1
|
Poluben L, Nouri M, Liang J, Chen S, Varkaris A, Ersoy-Fazlioglu B, Voznesensky O, Lee II, Qiu X, Cato L, Seo JH, Freedman ML, Sowalsky AG, Lack NA, Corey E, Nelson PS, Brown M, Long HW, Russo JW, Balk SP. Increased nuclear factor I-mediated chromatin access drives transition to androgen receptor splice variant dependence in prostate cancer. Cell Rep 2025; 44:115089. [PMID: 39709604 DOI: 10.1016/j.celrep.2024.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in castration-resistant prostate cancer, but the extent to which they drive AR activity is unclear. We generated a subline of VCaP cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ). AR activity in VCaP16 is driven by ARv7, independently of full-length AR (ARfl), and its cistrome and transcriptome mirror those of ARfl in VCaP cells. ARv7 expression increases rapidly in response to ENZ, but there is a delay in gaining chromatin binding and transcriptional activity, which is associated with increased chromatin accessibility. AR and nuclear factor I (NFI) motifs are most enriched at more accessible sites, and NFIB/X knockdown greatly diminishes ARv7 function. These findings indicate that ARv7 can drive the AR program but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.
Collapse
Affiliation(s)
- Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Mannan Nouri
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jiaqian Liang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shaoyong Chen
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Varkaris
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Betul Ersoy-Fazlioglu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Voznesensky
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA; Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Nathan A Lack
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; Department of Medical Pharmacology, School of Medicine, Koç University, Istanbul 34450, Turkey; Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joshua W Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Poluben L, Nouri M, Liang J, Varkaris A, Ersoy-Fazlioglu B, Voznesensky O, Lee II, Qiu X, Cato L, Seo JH, Freedman ML, Sowalsky AG, Lack NA, Corey E, Nelson PS, Brown M, Long HW, Russo JW, Balk SP. Increased chromatin accessibility mediated by nuclear factor I drives transition to androgen receptor splice variant dependence in castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575110. [PMID: 38260576 PMCID: PMC10802579 DOI: 10.1101/2024.01.10.575110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.
Collapse
|
3
|
Shu F, Liu H, Chen X, Liu Y, Zhou J, Tang L, Cao W, Yang S, Long Y, Li R, Wang H, Wang H, Jiang G. m6A Modification Promotes EMT and Metastasis of Castration-Resistant Prostate Cancer by Upregulating NFIB. Cancer Res 2024; 84:1947-1962. [PMID: 38536119 DOI: 10.1158/0008-5472.can-23-1954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024]
Abstract
The widespread use of androgen receptor (AR) signaling inhibitors has led to an increased incidence of AR-negative castration-resistant prostate cancer (CRPC), limiting effective treatment and patient survival. A more comprehensive understanding of the molecular mechanisms supporting AR-negative CRPC could reveal therapeutic vulnerabilities to improve treatment. This study showed that the transcription factor nuclear factor I/B (NFIB) was upregulated in patient with AR-negative CRPC tumors and cell lines and was positively associated with an epithelial-to-mesenchymal transition (EMT) phenotype. Loss of NFIB inhibited EMT and reduced migration of CRPC cells. NFIB directly bound to gene promoters and regulated the transcription of EMT-related factors E-cadherin (CDH1) and vimentin (VIM), independent of other typical EMT-related transcriptional factors. In vivo data further supported the positive role of NFIB in the metastasis of AR-negative CRPC cells. Moreover, N6-methyladenosine (m6A) modification induced NFIB upregulation in AR-negative CRPC. Mechanistically, the m6A levels of mRNA, including NFIB and its E3 ubiquitin ligase TRIM8, were increased in AR-negative CRPC cells. Elevated m6A methylation of NFIB mRNA recruited YTHDF2 to increase mRNA stability and protein expression. Inversely, the m6A modification of TRIM8 mRNA, induced by ALKBH5 downregulation, decreased its translation and expression, which further promoted NFIB protein stability. Overall, this study reveals that upregulation of NFIB, mediated by m6A modification, triggers EMT and metastasis in AR-negative CRPC. Targeting the m6A/NFIB axis is a potential prevention and treatment strategy for AR-negative CRPC metastasis. SIGNIFICANCE NFIB upregulation mediated by increased m6A levels in AR-negative castration-resistant prostate cancer regulates transcription of EMT-related factors to promote metastasis, providing a potential therapeutic target to improve prostate cancer treatment.
