1
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Yoshino S, Ishida E, Horiguchi K, Matsumoto S, Nakajima Y, Ozawa A, Yamada M, Yamada E. Mixed-Lineage Leukaemia Gene Regulates Glucose-Sensitive Gene Expression and Insulin Secretion in Pancreatic Beta Cells. Int J Mol Sci 2024; 25:4704. [PMID: 38731926 PMCID: PMC11082990 DOI: 10.3390/ijms25094704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in βHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.Y.); (K.H.); (S.M.); (Y.N.); (A.O.); (M.Y.)
| |
Collapse
|
3
|
Tian H, Qiao H, Han F, Kong X, Zhu S, Xing F, Duan H, Li W, Wang W, Zhang D, Wu Y. Genome-wide DNA methylation analysis of body composition in Chinese monozygotic twins. Eur J Clin Invest 2023; 53:e14055. [PMID: 37392072 DOI: 10.1111/eci.14055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Little is currently known about epigenetic alterations associated with body composition in obesity. Thus, we aimed to explore epigenetic relationships between genome-wide DNA methylation levels and three common traits of body composition as measured by body fat percentage (BF%), fat mass (FM) and lean body mass (LBM) among Chinese monozygotic twins. METHODS Generalized estimated equation model was used to regress the methylation level of CpG sites on body composition. Inference about Causation Through Examination Of Familial Confounding was used to explore the evidence of a causal relationship. Gene expression analysis was further performed to validate the results of differentially methylated genes. RESULTS We identified 32, 22 and 28 differentially methylated CpG sites (p < 10-5 ) as well as 20, 17 and eight differentially methylated regions (slk-corrected p < 0.05) significantly associated with BF%, FM and LBM which were annotated to 65 genes, showing partially overlapping. Causal inference demonstrated bidirectional causality between DNA methylation and body composition (p < 0.05). Gene expression analysis revealed significant correlations between expression levels of five differentially methylated genes and body composition (p < 0.05). CONCLUSIONS These DNA methylation signatures will contribute to increased knowledge about the epigenetic basis of body composition and provide new strategies for early prevention and treatment of obesity and its related diseases.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haofei Qiao
- Qingdao Mental Health Centre, Qingdao, China
| | - Fulei Han
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Xiangjie Kong
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Shuai Zhu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Fangjie Xing
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Qingdao Municipal Centre for Disease Control and Prevention, Qingdao, China
| | - Weilong Li
- Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
5
|
Pujar M, Vastrad B, Kavatagimath S, Vastrad C, Kotturshetti S. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis. Sci Rep 2022; 12:9157. [PMID: 35650387 PMCID: PMC9160069 DOI: 10.1038/s41598-022-13291-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.
Collapse
Affiliation(s)
- Madhu Pujar
- Department of Pediatrics, J J M Medical College, Davangere, Karnataka, 577004, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, Karnataka, 582101, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi, Karnataka, 590010, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| | - Shivakumar Kotturshetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India
| |
Collapse
|
6
|
Nain Z, Barman SK, Sheam MM, Syed SB, Samad A, Quinn JMW, Karim MM, Himel MK, Roy RK, Moni MA, Biswas SK. Transcriptomic studies revealed pathophysiological impact of COVID-19 to predominant health conditions. Brief Bioinform 2021; 22:bbab197. [PMID: 34076249 PMCID: PMC8194991 DOI: 10.1093/bib/bbab197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/10/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the association of prevalent health conditions with coronavirus disease 2019 (COVID-19) severity, the disease-modifying biomolecules and their pathogenetic mechanisms remain unclear. This study aimed to understand the influences of COVID-19 on different comorbidities and vice versa through network-based gene expression analyses. Using the shared dysregulated genes, we identified key genetic determinants and signaling pathways that may involve in their shared pathogenesis. The COVID-19 showed significant upregulation of 93 genes and downregulation of 15 genes. Interestingly, it shares 28, 17, 6 and 7 genes with diabetes mellitus (DM), lung cancer (LC), myocardial infarction and hypertension, respectively. Importantly, COVID-19 shared three upregulated genes (i.e. MX2, IRF7 and ADAM8) with DM and LC. Conversely, downregulation of two genes (i.e. PPARGC1A and METTL7A) was found in COVID-19 and LC. Besides, most of the shared pathways were related to inflammatory responses. Furthermore, we identified six potential biomarkers and several important regulatory factors, e.g. transcription factors and microRNAs, while notable drug candidates included captopril, rilonacept and canakinumab. Moreover, prognostic analysis suggests concomitant COVID-19 may result in poor outcome of LC patients. This study provides the molecular basis and routes of the COVID-19 progression due to comorbidities. We believe these findings might be useful to further understand the intricate association of these diseases as well as for the therapeutic development.