1
|
Khan RH, Rhodes JS, Girard IA, Schwartz NE, Garland T. Does Behavior Evolve First? Correlated Responses to Selection for Voluntary Wheel-Running Behavior in House Mice. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:97-117. [PMID: 38728689 DOI: 10.1086/730153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.
Collapse
|
2
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
3
|
Shahanoor Z, Sultana R, Savenkova M, Karatsoreos IN, Romeo RD. Metabolic dysfunctions following chronic oral corticosterone are modified by adolescence and sex in mice. Physiol Behav 2023; 269:114289. [PMID: 37422081 PMCID: PMC10530018 DOI: 10.1016/j.physbeh.2023.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Adolescence is a period of development in which shifts in responses to glucocorticoids is well-documented. Obesity and metabolic syndrome are substantial health issues whose rates continue to rise in both adult and adolescent populations. Though many interacting factors contribute to these dysfunctions, how these shifts in glucocorticoid responses may be related remain unknown. Using a model of oral corticosterone (CORT) exposure in male and female mice, we demonstrate differential responses during adolescence (30-58 days of age) or adulthood (70-98 day of age) in endpoints relevant to metabolic function. Our data indicate that CORT resulted in significant weight gain in adult- and adolescent-exposed females and adult-exposed males, but not adolescent-exposed males. Despite this difference, all animals treated with high levels of CORT showed significant increases in white adipose tissue, indicating a dissociation between weight gain and adiposity in adolescent-treated males. Similarly, all experimental groups showed significant increases in plasma insulin, leptin, and triglyceride levels, further suggesting potential disconnects between overt weight gain, and underlying metabolic dysregulation. Finally, we found age- and dose-dependent changes in the expression of hepatic genes important in glucocorticoid receptor and lipid regulation, which showed different patterns in males and females. Thus, altered transcriptional pathways in the liver might be contributing differentially to the similar metabolic phenotype observed among these experimental groups. We also show that despite little CORT-induced changes in the hypothalamic levels of orexin-A and NPY, we found that food and fluid intake were elevated in adolescent-treated males and females. These data indicate chronic exposure to elevated glucocorticoid levels results in metabolic dysfunction in both males and females, which can be further modulated by developmental stage.
Collapse
Affiliation(s)
- Ziasmin Shahanoor
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Razia Sultana
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States
| | - Marina Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Russell D Romeo
- Departments of Psychology and Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
4
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
5
|
Chronic Corticosterone Exposure Suppresses Copper Transport through GR-Mediated Intestinal CTR1 Pathway in Mice. BIOLOGY 2023; 12:biology12020197. [PMID: 36829476 PMCID: PMC9953443 DOI: 10.3390/biology12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Numerous studies have discovered that chronic stress induces metabolic disorders by affecting iron and zinc metabolism, but the relationship between chronic stress and copper metabolism remains unclear. Here, we explore the influence of chronic corticosterone (CORT) exposure on copper metabolism and its regulatory mechanism in mice. Mice were treated with 100 μg/mL CORT in drinking water for a 4-week trial. We found that CORT treatment resulted in a significant decrease in plasma copper level, plasma ceruloplasmin activity, plasma and liver Cu/Zn-SOD activity, hepatic copper content, and liver metallothionein content in mice. CORT treatment led to the reduction in duodenal expression of copper transporter 1 (CTR1), duodenal cytochrome b (DCYTB), and ATPase copper-transporting alpha (ATP7A) at the mRNA and protein level in mice. CORT treatment activated nuclear glucocorticoid receptor (GR) and down-regulated CRT1 expression in Caco-2 cells, whereas these phenotypes were reversible by an antagonist of GR, RU486. Chromatin immunoprecipitation analysis revealed that GR bound to the Ctr1 promoter in Caco-2 cells. Transient transfection assays in Caco-2 cells demonstrated that the Ctr1 promoter was responsive to the CORT-activated glucocorticoid receptor, whereas mutation/deletion of the glucocorticoid receptor element (GRE) markedly impaired activation of the Ctr1 promoter. In addition, CORT-induced downregulation of Ctr1 promoter activity was markedly attenuated in Caco-2 cells when RU486 was added. These findings present a novel molecular target for CORT that down-regulates intestinal CTR1 expression via GR-mediated trans-repression in mice.