Collapse
Affiliation(s)
- Feng Shu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiangli Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Tang
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wanwei Cao
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Shanshan Yang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yili Long
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Rongna Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Hung SC, Chang LW, Hsiao TH, Lin GC, Wang SS, Li JR, Chen IC. Polygenic risk score predicting susceptibility and outcome of benign prostatic hyperplasia in the Han Chinese. Hum Genomics 2024; 18:49. [PMID: 38778357 PMCID: PMC11110300 DOI: 10.1186/s40246-024-00619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Given the high prevalence of BPH among elderly men, pinpointing those at elevated risk can aid in early intervention and effective management. This study aimed to explore that polygenic risk score (PRS) is effective in predicting benign prostatic hyperplasia (BPH) incidence, prognosis and risk of operation in Han Chinese. METHODS A retrospective cohort study included 12,474 male participants (6,237 with BPH and 6,237 non-BPH controls) from the Taiwan Precision Medicine Initiative (TPMI). Genotyping was performed using the Affymetrix Genome-Wide TWB 2.0 SNP Array. PRS was calculated using PGS001865, comprising 1,712 single nucleotide polymorphisms. Logistic regression models assessed the association between PRS and BPH incidence, adjusting for age and prostate-specific antigen (PSA) levels. The study also examined the relationship between PSA, prostate volume, and response to 5-α-reductase inhibitor (5ARI) treatment, as well as the association between PRS and the risk of TURP. RESULTS Individuals in the highest PRS quartile (Q4) had a significantly higher risk of BPH compared to the lowest quartile (Q1) (OR = 1.51, 95% CI = 1.274-1.783, p < 0.0001), after adjusting for PSA level. The Q4 group exhibited larger prostate volumes and a smaller volume reduction after 5ARI treatment. The Q1 group had a lower cumulative TURP probability at 3, 5, and 10 years compared to the Q4 group. PRS Q4 was an independent risk factor for TURP. CONCLUSIONS In this Han Chinese cohort, higher PRS was associated with an increased susceptibility to BPH, larger prostate volumes, poorer response to 5ARI treatment, and a higher risk of TURP. Larger prospective studies with longer follow-up are warranted to further validate these findings.
Collapse
Affiliation(s)
- Sheng-Chun Hung
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Li-Wen Chang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shian-Shiang Wang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Jian-Ri Li
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
5
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
6
|
Marin L, Casado F. Prediction of prostate cancer biochemical recurrence by using discretization supports the critical contribution of the extra-cellular matrix genes. Sci Rep 2023; 13:10144. [PMID: 37349324 PMCID: PMC10287745 DOI: 10.1038/s41598-023-35821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Due to its complexity, much effort has been devoted to the development of biomarkers for prostate cancer that have acquired the utmost clinical relevance for diagnosis and grading. However, all of these advances are limited due to the relatively large percentage of biochemical recurrence (BCR) and the limited strategies for follow up. This work proposes a methodology that uses discretization to predict prostate cancer BCR while optimizing the necessary variables. We used discretization of RNA-seq data to increase the prediction of biochemical recurrence and retrieve a subset of ten genes functionally known to be related to the tissue structure. Equal width and equal frequency data discretization methods were compared to isolate the contribution of the genes and their interval of action, simultaneously. Adding a robust clinical biomarker such as prostate specific antigen (PSA) improved the prediction of BCR. Discretization allowed classifying the cancer patients with an accuracy of 82% on testing datasets, and 75% on a validation dataset when a five-bin discretization by equal width was used. After data pre-processing, feature selection and classification, our predictions had a precision of 71% (testing dataset: MSKCC and GSE54460) and 69% (Validation dataset: GSE70769) should the patients present BCR up to 24 months after their final treatment. These results emphasize the use of equal width discretization as a pre-processing step to improve classification for a limited number of genes in the signature. Functionally, many of these genes have a direct or expected role in tissue structure and extracellular matrix organization. The processing steps presented in this study are also applicable to other cancer types to increase the speed and accuracy of the models in diverse datasets.
Collapse
Affiliation(s)
- Laura Marin
- Department of Engineering, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, San Miguel, 15088, Lima, Peru
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, San Miguel, 15088, Lima, Peru
| | - Fanny Casado
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Av. Universitaria 1801, San Miguel, 15088, Lima, Peru.
| |
Collapse
|
7
|
Jin R, Forbes C, Miller NL, Strand D, Case T, Cates JM, Kim HYH, Wages P, Porter NA, Mantione KM, Burke S, Mohler JL, Matusik RJ. Glucocorticoids are induced while dihydrotestosterone levels are suppressed in 5-alpha reductase inhibitor treated human benign prostate hyperplasia patients. Prostate 2022; 82:1378-1388. [PMID: 35821619 PMCID: PMC9427722 DOI: 10.1002/pros.24410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.