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | | | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology at the Jashore University of Science and Technology, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
7
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Parrish CC, Rise ML. Influence of Varying Dietary ω6 to ω3 Fatty Acid Ratios on the Hepatic Transcriptome, and Association with Phenotypic Traits (Growth, Somatic Indices, and Tissue Lipid Composition), in Atlantic Salmon ( Salmo salar). BIOLOGY 2021; 10:biology10070578. [PMID: 34202562 PMCID: PMC8301090 DOI: 10.3390/biology10070578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Plant oils are routinely used in fish feeds as a fish oil replacement. However, these terrestrial alternatives typically contain high levels of ω6 fatty acids (FA) and, thus, high ω6 to ω3 (ω6:ω3) FA ratios, which influence farmed fish and their consumers. The ω6:ω3 ratio is known to affect many biological processes (e.g., inflammation, FA metabolism) and human diseases; however, its impacts on fish physiology and the underlying molecular mechanisms are less well understood. In this study, we used 44 K microarrays to examine which genes and molecular pathways are altered by variation in dietary ω6:ω3 in Atlantic salmon. Our microarray study showed that several genes related to immune response, lipid metabolism, cell proliferation, and translation were differentially expressed between the two extreme ω6:ω3 dietary treatments. We also revealed that the PPARα activation-related transcript helz2 is a potential novel molecular biomarker of tissue variation in ω6:ω3. Further, correlation analyses illustrated the relationships between liver transcript expression and tissue (liver, muscle) lipid composition, and other phenotypic traits in salmon fed low levels of fish oil. This nutrigenomic study enhanced the current understanding of Atlantic salmon gene expression response to varying dietary ω6:ω3. Abstract The importance of dietary omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios for human health has been extensively examined. However, its impact on fish physiology, and the underlying molecular mechanisms, are less well understood. This study investigated the influence of plant-based diets (12-week exposure) with varying ω6:ω3 (0.4–2.7) on the hepatic transcriptome of Atlantic salmon. Using 44 K microarray analysis, genes involved in immune and inflammatory response (lect2a, itgb5, helz2a, p43), lipid metabolism (helz2a), cell proliferation (htra1b), control of muscle and neuronal development (mef2d) and translation (eif2a, eif4b1, p43) were identified; these were differentially expressed between the two extreme ω6:ω3 dietary treatments (high ω6 vs. high ω3) at week 12. Eight out of 10 microarray-identified transcripts showed an agreement in the direction of expression fold-change between the microarray and qPCR studies. The PPARα activation-related transcript helz2a was confirmed by qPCR to be down-regulated by high ω6 diet compared with high ω3 diet. The transcript expression of two helz2 paralogues was positively correlated with ω3, and negatively with ω6 FA in both liver and muscle, thus indicating their potential as biomarkers of tissue ω6:ω3 variation. Mef2d expression in liver was suppressed in the high ω6 compared to the balanced diet (ω6:ω3 of 2.7 and 0.9, respectively) fed fish, and showed negative correlations with ω6:ω3 in both tissues. The hepatic expression of two lect2 paralogues was negatively correlated with viscerosomatic index, while htra1b correlated negatively with salmon weight gain and condition factor. Finally, p43 and eif2a were positively correlated with liver Σω3, while these transcripts and eif4b2 showed negative correlations with 18:2ω6 in the liver. This suggested that some aspects of protein synthesis were influenced by dietary ω6:ω3. In summary, this nutrigenomic study identified hepatic transcripts responsive to dietary variation in ω6:ω3, and relationships of transcript expression with tissue (liver, muscle) lipid composition and other phenotypic traits.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
- Correspondence: (T.K.); (A.C.-S.); Tel.: +1-709-7703846 (T.K.); Tel.: +1-709-3251598 (A.C.-S.)