Collapse
|
6
|
Nouchi Y, Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Fujii R, Kageyama I, Wakasugi T, Sakakibara T, Teshigawara A, Ishikawa H, Shimono Y, Suzuki K, Hashimoto S, Ohashi K. Effects of High-Fructose Corn Syrup Intake on Glucocorticoid
Metabolism in Rats During Childhood, Adolescence and Adulthood. Exp Clin Endocrinol Diabetes 2022; 130:814-820. [DOI: 10.1055/a-1936-3310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe consumption of high-fructose corn syrup (HFCS) has been increasing in recent
decades, especially among children. Some reports suggest that children and
adolescents are more sensitive to the adverse effects of fructose intake than
adults. However, the underlying mechanism of the difference in vulnerability
between adolescence and adulthood have not yet been elucidated. In this study,
we attempted to elucidate the different effects of HFCS intake at different
growth stages in rats: childhood and adolescence (postnatal day (PD)
21–60), young adulthood (PD60–100), and adulthood
(PD100–140). Since alterations in hepatic glucocorticoid (GC) metabolism
can cause diseases including insulin resistance, we focused on GC metabolizing
enzymes such as 11 beta-hydroxysteroid dehydrogenase 1 and 2 (Hsd11b1 and
Hsd11b2) and steroid 5 alpha-reductase 1 (Srd5a1). Western blotting showed an
increase in Hsd11b1 expression and a decrease in Hsd11b2 expression in childhood
and adolescence but not in adulthood. We also observed changes in Hsd11b1 and
Hsd11b2 activities only in childhood and adolescence, consistent with the
results of mRNA and protein expression analysis. The effect of high-fructose
intake with regards to GC metabolism may therefore vary with developmental
stage. This study provides insight into the adverse effects of fructose on GC
metabolism in children in the context of increasing rates of HFCS
consumption.
Collapse
Affiliation(s)
- Yuki Nouchi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of
Health Sciences, Takamatsu, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Genki Mizuno
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Itsuki Kageyama
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Atsushi Teshigawara
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of
Medicine, Toyoake, Aichi, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine,
Toyoake, Aichi, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University
School of Medical Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Bel JS, Tai TC, Khaper N, Lees SJ. Chronic glucocorticoid exposure causes brown adipose tissue whitening, alters whole-body glucose metabolism and increases tissue uncoupling protein-1. Physiol Rep 2022; 10:e15292. [PMID: 35510321 PMCID: PMC9069169 DOI: 10.14814/phy2.15292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 04/14/2023] Open
Abstract
Adipose tissue (AT) has been found to exist in two predominant forms, white and brown. White adipose tissue (WAT) is the body's conventional storage organ, and brown adipose tissue (BAT) is responsible for non-shivering thermogenesis which allows mammals to produce heat and regulate body temperature. Studies examining BAT and its role in whole-body metabolism have found that active BAT utilizes glucose and circulating fatty acids and is associated with improved metabolic outcomes. While the beiging of WAT is a growing area of interest, the possibility of the BAT depot to "whiten" and store more triglycerides also has metabolic and health implications. Currently, there are limited studies that examine the effects of chronic stress and its ability to induce a white-like phenotype in the BAT depot. This research examined how chronic exposure to the murine stress hormone, corticosterone, for 4 weeks can affect the whitening process of BAT in C57BL/6 male mice. Separate treatments with mirabegron, a known β3-adrenergic receptor agonist, were used to directly compare the effects of corticosterone with a beiging phenotype. Corticosterone-treated mice had significantly higher body weight (p ≤ 0.05) and BAT mass (p ≤ 0.05), increased adipocyte area (p ≤ 0.05), were insulin resistant (p ≤ 0.05), and significantly elevated expressions of uncoupling protein 1 (UCP-1) in BAT (p ≤ 0.05) while mitochondrial content remained unchanged. This whitened phenotype has not been previously associated with increased uncoupling proteins under chronic stress and may represent a compensatory mechanism being initiated under these conditions. These findings have implications for the study of BAT in response to chronic glucocorticoid exposure potentially leading to BAT dysfunction and negative impacts on whole-body glucose metabolism.