Collapse
Affiliation(s)
- Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor Forbes
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas Strand
- Department of Urology, University of Texas, Southwestern, Dallas, Texas, USA
| | - Thomas Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Justin M. Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hye-Young H. Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Phillip Wages
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Krystin M. Mantione
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sarah Burke
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - James L. Mohler
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Rebbeck CA, Xian J, Bornelöv S, Geradts J, Hobeika A, Geiger H, Alvarez JF, Rozhkova E, Nicholls A, Robine N, Lyerly HK, Hannon GJ. Gene expression signatures of individual ductal carcinoma in situ lesions identify processes and biomarkers associated with progression towards invasive ductal carcinoma. Nat Commun 2022; 13:3399. [PMID: 35697697 PMCID: PMC9192778 DOI: 10.1038/s41467-022-30573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 12/27/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is considered a non-invasive precursor to breast cancer, and although associated with an increased risk of developing invasive disease, many women with DCIS will never progress beyond their in situ diagnosis. The path from normal duct to invasive ductal carcinoma (IDC) is not well understood, and efforts to do so are hampered by the substantial heterogeneity that exists between patients, and even within patients. Here we show gene expression analysis from > 2,000 individually micro-dissected ductal lesions representing 145 patients. Combining all samples into one continuous trajectory we show there is a progressive loss in basal layer integrity heading towards IDC, coupled with two epithelial to mesenchymal transitions, one early and a second coinciding with the convergence of DCIS and IDC expression profiles. We identify early processes and potential biomarkers, including CAMK2N1, MNX1, ADCY5, HOXC11 and ANKRD22, whose reduced expression is associated with the progression of DCIS to invasive breast cancer.
Collapse
Affiliation(s)
- Clare A Rebbeck
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Jian Xian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joseph Geradts
- Department of Pathology & Laboratory Medicine, East Carolina University Brody School of Medicine, Greenville, NC, USA
| | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Jose Franco Alvarez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Elena Rozhkova
- Department of Dermatology, Boston University School of Medicine, Boston, MA, USA
| | - Ashley Nicholls
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Herbert K Lyerly
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Zhou L, Wang QL, Mao LH, Chen SY, Yang ZH, Liu X, Gao YH, Li XQ, Zhou ZH, He S. Hepatocyte-Specific Knock-Out of Nfib Aggravates Hepatocellular Tumorigenesis via Enhancing Urea Cycle. Front Mol Biosci 2022; 9:875324. [PMID: 35655758 PMCID: PMC9152321 DOI: 10.3389/fmolb.2022.875324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear Factor I B (NFIB) has been reported to promote tumor growth, metastasis, and liver regeneration, but its mechanism in liver cancer is not fully elucidated. The present study aims to reveal the role of NFIB in hepatocellular carcinogenesis. In our study, we constructed hepatocyte-specific NFIB gene knockout mice with CRISPR/Cas9 technology (Nfib-/-; Alb-cre), and induced liver cancer mouse model by intraperitoneal injection of DEN/CCl4. First, we found that Nfib-/- mice developed more tumor nodules and had heavier livers than wild-type mice. H&E staining indicated that the liver histological severity of Nfib-/- group was more serious than that of WT group. Then we found that the differentially expressed genes in the tumor tissue between Nfib-/- mice and wild type mice were enriched in urea cycle. Furthermore, ASS1 and CPS1, the core enzymes of the urea cycle, were significantly upregulated in Nfib-/- tumors. Subsequently, we validated that the expression of ASS1 and CPS1 increased after knockdown of NFIB by lentivirus in normal hepatocytes and also promoted cell proliferation in vitro. In addition, ChIP assay confirmed that NFIB can bind with promoter region of both ASS1 and CPS1 gene. Our study reveals for the first time that hepatocyte-specific knock-out of Nfib aggravates hepatocellular tumor development by enhancing the urea cycle.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Han Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Yu-Hua Gao
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Cistrome and transcriptome analysis identifies unique androgen receptor (AR) and AR-V7 splice variant chromatin binding and transcriptional activities. Sci Rep 2022; 12:5351. [PMID: 35354884 PMCID: PMC8969163 DOI: 10.1038/s41598-022-09371-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutively active androgen receptor (AR) splice variant, AR-V7, plays an important role in resistance to androgen deprivation therapy in castration resistant prostate cancer (CRPC). Studies seeking to determine whether AR-V7 is a partial mimic of the AR, or also has unique activities, and whether the AR-V7 cistrome contains unique binding sites have yielded conflicting results. One limitation in many studies has been the low level of AR variant compared to AR. Here, LNCaP and VCaP cell lines in which AR-V7 expression can be induced to match the level of AR, were used to compare the activities of AR and AR-V7. The two AR isoforms shared many targets, but overall had distinct transcriptomes. Optimal induction of novel targets sometimes required more receptor isoform than classical targets such as PSA. The isoforms displayed remarkably different cistromes with numerous differential binding sites. Some of the unique AR-V7 sites were located proximal to the transcription start sites (TSS). A de novo binding motif similar to a half ARE was identified in many AR-V7 preferential sites and, in contrast to conventional half ARE sites that bind AR-V7, FOXA1 was not enriched at these sites. This supports the concept that the AR isoforms have unique actions with the potential to serve as biomarkers or novel therapeutic targets.