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Christopher C. Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (C.C.P.); (M.L.R.)
| |
Collapse
|
8
|
Katano-Toki A, Yoshino S, Nakajima Y, Tomaru T, Nishikido A, Ishida E, Horiguchi K, Saito T, Ozawa A, Satoh T, Yamada M. SFPQ associated with a co-activator for PPARγ, HELZ2, regulates key nuclear factors for adipocyte differentiation. Biochem Biophys Res Commun 2021; 562:139-145. [PMID: 34052659 DOI: 10.1016/j.bbrc.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
We recently isolated a novel co-activator of peroxisome proliferator-activated receptor γ, helicase with zinc finger 2 (HELZ2). HELZ2 null mice were resistant to diet-induced obesity and NAFFL/NASH, and HELZ2 was phosphorylated at tyrosine residues. In order to find a factor related to HELZ2, we analyzed products co-immunoprecipitated with phosphorylated HELZ2 by mass spectrometry analyses. We identified proline- and glutamine-rich (SFPQ) as a protein associating with tyrosine-phosphorylated HELZ2. The knockdown of SFPQ in 3T3-L1 cells downregulated mRNA levels of transcription factors including Krox20, Cebpβ, and Cebpδ: key factors for early-stage adipocyte differentiation. In addition, knockdown of SFPQ inhibited 3T3-L1 cell differentiation to mature adipocytes. These findings demonstrated that SFPQ associating with HELZ2 is an important novel transcriptional regulator of adipocyte differentiation.
Collapse
Affiliation(s)
- Akiko Katano-Toki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
| | - Satoshi Yoshino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuya Tomaru
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayaka Nishikido
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tsugumichi Saito
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsurou Satoh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
9
|
Administration of small-molecule guanabenz acetate attenuates fatty liver and hyperglycemia associated with obesity. Sci Rep 2020; 10:13671. [PMID: 32792584 PMCID: PMC7426972 DOI: 10.1038/s41598-020-70689-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic triglycerides (TG) and hyperglycemia arising due to persistent insulin resistance, and is profoundly linked to obesity. However, there is currently no established treatment for NAFLD in obese human subjects. We previously isolated Helz2, the expression of which was upregulated in human and mouse NAFLD, and its deletion activated the hepatic expression of functional leptin receptor long form (Leprb) and suppressed NAFLD development and body weight (BW) gain in obese mice. A high-throughput assay of small-molecule drugs revealed that guanabenz acetate (Ga), originally used to treat hypertension, possesses a high affinity constant against HELZ2, and its administration activates LEPRB expression in HepG2 cells in vitro. The chronic oral administration of Ga shows the selective leptin sensitization in the liver via upregulation of hepatic Leprb expression, which affects expression of genes involved in lipogenesis and fatty acid β-oxidation and diminishes hepatocyte hypertrophy with droplets enriched in TG in high-fat diet-induced obese mice. This activity significantly improves insulin resistance to decrease hyperglycemia and hepatocyte and adipocyte weights, resulting in BW reduction without reducing food intake. Regarding drug repositioning, Ga has the potential to effectively treat NAFLD and hyperglycemia in obese patients.
Collapse
|
10
|
Transcriptional Regulation of the Angptl8 Gene by Hepatocyte Nuclear Factor-1 in the Murine Liver. Sci Rep 2020; 10:9999. [PMID: 32561878 PMCID: PMC7305314 DOI: 10.1038/s41598-020-66570-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/20/2020] [Indexed: 01/25/2023] Open
Abstract
Brief refeeding times (~60 min) enhanced hepatic Angptl8 expression in fasted mice. We cloned the mouse Angptl8 promoter region to characterise this rapid refeeding-induced increase in hepatic Angptl8 expression. Deletion of the −309/−60 promoter region significantly attenuated basal promoter activity in hepatocytes. A computational motif search revealed a potential binding motif for hepatocyte nuclear factor 1α/1β (HNF-1α/β) at −84/−68 bp of the promoter. Mutation of the HNF-1 binding site significantly decreased the promoter activity in hepatocytes, and the promoter carrying the mutated HNF-1 site was not transactivated by co-transfection of HNF-1 in a non-hepatic cell line. Silencing Hnf-1 in hepatoma cells and mouse primary hepatocytes reduced Angptl8 protein levels. Electrophoretic mobility-shift assays confirmed direct binding of Hnf-1 to its Angptl8 promoter binding motif. Hnf-1α expression levels increased after short-term refeeding, paralleling the enhanced in vivo expression of the Angptl8 protein. Chromatin immunoprecipitation (ChIP) confirmed the recruitment of endogenous Hnf-1 to the Angptl8 promoter region. Insulin-treated primary hepatocytes showed increased expression of Angptl8 protein, but knockdown of Hnf-1 completely abolished this enhancement. HNF-1 appears to play essential roles in the rapid refeeding-induced increases in Angptl8 expression. HNF-1α may therefore represent a primary medical target for ANGPTL8-related metabolic abnormalities. The study revealed the transcriptional regulation of the mouse hepatic Angptl8 gene by HNF-1.