Collapse
Affiliation(s)
- Jocelyn S. Bel
- Biotechnology ProgramLakehead UniversityThunder BayOntarioCanada
| | - T. C. Tai
- Northern Ontario School of MedicineThunder BayOntarioCanada
- BiologyLaurentian UniversitySudburyOntarioCanada
- Chemistry and BiochemistryLaurentian UniversitySudburyOntarioCanada
- Biomolecular Sciences ProgramLaurentian UniversitySudburyOntarioCanada
| | - Neelam Khaper
- Northern Ontario School of MedicineThunder BayOntarioCanada
- Biomolecular Sciences ProgramLaurentian UniversitySudburyOntarioCanada
- BiologyLakehead UniversityThunder BayOntarioCanada
| | - Simon J. Lees
- Northern Ontario School of MedicineThunder BayOntarioCanada
- BiologyLakehead UniversityThunder BayOntarioCanada
| |
Collapse
|
8
|
Abstract
In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
9
|
Corticosterone Attenuates Reward-Seeking Behavior and Increases Anxiety via D2 Receptor Signaling in Ventral Tegmental Area Dopamine Neurons. J Neurosci 2021; 41:1566-1581. [PMID: 33372063 PMCID: PMC7896015 DOI: 10.1523/jneurosci.2533-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Corticosteroids (CORT) have been widely used in anti-inflammatory medication. Chronic CORT treatment can cause mesocorticolimbic system dysfunctions, which are known to play a key role for the development of psychiatric disorders. The VTA is a critical site in the mesocorticolimbic pathway and is responsible for motivation and reward-seeking behaviors. However, the mechanism by which chronic CORT alters VTA dopamine neuronal activity is largely unknown. We treated periadolescent male mice with vehicle, 1 d, or 7 d CORT in the drinking water, examined behavioral impacts with light/dark box, elevated plus maze, operant chamber, and open field tests, measured the effects of CORT on VTA dopamine neuronal activity using patch-clamp electrophysiology and dopamine concentration using fast-scan cyclic voltammetry, and tested the effects of dopamine D2 receptor (D2R) blockade by intra-VTA infusion of a D2R antagonist. CORT treatment induced anxiety-like behavior as well as decreased food-seeking behaviors. We show that chronic CORT treatment decreased excitability and excitatory synaptic transmission onto VTA dopamine neurons. Furthermore, chronic CORT increased somatodendritic dopamine concentration. The D2R antagonist sulpiride restored decreased excitatory transmission and excitability of VTA dopamine neurons. Furthermore, sulpiride decreased anxiety-like behavior and rescued food-seeking behavior in mice with chronic CORT exposure. Together, 7 d CORT treatment induces anxiety-like behavior and impairs food-seeking in a mildly aversive environment. D2R signaling in the VTA might be a potential target to ameliorate chronic CORT-induced anxiety and reward-seeking deficits. SIGNIFICANCE STATEMENT With widespread anti-inflammatory effects throughout the body, corticosteroids (CORT) have been used in a variety of therapeutic conditions. However, long-term CORT treatment causes cognitive impairments and neuropsychiatric disorders. The impact of chronic CORT on the mesolimbic system has not been elucidated. Here, we demonstrate that 7 d CORT treatment increases anxiety-like behavior and attenuates food-seeking behavior in a mildly aversive environment. By elevating local dopamine concentration in the VTA, a region important for driving motivated behavior, CORT treatment suppresses excitability and synaptic transmission onto VTA dopamine neurons. Intriguingly, blockade of D2 receptor signaling in the VTA restores neuronal excitability and food-seeking and alleviates anxiety-like behaviors. Our findings provide a potential therapeutic target for CORT-induced reward deficits.
