1
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
3
|
Attenuation of the Counter-Regulatory Glucose Response in CVLM C1 Neurons: A Possible Explanation for Anorexia of Aging. Biomolecules 2022; 12:biom12030449. [PMID: 35327640 PMCID: PMC8945993 DOI: 10.3390/biom12030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to determine the effect of age on CVLM C1 neuron glucoregulatory proteins in the feeding pathway. Male Sprague Dawley rats aged 3 months and 24 months old were divided into two subgroups: the treatment group with 2-deoxy-d-glucose (2DG) and the control group. Rat brains were dissected to obtain the CVLM region of the brainstem. Western blot was used to determine protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK), and neuropeptide Y Y5 receptors (NPY5R) in CVLM samples. Immunofluorescence was used to determine TH-, AMPK-, and NPY5R-like immunoreactivities among other brain coronal sections. Results obtained denote a decrease in basal TH phosphorylation levels and AMPK proteins and an increase in TH proteins among aged CVLM neurons. Increases in the basal immunoreactivity of TH+, AMPK+, NPY5R+, TH+/AMPK+, and TH+/NPY5R+ were also observed among old rats. Young treatment-group rats saw a decrease in TH phosphorylation and AMPK proteins following 2DG administration, while an increase in AMPK phosphorylation and a decrease in TH proteins were found among the old-treatment-group rats. These findings suggest the participation of CVLM C1 neurons in counter-regulatory responses among young and old rats. Altering protein changes in aged CVLM C1 neurons may attenuate responses to glucoprivation, thus explaining the decline in food intake among the elderly.
Collapse
|
4
|
Ramlan H, Damanhuri HA. Effects of age on feeding response: Focus on the rostral C1 neuron and its glucoregulatory proteins. Exp Gerontol 2019; 129:110779. [PMID: 31705967 DOI: 10.1016/j.exger.2019.110779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function. OBJECTIVE This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response. METHOD Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR. RESULTS This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased. CONCLUSION These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.
Collapse
Affiliation(s)
- Hajira Ramlan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Ritter S, Li AJ, Wang Q. Hindbrain glucoregulatory mechanisms: Critical role of catecholamine neurons in the ventrolateral medulla. Physiol Behav 2019; 208:112568. [PMID: 31173784 PMCID: PMC7015674 DOI: 10.1016/j.physbeh.2019.112568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/29/2022]
Abstract
Glucose is the required metabolic substrate for the brain. Yet the brain stores very little glucose. Therefore, the brain continuously monitors glucose availability to detect hypoglycemia and to mobilize system-wide responses to protect and restore euglycemia. Catecholamine (CA) neurons in the hindbrain are critical elements of the brain's glucoregulatory mechanisms. They project widely throughout the brain and spinal cord, innervating sites controlling behavioral, endocrine and visceral responses. Hence, CA neurons are capable of triggering a rapid, coordinated and multifaceted response to glucose challenge. This article reviews experimental data that has begun to elucidate the importance of CA neurons for glucoregulation, the functions of specific CA subpopulations in the ventrolateral medulla, and the extended circuitry through which they engage other levels of the nervous system to accomplish their essential glucoregulatory task. Hopefully, this review also suggests the vast amount of work yet to be done in this area and the justification for engaging in that effort.
Collapse
Affiliation(s)
- Sue Ritter
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America.
| | - Ai-Jun Li
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| | - Qing Wang
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States of America
| |
Collapse
|
6
|
Rogers RC, Hermann GE. Hindbrain astrocytes and glucose counter-regulation. Physiol Behav 2019; 204:140-150. [PMID: 30797812 PMCID: PMC7145321 DOI: 10.1016/j.physbeh.2019.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Hindbrain astrocytes are emerging as critical components in the regulation of homeostatic functions by either modulating synaptic activity or serving as primary detectors of physiological parameters. Recent studies have suggested that the glucose counter-regulation response (CRR), a critical defense against hypoglycemic emergencies, is dependent on glucoprivation-sensitive astrocytes in the hindbrain. This subpopulation of astrocytes produces a robust calcium signal in response to glucopenic stimuli. Both ex vivo and in vivo evidence suggest that low-glucose sensitive astrocytes utilize purinergic gliotransmission to activate catecholamine neurons in the hindbrain that are critical to the generation of the integrated CRR. Lastly, reports in the clinical literature suggest that an uncontrolled activation of CRR may as part of the pathology of severe traumatic injury. Work in our laboratory also suggests that this pathological hyperglycemia resulting from traumatic injury may be caused by the action of thrombin (generated by tissue trauma or bleeding) on hindbrain astrocytes. Similar to their glucopenia-sensitive neighbors, these hindbrain astrocytes may trigger hyperglycemic responses by their interactions with catecholaminergic neurons.