Collapse
|
11
|
Takamizawa T, Satoh T, Miyamoto T, Nakajima Y, Ishizuka T, Tomaru T, Yoshino S, Katano-Toki A, Nishikido A, Sapkota S, Watanabe T, Okamura T, Ishida E, Horiguchi K, Matsumoto S, Ishii S, Ozawa A, Shibusawa N, Okada S, Yamada M. Transducin β-like 1, X-linked and nuclear receptor co-repressor cooperatively augment the ligand-independent stimulation of TRH and TSHβ gene promoters by thyroid hormone receptors. Endocr J 2018; 65:805-813. [PMID: 29794369 DOI: 10.1507/endocrj.ej17-0384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mutations in TBL1X, a component of the nuclear receptor co-repressor (N-CoR) and silencing mediator of retinoic acid and thyroid hormone receptor co-repressor complexes, have recently been implicated in isolated central hypothyroidism (CeH). However, the mechanisms by which TBL1X mutations affect negative feedback regulation in the hypothalamus-pituitary-thyroid axis remain unclear. N-CoR was previously reported to paradoxically enhance the ligand-independent stimulation of TRH and TSHβ gene promoters by thyroid hormone receptors (TR) in cell culture systems. We herein investigated whether TBL1X affects the unliganded TR-mediated stimulation of the promoter activities of genes negatively regulated by T3 in cooperation with N-CoR. In a hypothalamic neuronal cell line, the unliganded TR-mediated stimulation of the TRH gene promoter was significantly enhanced by co-transfected TBL1X, and the co-transfection of TBL1X with N-CoR further enhanced promoter activity. In contrast, the knockdown of endogenous Tbl1x using short interfering RNA significantly attenuated the N-CoR-mediated enhancement of promoter activity in the presence of unliganded TR. The co-transfection of N365Y or Y458C, TBL1X mutants identified in CeH patients, showed impaired co-activation with N-CoR for the ligand-independent stimulation of the TRH promoter by TR. In the absence of T3, similar or impaired enhancement of the TSHβ gene promoter by the wild type or TBL1X mutants, respectively, was observed in the presence of co-transfected TR and N-CoR in CV-1 cells. These results suggest that TBL1X is needed for the full activation of TRH and TSHβ gene promoters by unliganded TR. Mutations in TBL1X may cause CeH due to the impaired up-regulation of TRH and/or TSHβ gene transcription despite low T3 levels.