Collapse
|
10
|
García-Eguren G, Sala-Vila A, Giró O, Vega-Beyhart A, Hanzu FA. Long-term hypercortisolism induces lipogenesis promoting palmitic acid accumulation and inflammation in visceral adipose tissue compared with HFD-induced obesity. Am J Physiol Endocrinol Metab 2020; 318:E995-E1003. [PMID: 32315213 DOI: 10.1152/ajpendo.00516.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucocorticoids (GCs) play critical roles in adipose tissue metabolism. Here, we compare in a mouse model the effects of chronic glucocorticoid excess and diet-induced obesity on white adipose tissue mass and distribution, by focusing on visceral adipose tissue (VAT) fatty acid composition changes, the role of de novo lipogenesis (DNL) and the inflammatory state. We used a noninvasive mouse model of hypercortisolism to compare GC-induced effects on adipose tissue with diet-induced obesity [high-fat diet (HFD) 45%] and control mice after 10 wk of treatment. Subcutaneous adipose tissue (SAT) and VAT mass and distribution were measured by nuclear magnetic resonance imaging (NMRI). Fatty acid composition in VAT was analyzed by NMR spectroscopy and gas chromatography. Gene expression of key enzymes involved in DNL was analyzed in liver and VAT. Macrophage infiltration markers and proinflammatory cytokines were measured by gene expression in VAT. HFD or GC treatment induced similar fat mass expansion with comparable distribution between SAT and VAT depots. However, in VAT, GCs induce DNL, higher palmitic acid (PA), macrophage infiltration, and proinflammatory cytokine levels, accompanied by systemic nonesterified fatty acid (NEFA) elevation, hyperinsulinemia, and higher homeostatic model assessment for insulin resistance (HOMA-IR) levels compared with diet-induced obesity. Thus, chronic hypercortisolism induces DNL and fatty acid composition changes toward increased SFA and reduced polyunsaturated fatty acid (PUFA) levels in VAT, promoting macrophage recruitment and proinflammatory cytokines, suggesting a worse cardiometabolic profile even compared with HFD mice.
Collapse
Affiliation(s)
| | - Aleix Sala-Vila
- Lipid Clinic, Endocrinology and Nutrition Service, Hospital Clínic, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Oriol Giró
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
| | | | - Felicia A Hanzu
- Group of Endocrine Disorders, IDIBAPS, Barcelona, Spain
- Endocrinology and Nutrition Service, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Nicolas S, Rochet N, Gautier N, Chabry J, Pisani DF. The adiponectin receptor agonist AdipoRon normalizes glucose metabolism and prevents obesity but not growth retardation induced by glucocorticoids in young mice. Metabolism 2020; 103:154027. [PMID: 31778708 DOI: 10.1016/j.metabol.2019.154027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/08/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Glucocorticoids (GCs) are highly effective anti-inflammatory and immunosuppressive drugs. However, prolonged GC therapy may cause numerous adverse effects leading to diabetes and obesity, as well as bone disorders such as osteoporosis in adults and growth retardation in children and adolescents. Prevention and care of the GC-induced adverse effects remain challenging. We have previously demonstrated the efficacy of a treatment with a non-peptidic agonist of adiponectin receptors, AdipoRon, to reverse behaviour disorders and fat mass gain induced by long-term GC treatment. In this work, we have established a relevant model of GC-induced growth and metabolic disorders and determined that AdipoRon is a potential therapeutic tool to reverse these metabolic disturbances. METHODS 5-Week-old mice were treated continuously with or without corticosterone (35 mg/L) in drinking water for seven consecutive weeks. Taking advantage of this mouse model displaying various growth and metabolic disorders, we assayed whether AdipoRon (daily intraperitoneal injection of 1 mg/kg/day for the last 20 days) might prevent the GC-induced adverse effects. The control group was treated with vehicle only. Nutritional behaviors and metabolic parameters were followed-up throughout the treatment. Serum insulin and leptin levels were measured by ELISA. Computed tomography and histological analysis of adipose tissue were assessed at the end of the experimental procedure. RESULTS We found that GC treatment in young mice resulted in continuously increased body weight gain associated with a food intake increase. Compared to vehicle-, GC-treated mice displayed early major hyperleptinemia (up to 6-fold more) and hyperinsulinemia (up to 20-fold more) maintained throughout the treatment. At the end of the experimental procedure, GC-treated mice displayed bone growth retardation (e.g. femur length 15.1 versus 14.0 mm, P < 0.01), higher abdominal adipose tissue volume (4.1 versus 2.3, P < 0.01) and altered glucose metabolism compared to control mice. Interestingly, AdipoRon prevented GC-induced effects on energy metabolism such as abdominal adiposity, insulinemia and leptinemia. However, AdipoRon failed to counteract bone growth retardation. CONCLUSION We characterized the very early pathological steps induced by long-term GC in young mice in a relevant model, including growth retardation, fat mass gain and glucose homeostasis dysregulation. The adiponectin system stimulation enabled normalization of the adipose tissue and metabolic features of GC-treated mice. Adiponectin receptor agonists such as AdipoRon might constitute a novel way to counteract some GC-induced adverse effects.