Collapse
|
11
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
12
|
Kohrt SE, Awadallah WN, Phillips RA, Case TC, Jin R, Nanda JS, Yu X, Clark PE, Yi Y, Matusik RJ, Anderson PD, Grabowska MM. Identification of Genes Required for Enzalutamide Resistance in Castration-Resistant Prostate Cancer Cells In Vitro. Mol Cancer Ther 2020; 20:398-409. [PMID: 33298586 DOI: 10.1158/1535-7163.mct-20-0244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11, and ACAT1) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (ACAT1, MAP3K11, and PSMD12) as supporters of enzalutamide resistance in vitro Although ACAT1 expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of ACAT1 was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. MAP3K11 expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of MAP3K11 reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although PSMD12 expression did not change during disease progression, knockdown of PSMD12 resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells in vitro.
Collapse
Affiliation(s)
- Sarah E Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wisam N Awadallah
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | | | - Thomas C Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jagpreet S Nanda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | - Xiuping Yu
- Department of Biochemistry, Louisiana State University Health Shreveport, Shreveport, Louisiana
| | - Peter E Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, North Carolina
| | - Yajun Yi
- Quality, Safety and Risk Prevention, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Magdalena M Grabowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Nanda JS, Awadallah WN, Kohrt SE, Popovics P, Cates JMM, Mirosevich J, Clark PE, Giannico GA, Grabowska MM. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression. Prostate 2020; 80:1058-1070. [PMID: 32692871 PMCID: PMC7434711 DOI: 10.1002/pros.24019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Most prostate cancers express androgen receptor (AR), and our previous studies have focused on identifying transcription factors that modify AR function. We have shown that nuclear factor I/B (NFIB) regulates AR activity in androgen-dependent prostate cancer cells in vitro. However, the status of NFIB in prostate cancer was unknown. METHODS We immunostained a tissue microarray including normal, hyperplastic, prostatic intraepithelial neoplasia, primary prostatic adenocarcinoma, and castration-resistant prostate cancer tissue samples for NFIB, AR, and synaptophysin, a marker of neuroendocrine differentiation. We interrogated publically available data sets in cBioPortal to correlate NFIB expression and AR and neuroendocrine prostate cancer (NEPCa) activity scores. We analyzed prostate cancer cell lines for NFIB expression via Western blot analysis and used nuclear and cytoplasmic fractionation to assess where NFIB is localized. We performed co-immunoprecipitation studies to determine if NFIB and AR interact. RESULTS NFIB increased in the nucleus and cytoplasm of prostate cancer samples versus matched normal controls, independent of Gleason score. Similarly, cytoplasmic AR and synaptophysin increased in primary prostate cancer. We observed strong NFIB staining in primary small cell prostate cancer. The ratio of cytoplasmic-to-nuclear NFIB staining was predictive of earlier biochemical recurrence in prostate cancer, once adjusted for tumor margin status. Cytoplasmic AR was an independent predictor of biochemical recurrence. There was no statistically significant difference between NFIB and synaptophysin expression in primary and castration-resistant prostate cancer, but cytoplasmic AR expression was increased in castration-resistant samples. In primary prostate cancer, nuclear NFIB expression correlated with cytoplasmic NFIB and nuclear AR, while cytoplasmic NFIB correlated with synaptophysin, and nuclear and cytoplasmic AR. In castration-resistant prostate cancer samples, NFIB expression correlated positively with an AR activity score, and negatively with the NEPCa score. In prostate cancer cell lines, NFIB exists in several isoforms. We observed NFIB predominantly in the nuclear fraction of prostate cancer cells with increased cytoplasmic expression seen in castration-resistant cell lines. We observed an interaction between AR and NFIB through co-immunoprecipitation experiments. CONCLUSION We have described the expression pattern of NFIB in primary and castration-resistant prostate cancer and its positive correlation with AR. We have also demonstrated AR interacts with NFIB.