Collapse
Affiliation(s)
- Tetsuya Takamizawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsurou Satoh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoko Miyamoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasuyo Nakajima
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Ishizuka
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuya Tomaru
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Satoshi Yoshino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akiko Katano-Toki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayaka Nishikido
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Santosh Sapkota
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takuya Watanabe
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Okamura
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Emi Ishida
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuhiko Horiguchi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Syunichi Matsumoto
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumiyasu Ishii
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Ozawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuyuki Shibusawa
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuichi Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masanobu Yamada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
12
|
Fusco DN, Pratt H, Kandilas S, Cheon SSY, Lin W, Cronkite DA, Basavappa M, Jeffrey KL, Anselmo A, Sadreyev R, Yapp C, Shi X, O'Sullivan JF, Gerszten RE, Tomaru T, Yoshino S, Satoh T, Chung RT. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front Microbiol 2017; 8:240. [PMID: 28265266 PMCID: PMC5316548 DOI: 10.3389/fmicb.2017.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/07/2023] Open
Abstract
Flaviviral infections including dengue virus are an increasing clinical problem worldwide. Dengue infection triggers host production of the type 1 IFN, IFN alpha, one of the strongest and broadest acting antivirals known. However, dengue virus subverts host IFN signaling at early steps of IFN signal transduction. This subversion allows unbridled viral replication which subsequently triggers ongoing production of IFN which, again, is subverted. Identification of downstream IFN antiviral effectors will provide targets which could be activated to restore broad acting antiviral activity, stopping the signal to produce endogenous IFN at toxic levels. To this end, we performed a targeted functional genomic screen for IFN antiviral effector genes (IEGs), identifying 56 IEGs required for antiviral effects of IFN against fully infectious dengue virus. Dengue IEGs were enriched for genes encoding nuclear receptor interacting proteins, including HELZ2, MAP2K4, SLC27A2, HSP90AA1, and HSP90AB1. We focused on HELZ2 (Helicase With Zinc Finger 2), an IFN stimulated gene and IEG which encodes a promiscuous nuclear factor coactivator that exists in two isoforms. The two unique HELZ2 isoforms are both IFN responsive, contain ISRE elements, and gene products increase in the nucleus upon IFN stimulation. Chromatin immunoprecipitation-sequencing revealed that the HELZ2 complex interacts with triglyceride-regulator LMF1. Mass spectrometry revealed that HELZ2 knockdown cells are depleted of triglyceride subsets. We thus sought to determine whether HELZ2 interacts with a nuclear receptor known to regulate immune response and lipid metabolism, AHR, and identified HELZ2:AHR interactions via co-immunoprecipitation, found that AHR is a dengue IEG, and that an AHR ligand, FICZ, exhibits anti-dengue activity. Primary bone marrow derived macrophages from HELZ2 knockout mice, compared to wild type controls, exhibit enhanced dengue infectivity. Overall, these findings reveal that IFN antiviral response is mediated by HELZ2 transcriptional upregulation, enrichment of HELZ2 protein levels in the nucleus, and activation of a transcriptional program that appears to modulate intracellular lipid state. IEGs identified in this study may serve as both (1) potential targets for host directed antiviral design, downstream of the common flaviviral subversion point, as well as (2) possible biomarkers, whose variation, natural, or iatrogenic, could affect host response to viral infections.
Collapse
Affiliation(s)
- Dahlene N. Fusco
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Henry Pratt
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Stephen Kandilas
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Department of Medicine, Athens University Medical SchoolAthens, Greece
| | | | - Wenyu Lin
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - D. Alex Cronkite
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Megha Basavappa
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Kate L. Jeffrey
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Clarence Yapp
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Xu Shi
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - John F. O'Sullivan
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Robert E. Gerszten
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Raymond T. Chung
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| |
Collapse
|
13
|
Care MA, Stephenson SJ, Barnes NA, Fan I, Zougman A, El-Sherbiny YM, Vital EM, Westhead DR, Tooze RM, Doody GM. Network Analysis Identifies Proinflammatory Plasma Cell Polarization for Secretion of ISG15 in Human Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1447-59. [PMID: 27357150 PMCID: PMC4974491 DOI: 10.4049/jimmunol.1600624] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity.