Collapse
Affiliation(s)
- Sarah Nicolas
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire UMR 7275, 660 route des lucioles, Sophia Antipolis, 06560 Valbonne, France
| | - Nathalie Rochet
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose UMR 7277, 28 avenue de Valombrose, 06107 Nice, France
| | - Nadine Gautier
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose UMR 7277, 28 avenue de Valombrose, 06107 Nice, France
| | - Joëlle Chabry
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire UMR 7275, 660 route des lucioles, Sophia Antipolis, 06560 Valbonne, France.
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Laboratoire de PhysioMédecine Moléculaire UMR7370, 28 avenue de Valombrose, 06107 Nice, France.
| |
Collapse
|
12
|
Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020; 56:100819. [PMID: 31863788 PMCID: PMC7643247 DOI: 10.1016/j.yfrne.2019.100819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Stress, primarily processed via the hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain and body which promote adaptation and survival to changing environmental demands. Adaptation to environmental challenges is compromised when these pathways are no longer functioning optimally. The physiological and behavioral mechanisms through which HPA axis function influences stress adaptation and resilience are not fully elucidated. Our understanding of stress biology and disease must take into account the complex interactions between the endocrine system, neural circuits, and behavioral coping strategies. In addition, further consideration must be taken concerning influences of other aspects of physiology, including the circadian clock which is critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also offers targets for intervention. Understanding the role of HPA function in mediating these diverse biological responses will lead to important insights about how to bolster successful stress adaptation and promote stress resilience.
Collapse
Affiliation(s)
- Scott A Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
13
|
Rudak PT, Gangireddy R, Choi J, Burhan AM, Summers KL, Jackson DN, Inoue W, Haeryfar SMM. Stress-elicited glucocorticoid receptor signaling upregulates TIGIT in innate-like invariant T lymphocytes. Brain Behav Immun 2019; 80:793-804. [PMID: 31108170 DOI: 10.1016/j.bbi.2019.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 12/17/2022] Open
Abstract
Stress is known to impede certain host defense mechanisms, including those governed by conventional T lymphocytes. However, whether innate-like T lymphocytes, such as invariant natural killer T (iNKT) and mucosa-associated invariant T (MAIT) cells, are impacted by stress is unclear. Herein, we report that prolonged psychological stress caused by physical confinement results in robust upregulation of T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT), an immune checkpoint receptor that controls antitumor and antiviral immune responses. Elevated TIGIT expression was found not only on NK and conventional T cells, but also on iNKT and MAIT cells. Stress-provoked TIGIT upregulation was reversed through treatment with the glucocorticoid receptor (GR) antagonist RU486, but not with 6-hydroxydopamine that induces chemical sympathectomy. A Cre/Lox gene targeting model in which GR was ablated in cells expressing Lck under its proximal promoter revealed that TIGIT upregulation in stressed animals stems from direct GR signaling in T and iNKT cells. In fact, long-term oral administration of exogenous corticosterone (CS) to wild-type C57BL/6 (B6) mice was sufficient to increase TIGIT expression levels on T and iNKT cells. In vitro treatment with CS also potently and selectively upregulated TIGIT, but not CTLA-4 or LAG-3, on mouse iNKT and MAIT hybridomas. These results were recapitulated using primary hepatic iNKT and MAIT cells from wild-type B6 and B6.MAITCAST mice, respectively. Subjecting B6.MAITCAST mice to physical restraint also raised the frequency of TIGIT+ cells among hepatic MAIT cells in a GR-dependent manner. Finally, we found that TIGIT is similarly upregulated in a chronic variable stress model in which animals are exposed to unpredictable heterotypic stressors without developing habituation. Taken together, our findings link, for the first time to our knowledge, GR signaling to TIGIT expression. We propose that glucocorticoid hormones dampen immune responses, in part, by enhancing TIGIT expression across multiple critical subsets of effector lymphocytes, including innate-like T cells. Therefore, TIGIT may constitute an attractive target in immune-enhancing interventions for sustained physiological stress.