Collapse
Affiliation(s)
- Jagpreet S. Nanda
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Sarah E. Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Petra Popovics
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | - Justin M. M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Janni Mirosevich
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, NC
| | - Giovanna A. Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Address correspondence to: Magdalena M. Grabowska, 2123 Adelbert Road, Wood Research Tower; RTG00, Cleveland, OH 44106, Phone: 216-368-5736,
| |
Collapse
|
14
|
Popovics P, Awadallah WN, Kohrt SE, Case TC, Miller NL, Ricke EA, Huang W, Ramirez-Solano M, Liu Q, Vezina CM, Matusik RJ, Ricke WA, Grabowska MM. Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 2020; 80:731-741. [PMID: 32356572 PMCID: PMC7485377 DOI: 10.1002/pros.23986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Male lower urinary tract symptoms (LUTS) occur in more than half of men above 50 years of age. LUTS were traditionally attributed to benign prostatic hyperplasia (BPH) and therefore the clinical terminology often uses LUTS and BPH interchangeably. More recently, LUTS were also linked to fibrogenic and inflammatory processes. We tested whether osteopontin (OPN), a proinflammatory and profibrotic molecule, is increased in symptomatic BPH. We also tested whether prostate epithelial and stromal cells secrete OPN in response to proinflammatory stimuli and identified downstream targets of OPN in prostate stromal cells. METHODS Immunohistochemistry was performed on prostate sections obtained from the transition zone of patients who underwent surgery (Holmium laser enucleation of the prostate) to relieve LUTS (surgical BPH, S-BPH) or patients who underwent radical prostatectomy to remove low-grade prostate cancer (incidental BPH, I-BPH). Images of stained tissue sections were captured with a Nuance Multispectral Imaging System and histoscore, as a measure of OPN staining intensity, was determined with inForm software. OPN protein abundance was determined by Western blot analysis. The ability of prostate cells to secrete osteopontin in response to IL-1β and TGF-β1 was determined in stromal (BHPrS-1) and epithelial (NHPrE-1 and BHPrE-1) cells by enzyme-linked immunosorbent assay. Quantitative polymerase chain reaction was used to measure gene expression changes in these cells in response to OPN. RESULTS OPN immunostaining and protein levels were more abundant in S-BPH than I-BPH. Staining was distributed across all cell types with the highest levels in epithelial cells. Multiple OPN protein variants were identified in immortalized prostate stromal and epithelial cells. TGF-β1 stimulated OPN secretion by NHPrE-1 cells and both IL-1β and TGF-β1 stimulated OPN secretion by BHPrS-1 cells. Interestingly, recombinant OPN increased the mRNA expression of CXCL1, CXCL2, CXCL8, PTGS2, and IL6 in BHPrS-1, but not in epithelial cell lines. CONCLUSIONS OPN is more abundant in prostates of men with S-BPH compared to men with I-BPH. OPN secretion is stimulated by proinflammatory cytokines, and OPN acts directly on stromal cells to drive the synthesis of proinflammatory mRNAs. Pharmacological manipulation of prostatic OPN may have the potential to reduce LUTS by inhibiting both inflammatory and fibrotic pathways.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Address correspondence and reprint requests to: Petra Popovics, University of Wisconsin, Department of Urology, WIMR 7128, 1111 Highland Avenue, Madison, WI 53705, Tel: +1 786 474 1086,
| | - Wisam N. Awadallah
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Sarah E. Kohrt
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Thomas C. Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Nicole L. Miller
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - Emily A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Chad M. Vezina
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Comparative Biosciences, University of Wisconsin–Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin–Madison, WI
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN
| | - William A. Ricke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- George M. O’Brien Center of Research Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Magdalena M. Grabowska
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
15
|
Vickman RE, Franco OE, Moline DC, Vander Griend DJ, Thumbikat P, Hayward SW. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J Urol 2020; 7:191-202. [PMID: 32742923 PMCID: PMC7385520 DOI: 10.1016/j.ajur.2019.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a benign enlargement of the prostate in which incidence increases linearly with age, beginning at about 50 years old. BPH is a significant source of morbidity in aging men by causing lower urinary tract symptoms and acute urinary retention. Unfortunately, the etiology of BPH incidence and progression is not clear. This review highlights the role of the androgen receptor (AR) in prostate development and the evidence for its involvement in BPH. The AR is essential for normal prostate development, and individuals with defective AR signaling, such as after castration, do not experience prostate enlargement with age. Furthermore, decreasing dihydrotestosterone availability through therapeutic targeting with 5α-reductase inhibitors diminishes AR activity and results in reduced prostate size and symptoms in some BPH patients. While there is some evidence that AR expression is elevated in certain cellular compartments, how exactly AR is involved in BPH progression has yet to be elucidated. It is possible that AR signaling within stromal cells alters intercellular signaling and a "reawakening" of the embryonic mesenchyme, loss of epithelial AR leads to changes in paracrine signaling interactions, and/or chronic inflammation aids in stromal or epithelial proliferation evident in BPH. Unfortunately, a subset of patients fails to respond to current medical approaches, forcing surgical treatment even though age or associated co-morbidities make surgery less attractive. Fundamentally, new therapeutic approaches to treat BPH are not currently forthcoming, so a more complete molecular understanding of BPH etiology is necessary to identify new treatment options.