Collapse
Affiliation(s)
- Richard C Rogers
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - Gerlinda E Hermann
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
7
|
Lee SJ, Jokiaho AJ, Sanchez-Watts G, Watts AG. Catecholaminergic projections into an interconnected forebrain network control the sensitivity of male rats to diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2018; 314:R811-R823. [PMID: 29384699 DOI: 10.1152/ajpregu.00423.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hindbrain catecholamine neurons convey gut-derived metabolic signals to an interconnected neuronal network in the hypothalamus and adjacent forebrain. These neurons are critical for short-term glycemic control, glucocorticoid and glucoprivic feeding responses, and glucagon-like peptide 1 (GLP-1) signaling. Here we investigate whether these pathways also contribute to long-term energy homeostasis by controlling obesogenic sensitivity to a high-fat/high-sucrose choice (HFSC) diet. We ablated hindbrain-originating catecholaminergic projections by injecting anti-dopamine-β-hydroxylase-conjugated saporin (DSAP) into the paraventricular nucleus of the hypothalamus (PVH) of male rats fed a chow diet for up to 12 wk or a HFSC diet for 8 wk. We measured the effects of DSAP lesions on food choices; visceral adiposity; plasma glucose, insulin, and leptin; and indicators of long-term ACTH and corticosterone secretion. We also determined lesion effects on the number of carbohydrate or fat calories required to increase visceral fat. Finally, we examined corticotropin-releasing hormone levels in the PVH and arcuate nucleus expression of neuropeptide Y ( Npy), agouti-related peptide ( Agrp), and proopiomelanocortin ( Pomc). DSAP-injected chow-fed rats slowly increase visceral adiposity but quickly develop mild insulin resistance and elevated blood glucose. DSAP-injected HFSC-fed rats, however, dramatically increase food intake, body weight, and visceral adiposity beyond the level in control HFSC-fed rats. These changes are concomitant with 1) a reduction in the number of carbohydrate calories required to generate visceral fat, 2) abnormal Npy, Agrp, and Pomc expression, and 3) aberrant control of insulin secretion and glucocorticoid negative feedback. Long-term metabolic adaptations to high-carbohydrate diets, therefore, require intact forebrain catecholamine projections. Without them, animals cannot alter forebrain mechanisms to restrain increased visceral adiposity.
Collapse
Affiliation(s)
- Shin J Lee
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland
| | - Anne J Jokiaho
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Graciela Sanchez-Watts
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| | - Alan G Watts
- Physiology and Behavior Laboratory, ETH Zürich, Schwerzenbach, Switzerland.,Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California , Los Angeles, California
| |
Collapse
|
8
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
9
|
Li AJ, Wang Q, Ritter S. Selective Pharmacogenetic Activation of Catecholamine Subgroups in the Ventrolateral Medulla Elicits Key Glucoregulatory Responses. Endocrinology 2018; 159:341-355. [PMID: 29077837 PMCID: PMC5761588 DOI: 10.1210/en.2017-00630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Catecholamine (CA) neurons in the ventrolateral medulla (VLM) contribute importantly to glucoregulation during glucose deficit. However, it is not known which CA neurons elicit different glucoregulatory responses or whether selective activation of CA neurons is sufficient to elicit these responses. Therefore, to selectively activate CA subpopulations, we injected male or female Th-Cre+ transgenic rats with the Cre-dependent DREADD construct, AAV2-DIO-hSyn-hM3D(Gq)-mCherry, at one of four rostrocaudal levels of the VLM: rostral C1 (C1r), middle C1 (C1m), the area of A1 and C1 overlap (A1/C1), and A1. Transfection was highly selective for CA neurons at each site. Systemic injection of the Designer Receptor Exclusively Activated by Designer Drugs (DREADD) receptor agonist, clozapine-N-oxide (CNO), stimulated feeding in rats transfected at C1r, C1m, or A1/C1 but not A1. CNO increased corticosterone secretion in rats transfected at C1m or A1/C1 but not A1. In contrast, CNO did not increase blood glucose or induce c-Fos expression in the spinal cord or adrenal medulla after transfection of any single VLM site but required dual transfection of both C1m and C1r, possibly indicating that CA neurons mediating blood glucose responses are more sparsely distributed in C1r and C1m than those mediating feeding and corticosterone secretion. These results show that selective activation of C1 CA neurons is sufficient to increase feeding, blood glucose levels, and corticosterone secretion and suggest that each of these responses is mediated by CA neurons concentrated at different levels of the C1 cell group.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Qing Wang
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| | - Sue Ritter
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-7620
| |
Collapse
|
10
|
Osaka T. 2-Deoxy-D-glucose-induced hypothermia in anesthetized rats: Lack of forebrain contribution and critical involvement of the rostral raphe/parapyramidal regions of the medulla oblongata. Brain Res Bull 2015; 116:73-80. [PMID: 26146232 DOI: 10.1016/j.brainresbull.2015.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/14/2023]
Abstract
Systemic or central administration of 2-deoxy-d-glucose (2DG), a competitive inhibitor of glucose utilization, induces hypothermia in awake animals and humans. This response is mediated by the central nervous system, though the neural mechanism involved is largely unknown. In this study, I examined possible involvement of the forebrain, which contains the hypothalamic thermoregulatory center, and the medullary rostral raphe/parapyramidal regions (rRPa/PPy), which mediate hypoxia-induced heat-loss responses, in 2DG-induced hypothermia in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. The intravenous injection of 2DG (250mgkg(-1)) elicited an increase in tail skin temperature and decreases in body core temperature and the respiratory exchange ratio, though it did not induce any significant change in the metabolic rate. These results indicate that the hypothermic response was caused by an increase in heat loss, but not by a decrease in heat production and that it was accompanied by a decrease in carbohydrate utilization and/or an increase in lipid utilization as energy substrates. Complete surgical transection of the brainstem between the hypothalamus and the midbrain had no effect on the 2DG-induced hypothermic responses, suggesting that the hindbrain, but not the forebrain, was sufficient for the responses. However, pretreatment of the rRPa/PPy with the GABAA receptor blocker bicuculline methiodide, but not with vehicle saline, greatly attenuated the 2DG-induced responses, suggesting that the 2DG-induced hypothermia was mediated, at least in part, by GABAergic neurons in the hindbrain and activation of GABAA receptors on cutaneous sympathetic premotor neurons in the rRPa/PPy.
Collapse
Affiliation(s)
- Toshimasa Osaka
- Department of Nutritional Science, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku 162-8636, Japan.
| |
Collapse
|
11
|
Li AJ, Wang Q, Dinh TT, Powers BR, Ritter S. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 2013; 306:R257-64. [PMID: 24381177 DOI: 10.1152/ajpregu.00451.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington
| | | | | | | | | |
Collapse
|