Collapse
Affiliation(s)
- Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Rakshith Gangireddy
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Amer M Burhan
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Kelly L Summers
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Wataru Inoue
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Department of Medicine, Division of Clinical Immunology and Allergy, Western University, London, Ontario, Canada; Department of Surgery, Division of General Surgery, Western University, London, Ontario, Canada.
| |
Collapse
|
14
|
Kinlein SA, Phillips DJ, Keller CR, Karatsoreos IN. Role of corticosterone in altered neurobehavioral responses to acute stress in a model of compromised hypothalamic-pituitary-adrenal axis function. Psychoneuroendocrinology 2019; 102:248-255. [PMID: 30594817 PMCID: PMC7649055 DOI: 10.1016/j.psyneuen.2018.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023]
Abstract
An organism's capacity to cope with stressful experiences is dependent on its ability to appropriately engage central and peripheral systems, such as the hypothalamic-pituitary-adrenal (HPA) axis, to adapt to changing environmental demands. The HPA axis is a primary neuroendocrine mediator of neural and behavioral responses to stress, and dysfunction of this system is linked to increased risk for developing mental health disorders such as depression, anxiety, and post-traumatic stress disorder. However, the mechanisms by which dysregulated HPA function results in abnormal behavioral responses to stress are poorly understood. Here, we tested how corticosterone (CORT)-induced HPA axis disruption affects behavioral responses to stress in male C57BL/6 N mice, and probed correlates of these behaviors in the brain. We show that chronic HPA disruption blunts acute stress-induced grooming and rearing behaviors in the open field test, effects which were accompanied by decreased FOS immunoreactivity in the paraventricular nucleus of the hypothalamus (PVH) and paraventricular nucleus of the thalamus (PVT). Blockade of CORT secretion with metyrapone injection prior to acute stress did not recapitulate the effects of chronic HPA disruption on open field behavior, and acute CORT replacement did not rescue normal behavioral stress responses following chronic HPA disruption. This suggests that under acute conditions, CORT is not necessary for these responses normally, nor sufficient to rescue the deficits of chronic HPA dysregulation. Together, these findings support the hypothesis that chronic HPA dysregulation causes adaptation in stress-related brain circuits and demonstrate that these changes can influence an organism's behavioral response to stress exposure.
Collapse
Affiliation(s)
- Scott A. Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Derrick J. Phillips
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Chandler R. Keller
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA
| | - Ilia N. Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, USA,Corresponding author: Ilia N. Karatsoreos, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, ., T:509-335-4829
| |
Collapse
|
15
|
Bittar TP, Nair BB, Kim JS, Chandrasekera D, Sherrington A, Iremonger KJ. Corticosterone mediated functional and structural plasticity in corticotropin-releasing hormone neurons. Neuropharmacology 2019; 154:79-86. [PMID: 30771372 DOI: 10.1016/j.neuropharm.2019.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Corticosteroid stress hormones drive a multitude of adaptations in the brain. Hypothalamic corticotropin-releasing hormone (CRH) neurons control the circulating levels of corticosteroid stress hormones in the body and are themselves highly sensitive to corticosteroids. CRH neurons have been shown to undergo various adaptions in response to acute stress hormone elevations. However, their structural and physiological changes under chronically elevated corticosterone are less clear. To address this, we determined the structural and functional changes in CRH neurons in the paraventricular nucleus of the hypothalamus following 14 days of corticosterone treatment. We find that prolonged corticosterone elevation reduces CRH neuron intrinsic excitability as measured by summation of subthreshold postsynaptic depolarisations and spiking output. We find that under normal conditions, CRH neurons have a relatively compact and simple dendritic arbor, with a low density of somatic and dendritic spines. Interestingly, the axon originated from a proximal dendrite close to the soma in approximately half of the CRH neurons reconstructed. While prolonged elevation in corticosterone levels did not result in any changes to gross dendritic morphology, it induced a significant reduction in both somatic and dendritic spine density. Together these data reveal the morphological features of hypothalamic CRH neurons and highlight their capacity to undergo functional and morphological plasticity in response to chronic corticosterone elevations. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Thibault P Bittar
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Betina B Nair
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Dhananjie Chandrasekera
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Aidan Sherrington
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Xia Q, Wang H, Yin H, Yang Z. Excessive corticosterone induces excitotoxicity of hippocampal neurons and sensitivity of potassium channels via insulin-signaling pathway. Metab Brain Dis 2019; 34:119-128. [PMID: 30284676 DOI: 10.1007/s11011-018-0326-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
Corticosterone (CORT) is a kind of corticosteroid produced by cortex of adrenal glands. Hypothalamic-pituitary-adrenal (HPA) axis hyperfunction leads to excessive CORT, which is associated with depression. Few studies have investigated the role of CORT in voltage-gated ion channels and its upstream signaling pathway in central nervous system. In this study, we investigated the mechanism of excessive CORT resulting in brain impairment on voltage-gated ion channels, and its upstream signaling effectors in hippocampal CA1 neurons. The action potential (AP) and voltage-gated potassium currents were determined by using whole-cell patch-clamp. Insulin and CORT improved the neuronal excitability. Independent effects existed in transient potassium channel (IA) and delay rectifier potassium channel (IK). The inhibition of potassium currents, IA in our experiment, could increase neuronal excitability. CORT led to the excitotoxicity of hippocampal neurons via phosphatidylinositol 3 kinase (PI3K)-mediated insulin-signaling pathway. Therefore, the stimulation of excessive CORT induces excitotoxicity of hippocampal neurons and sensitivity of potassium channels via PI3K-mediated insulin-signaling pathway, which indicates one possible way of depression treatment.