Collapse
Affiliation(s)
- Renee E. Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| | - Daniel C. Moline
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
16
|
Nash C, Boufaied N, Badescu D, Wang YC, Paliouras M, Trifiro M, Ragoussis I, Thomson AA. Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development. Dis Model Mech 2019; 12:12/7/dmm039297. [PMID: 31350272 PMCID: PMC6679388 DOI: 10.1242/dmm.039297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate development is controlled by androgens, the androgen receptor (AR) and mesenchymal–epithelial signalling. We used chromatin immunoprecipitation sequencing (ChIP-seq) to define AR genomic binding in the male and female mesenchyme. Tissue- and single-cell-based transcriptional profiling was used to define mesenchymal AR target genes. We observed significant AR genomic binding in females and a strong enrichment at proximal promoters in both sexes. In males, there was greater AR binding to introns and intergenic regions as well as to classical AR binding motifs. In females, there was increased proximal promoter binding and involvement of cofactors. Comparison of AR-bound genes with transcriptomic data enabled the identification of novel sexually dimorphic AR target genes. We validated the dimorphic expression of AR target genes using published datasets and confirmed regulation by androgens using ex vivo organ cultures. AR targets showed variable expression in patients with androgen insensitivity syndrome. We examined AR function at single-cell resolution using single-cell RNA sequencing (scRNA-seq) in male and female mesenchyme. Surprisingly, both AR and target genes were distributed throughout cell subsets, with few positive cells within each subset. AR binding was weakly correlated with target gene expression. Summary: A study of how androgens lead to sexually dimorphic development of the prostate using transcription factor genome binding and transcriptome analysis in mesenchymal subsets.
Collapse
Affiliation(s)
- Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Nadia Boufaied
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Dunarel Badescu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Yu Chang Wang
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Miltiadis Paliouras
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Mark Trifiro
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Ioannis Ragoussis
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
17
|
Clark BS, Stein-O'Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, Gronostajski RM, Fertig EJ, Goff LA, Blackshaw S. Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 2019; 102:1111-1126.e5. [PMID: 31128945 PMCID: PMC6768831 DOI: 10.1016/j.neuron.2019.04.010] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/26/2022]
Abstract
Precise temporal control of gene expression in neuronal progenitors is necessary for correct regulation of neurogenesis and cell fate specification. However, the cellular heterogeneity of the developing CNS has posed a major obstacle to identifying the gene regulatory networks that control these processes. To address this, we used single-cell RNA sequencing to profile ten developmental stages encompassing the full course of retinal neurogenesis. This allowed us to comprehensively characterize changes in gene expression that occur during initiation of neurogenesis, changes in developmental competence, and specification and differentiation of each major retinal cell type. We identify the NFI transcription factors (Nfia, Nfib, and Nfix) as selectively expressed in late retinal progenitor cells and show that they control bipolar interneuron and Müller glia cell fate specification and promote proliferative quiescence.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fion Shiau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gabrielle H Cannon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Davis-Marcisak
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas Sherman
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton P Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rebecca E James-Esposito
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard M Gronostajski
- Department of Biochemistry, Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Data Intensive Engineering and Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Computational Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Mathematical Institute for Data Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Piper M, Gronostajski R, Messina G. Nuclear Factor One X in Development and Disease. Trends Cell Biol 2018; 29:20-30. [PMID: 30287093 DOI: 10.1016/j.tcb.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
The past decade has seen incredible advances in the field of stem cell biology that have greatly improved our understanding of development and provided important insights into pathological processes. Transcription factors (TFs) play a central role in mediating stem cell proliferation, quiescence, and differentiation. One TF that contributes to these processes is Nuclear Factor One X (NFIX). Recently, NFIX activity has been shown to be essential in multiple organ systems and to have important translational impacts for human health. Here, we describe recent studies showing the contribution of NFIX to muscle development and muscular dystrophies, hematopoiesis, cancer, and neural stem cell biology, highlighting the importance of this knowledge in the development of therapeutic targets.