Collapse
Affiliation(s)
- Matthew A Care
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom; Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sophie J Stephenson
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Nicholas A Barnes
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Im Fan
- Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, Leeds LS9 7TF, United Kingdom
| | - Alexandre Zougman
- Section of Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; and National Institute for Health Research Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals National Health Service Trust, Leeds LS9 7TF, United Kingdom
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; and National Institute for Health Research Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals National Health Service Trust, Leeds LS9 7TF, United Kingdom
| | - David R Westhead
- Bioinformatics Group, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Reuben M Tooze
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom; Haematological Malignancy Diagnostic Service, Leeds Teaching Hospitals National Health Service Trust, Leeds LS9 7TF, United Kingdom
| | - Gina M Doody
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, United Kingdom;
| |
Collapse
|
14
|
Tang X, Li J, Xiang W, Cui Y, Xie B, Wang X, Xu Z, Gan L. Metformin increases hepatic leptin receptor and decreases steatosis in mice. J Endocrinol 2016; 230:227-37. [PMID: 27288055 DOI: 10.1530/joe-16-0142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/08/2016] [Indexed: 01/01/2023]
Abstract
In addition to the ascertained efficacy as antidiabetic drug, metformin is increasingly being used as weight-loss agent in obesity, and as insulin sensitizer in nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying these effects are still incompletely understood. Emerging evidence suggest metformin as leptin sensitizer to mediate the weight-loss effect in the brain. In this study, we investigated effects of metformin on expression of leptin receptors in liver and kidney in mice. C57BL/6 mice were fed with chow diet (CD) or high-fat diet (HF) for 5months. Afterward, mice were treated with metformin (50mg/kg or 200mg/kg) for 15days. Metabolic parameters and hepatic gene expression were analyzed at the end of the treatment. We also tested the effects of metformin on plasma-soluble leptin receptor (sOB-R) levels in newly diagnosed type 2 diabetes mellitus (T2DM) patients, and assessed its effect on hepatosteatosis in mice. Results showed that metformin upregulates the expression of leptin receptors (OB-Ra, -Rb, -Rc, and -Rd) in liver but not kidney. The stimulation effect is dose-dependent in both chow and HF mice. Upregulation of OB-Rb, long signaling isoform, needs a relatively higher dose of metformin. This effect was paralleled by increased sOBR levels in mice and T2DM patients, and decreased hepatic triglyceride (TG) content and lipogenic gene expression, including sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FAS) and acetyl-CoA carboxylase-1 (ACC-1). Taken together, these data identify hepatic leptin receptor as target gene being upregulated by metformin which may enhance leptin sensitivity in liver to alleviate steatosis.
Collapse
Affiliation(s)
- Xuemei Tang
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jingwen Li
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xiang
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China
| | - Ye Cui
- Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bin Xie
- Department of Hepatobiliary SurgeryDaping Hospital & Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Xiaodong Wang
- Institute of PathologySouthwest Hospital, Third Military Medical University, Chongqing, China
| | - Zihui Xu
- Department of Integrated MedicineXinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lixia Gan
- Department of Biochemistry and Molecular BiologyThird Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Wang Q, Du J, Yu P, Bai B, Zhao Z, Wang S, Zhu J, Feng Q, Gao Y, Zhao Q, Liu C. Hepatic steatosis depresses alpha-1-antitrypsin levels in human and rat acute pancreatitis. Sci Rep 2015; 5:17833. [PMID: 26634430 PMCID: PMC4669469 DOI: 10.1038/srep17833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Hepatic steatosis (HS) can exacerbate acute pancreatitis (AP). This study aimed to investigate the relation between α1-antitrypsin (AAT) and acute pancreatitis when patients have HS. Using proteomic profiling, we identified 18 differently expressed proteins pots in the serum of rats with or without HS after surgical establishment of AP. AAT was found to be one of the significantly down-regulated proteins. AAT levels were significantly lower in hepatic steatosis acute pancreatitis (HSAP) than in non-HSAP (NHSAP) (P < 0.001). To explore the clinical significance of these observations, we measured the levels of AAT in the serum of 240 patients with HSAP, NHSAP, fatty liver disease (FLD), or no disease. Compared with healthy controls, serum AAT levels in patients with NHSAP were significantly higher (P < 0.01), while in patients with HSAP serum AAT levels were significantly lower (P < 0.01). Further studies showed that acute physiology and chronic health evaluation (APACHE-II) scores were negatively correlated with serum AAT levels (r = −0.85, P < 0.01). In conclusion, low serum levels of AAT in patients with HSAP are correlated with disease severity and AAT may represent a potential target for therapies aiming to improve pancreatitis.
Collapse
Affiliation(s)
- Qian Wang
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianjun Du
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Pengfei Yu
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Bai
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhanwei Zhao
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Shiqi Wang
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Junjie Zhu
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Quanxin Feng
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun Gao
- Department of Surgery, China PLA 323323 Hospital, Beijing, 100853, China
| | - Qingchuan Zhao
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan Hospital North, Fudan University, Shanghai, 201907, China.,Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xian, 710032, China
| |
Collapse
|