in both thyroid dysfunctions. Regarding the modulation of gene expression in the testis, hypothyroidism increased the expression of Thra1 and decreased the expression of Dio3, and hyperthyroidism increased the expression of Slc16a2. The observed alterations in spermatic production and function and in the expression of the TH receptor, deiodinase, and the TH transporter are suggestive of TH participation in spermatogenesis in adulthood.
Collapse
Affiliation(s)
- Renata Marino Romano
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, Guarapuava, Parana, 85040-080, Brazil.
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, 05508-270, Brazil.
| | - Samantha Nascimento Gomes
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, Guarapuava, Parana, 85040-080, Brazil
| | - Nathalia Carolina Scandolara Cardoso
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, Guarapuava, Parana, 85040-080, Brazil
| | - Larissa Schiessl
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, Guarapuava, Parana, 85040-080, Brazil
| | - Marco Aurelio Romano
- Laboratory of Reproductive Toxicology, Department of Pharmacy, State University of Centro-Oeste, Rua Simeao Camargo Varela de Sa, 03, Guarapuava, Parana, 85040-080, Brazil
| | - Claudio Alvarenga Oliveira
- Department of Animal Reproduction, Faculty of Veterinary Medicine, University of Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, 05508-270, Brazil
| |
Collapse
|
12
|
Peliciari-Garcia RA, Prévide RM, Nunes MT, Young ME. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart. Chronobiol Int 2016; 33:1444-1454. [PMID: 27661292 DOI: 10.1080/07420528.2016.1229673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- a Department of Biological Sciences , Federal University of São Paulo , Diadema.,b Institute of Biomedical Sciences-I, Department of Physiology and Biophysics , University of São Paulo , São Paulo , SP , Brazil
| | - Rafael Maso Prévide
- b Institute of Biomedical Sciences-I, Department of Physiology and Biophysics , University of São Paulo , São Paulo , SP , Brazil
| | - Maria Tereza Nunes
- b Institute of Biomedical Sciences-I, Department of Physiology and Biophysics , University of São Paulo , São Paulo , SP , Brazil
| | - Martin Elliot Young
- c Department of Medicine, Division of Cardiovascular Diseases , University of Alabama at Birmingham , Birmingham , AL , USA
| |
Collapse
|
13
|
Bargi-Souza P, Romano RM, Goulart-Silva F, Brunetto EL, Nunes MT. T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: Potential repercussions on TSH, FSH and LH secretion. Mol Cell Endocrinol 2015; 409:73-81. [PMID: 25869399 DOI: 10.1016/j.mce.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
TSH, FSH and LH share the same glycoprotein alpha chain (CGA) as part of their protein structure. Therefore, it is possible that thyroid and gonadal dysfunction may affect the CGA expression. This study evaluated several steps of CGA synthesis and secretion in thyrotrophs and gonadotrophs of control and hypothyroid rats, acutely or chronically-treated with T3. Hypothyroidism increased the Cga mRNA expression and its association to ribosome, but decreased intracellular CGA content. These parameters were reversed after acute or chronic T3 treatment. We conclude that T3 not only down-regulates Cga mRNA expression, as expected, but also inhibits the association of Cga mRNA to ribosome, as well as the CGA secretion. These findings add novel insights into our understanding of the role of T3 on the regulation of the Cga gene expression and CGA secretion, which might have a potential repercussion in all pituitary glycoprotein hormone synthesis and secretion.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Marino Romano
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Lia Brunetto
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Bargi-Souza P, Kucka M, Bjelobaba I, Tomić M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells. Endocrinology 2015; 156:242-54. [PMID: 25356823 PMCID: PMC4272397 DOI: 10.1210/en.2014-1281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study addresses the in vivo and in vitro expression pattern of three genes that are operative in the thyrotroph subpopulation of anterior pituitary cells: glycoprotein α-chain (Cga), thyroid-stimulating hormone β-chain (Tshb), and TRH receptor (Trhr). In vivo, the expression of Cga and Tshb was robust, whereas the expression of Trhr was low. In cultured pituitary cells, there was a progressive decline in the expression of Cga, Tshb, and Trhr. The expression of Tshb could not be reversed via pulsatile or continuous TRH application in variable concentrations and treatment duration or by the removal of thyroid and steroid hormones from the sera. In parallel, the expression of CGA and TSHB proteins declined progressively in pituitary cells from both sexes. The lack of the effect of TRH on Tshb expression was not related to the age of pituitary cultures and the presence of functional TRH receptors. In cultured pituitary fragments, there was also a rapid decline in expression of these genes, but TRH was able to induce transient Tshb expression. In vivo, thyrotrophs were often in close proximity to each other and to somatotroph and folliculostellate cell networks and especially to the lactotroph cell network; such an organization pattern was lost in vitro. These observations suggest that the lack of influence of anterior pituitary architecture and/or intrapituitary factors probably accounts for the loss of basal and TRH-stimulated Tshb expression in dispersed pituitary cells.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Section on Cellular Signaling (P.B.-S., M.K., I.B., M.T., M.M.J., S.S.S.), The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510; and Department of Physiology and Biophysics (P.B.-S., M.T.N.), Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|