Collapse
Affiliation(s)
- Michael Piper
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Richard Gronostajski
- Department of Biochemistry, Genetics, Genomics & Bioinformatics Graduate Program, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Graziella Messina
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
19
|
Campbell TM, Castro MAA, de Oliveira KG, Ponder BAJ, Meyer KB. ERα Binding by Transcription Factors NFIB and YBX1 Enables FGFR2 Signaling to Modulate Estrogen Responsiveness in Breast Cancer. Cancer Res 2017; 78:410-421. [PMID: 29180470 DOI: 10.1158/0008-5472.can-17-1153] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/22/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
Two opposing clusters of transcription factors (TF) have been associated with the differential risks of estrogen receptor positive or negative breast cancers, but the mechanisms underlying the opposing functions of the two clusters are undefined. In this study, we identified NFIB and YBX1 as novel interactors of the estrogen receptor (ESR1). NFIB and YBX1 are both risk TF associated with progression of ESR1-negative disease. Notably, they both interacted with the ESR1-FOXA1 complex and inhibited the transactivational potential of ESR1. Moreover, signaling through FGFR2, a known risk factor in breast cancer development, augmented these interactions and further repressed ESR1 target gene expression. We therefore show that members of two opposing clusters of risk TFs associated with ESR1-positive and -negative breast cancer can physically interact. We postulate that this interaction forms a toggle between two developmental pathways affected by FGFR2 signaling, possibly offering a junction to exploit therapeutically.Significance: Binding of the transcription factors NFIB and YBX1 to the estrogen receptor can promote an estrogen-independent phenotype that can be reverted by inhibiting FGFR2 signaling. Cancer Res; 78(2); 410-21. ©2017 AACR.
Collapse
Affiliation(s)
- Thomas M Campbell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil
| | - Kelin Gonçalves de Oliveira
- Bioinformatics and Systems Biology Lab, Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Interaction of prostate carcinoma-associated fibroblasts with human epithelial cell lines in vivo. Differentiation 2017; 96:40-48. [PMID: 28779656 DOI: 10.1016/j.diff.2017.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Stromal-epithelial interactions play a crucial and poorly understood role in carcinogenesis and tumor progression. Mesenchymal-epithelial interactions have a long history of research in relation to the development of organs. Models designed to study development are often also applicable to studies of benign and malignant disease. Tumor stroma is a complex mixture of cells that includes a fibroblastic component often referred to as cancer-associated fibroblasts (CAF), desmoplasia or "reactive" stroma. Here we discuss the history of, and approaches to, understanding these interactions with particular reference to prostate cancer and to in vivo modeling using human cells and tissues. A series of studies have revealed a complex mixture of signaling molecules acting both within the stromal tissue and between the stromal and epithelial tissues. We are starting to understand the interactions of some of these pathways, however the work is still ongoing. This area of research provide a basis for new medical approaches aimed at stabilizing early stage cancers rendering them chronic rather than acute problems. Such work is especially relevant to slow growing tumors found in older patients, a class that would include many prostate cancers.
Collapse
|
21
|
Becker-Santos DD, Lonergan KM, Gronostajski RM, Lam WL. Nuclear Factor I/B: A Master Regulator of Cell Differentiation with Paradoxical Roles in Cancer. EBioMedicine 2017; 22:2-9. [PMID: 28596133 PMCID: PMC5552107 DOI: 10.1016/j.ebiom.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that nuclear factor I/B (NFIB), a transcription factor required for proper development and regulation of cellular differentiation in several tissues, also plays critical roles in cancer. Despite being a metastatic driver in small cell lung cancer and melanoma, it has become apparent that NFIB also exhibits tumour suppressive functions in many malignancies. The contradictory contributions of NFIB to both the inhibition and promotion of tumour development and progression, corroborates its diverse and context-dependent roles in many tissues and cell types. Considering the frequent involvement of NFIB in cancer, a better understanding of its multifaceted nature may ultimately benefit the development of novel strategies for the management of a broad spectrum of malignancies. Here we discuss recent findings which bring to light NFIB as a crucial and paradoxical player in cancer. NFIB, a versatile regulator of cell differentiation, is emerging as a crucial driver of cancer metastasis. Paradoxically, NFIB also exhibits tumour suppressive functions in several cancer types. A deeper understanding of the multifaceted and context-dependent nature of NFIB has the potential to improve the clinical management of a variety of cancers.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| | - Kim M Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Willi M, Yoo KH, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res 2016; 44:10277-10291. [PMID: 27694626 PMCID: PMC5137441 DOI: 10.1093/nar/gkw844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/22/2016] [Accepted: 09/11/2016] [Indexed: 12/28/2022] Open
Abstract
Cytokines utilize the transcription factor STAT5 to control cell-specific genes at a larger scale than universal genes, with a mechanistic explanation yet to be supplied. Genome-wide studies have identified putative STAT5-based mammary-specific and universal enhancers, an opportunity to investigate mechanisms underlying their differential response to cytokines. We have now interrogated the integrity and function of both categories of regulatory elements using biological and genetic approaches. During lactation, STAT5 occupies mammary-specific and universal cytokine-responsive elements. Following lactation, prolactin levels decline and mammary-specific STAT5-dependent enhancers are decommissioned within 24 h, while universal regulatory complexes remain intact. These differential sensitivities are linked to STAT5 concentrations and the mammary-specific Stat5 autoregulatory enhancer. In its absence, mammary-specific enhancers, but not universal elements, fail to be fully established. Upon termination of lactation STAT5 binding to a subset of mammary enhancers is substituted by STAT3. No STAT3 binding was observed at the most sensitive STAT5 enhancers suggesting that upon hormone withdrawal their chromatin becomes inaccessible. Lastly, we demonstrate that the mammary-enriched transcription factors GR, ELF5 and NFIB associate with STAT5 at sites lacking bona fide binding motifs. This study provides, for the first time, molecular insight into the differential sensitivities of mammary-specific and universal cytokine-sensing enhancers.
Collapse
Affiliation(s)
- Michaela Willi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Kyung Hyun Yoo
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA.,Department of Life Systems, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Chaochen Wang
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Austin DC, Strand DW, Love HL, Franco OE, Grabowska MM, Miller NL, Hameed O, Clark PE, Matusik RJ, Jin RJ, Hayward SW. NF-κB and androgen receptor variant 7 induce expression of SRD5A isoforms and confer 5ARI resistance. Prostate 2016; 76:1004-18. [PMID: 27197599 PMCID: PMC4912960 DOI: 10.1002/pros.23195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is treated with 5α-reductase inhibitors (5ARI). These drugs inhibit the conversion of testosterone to dihydrotestosterone resulting in apoptosis and prostate shrinkage. Most patients initially respond to 5ARIs; however, failure is common especially in inflamed prostates, and often results in surgery. This communication examines a link between activation of NF-κB and increased expression of SRD5A2 as a potential mechanism by which patients fail 5ARI therapy. METHODS Tissue was collected from "Surgical" patients, treated specifically for lower urinary tract symptoms secondary to advanced BPH; and, cancer free transition zone from "Incidental" patients treated for low grade, localized peripheral zone prostate cancer. Clinical, molecular and histopathological profiles were analyzed. Human prostatic stromal and epithelial cell lines were genetically modified to regulate NF-κB activity, androgen receptor (AR) full length (AR-FL), and AR variant 7 (AR-V7) expression. RESULTS SRD5A2 is upregulated in advanced BPH. SRD5A2 was significantly associated with prostate volume determined by Transrectal Ultrasound (TRUS), and with more severe lower urinary tract symptoms (LUTS) determined by American Urological Association Symptom Score (AUASS). Synthesis of androgens was seen in cells in which NF-κB was activated. AR-FL and AR-V7 expression increased SRD5A2 expression while forced activation of NF-κB increased all three SRD5A isoforms. Knockdown of SRD5A2 in the epithelial cells resulted in significant reduction in proliferation, AR target gene expression, and response to testosterone (T). In tissue recombinants, canonical NF-κB activation in prostatic epithelium elevated all three SRD5A isoforms and resulted in in vivo growth under castrated conditions. CONCLUSION Increased BPH severity in patients correlates with SRD5A2 expression. We demonstrate that NF-κB and AR-V7 upregulate SRD5A expression providing a mechanism to explain failure of 5ARI therapy in BPH patients. Prostate 76:1004-1018, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David C. Austin
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas W. Strand
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harold L. Love
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| | - Magdalena M. Grabowska
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicole L. Miller
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Omar Hameed
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Peter E. Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Matusik
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ren J. Jin
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, Illinois
| |
Collapse
|