Collapse
Affiliation(s)
- Qingqing Xia
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongqiang Yin
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
17
|
Shome A, Sultana R, Siddiqui A, Romeo RD. Adolescent Changes in Cellular Proliferation in the Dentate Gyrus of Male and Female C57BL/6N Mice Are Resilient to Chronic Oral Corticosterone Treatments. Front Behav Neurosci 2018; 12:192. [PMID: 30197591 PMCID: PMC6118339 DOI: 10.3389/fnbeh.2018.00192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 01/08/2023] Open
Abstract
Adolescent development is marked by significant changes in neurobiological structure and function. One such change is the substantial adolescent-related decline in cellular proliferation and neurogenesis in the dentate gyrus of the hippocampal formation. Though the behavioral implications of these developmental shifts in cell proliferation are unclear, these changes might contribute to the altered cognitive and emotional functions associated with puberty and adolescence. The significant decrease in cellular proliferation throughout adolescence might make the hippocampus more vulnerable to perturbations during this developmental stage, particularly to factors known to disrupt neurogenesis, such as chronic exposure to stress-related hormones. To examine this possibility, we first measured cellular proliferation in the dentate gyrus of male and female C57BL/6N mice before and after adolescence and then assessed both cellular proliferation and the number of immature neurons in mice treated with oral corticosterone for 4 weeks during either adolescence or adulthood. We found significant age-related decreases in hippocampal cellular proliferation in both males and females. Though the greatest decrease in proliferation was during adolescence, we also observed that proliferation continued to decline through young adulthood. Despite the significant effect of chronic oral corticosterone on body weight gain in both the adolescent- and adult-treated males and females and the subtle, but significant suppressive effect of corticosterone on the number of immature neurons in the adolescent-treated males, cell proliferation in the hippocampus was unaffected by these treatments. These data show that the substantial adolescent-related change in cellular proliferation in the dentate gyrus is largely unaffected by chronic oral corticosterone exposure in males and females. Thus, despite being vulnerable to the metabolic effects of these chronic corticosterone treatments, these results indicate that the developmental changes in cellular proliferation in the dentate gyrus are relatively resilient to these treatments in mice.
Collapse
Affiliation(s)
- Ashna Shome
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Razia Sultana
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Alina Siddiqui
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| | - Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York City, NY, United States
| |
Collapse
|
18
|
Sun S, Hanzawa F, Umeki M, Ikeda S, Mochizuki S, Oda H. Time-restricted feeding suppresses excess sucrose-induced plasma and liver lipid accumulation in rats. PLoS One 2018; 13:e0201261. [PMID: 30110343 PMCID: PMC6093648 DOI: 10.1371/journal.pone.0201261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
The etiology of metabolic syndrome involves several complicated factors. One of the main factors contributing to metabolic syndrome has been proposed to be excessive intake of sucrose, which disturbs hepatic lipid metabolism, resulting in fatty liver. However, the mechanism by which sucrose induces fatty liver remains to be elucidated. Considering feeding behavior important for metabolism, we investigated whether time-restricted feeding of high sucrose diet (HSD), only in the active phase (the dark phase of the daily light/dark cycle), would ameliorate adverse effects of sucrose on lipid homeostasis in rats. Male Wistar rats, fed either an ad libitum (ad lib.) or time-restricted control starch diet (CD) or HSD were investigated. Rats fed ad lib. (CD and HSD) completed approximately 20% of food intake in the daytime. Time-restricted feeding did not significantly suppress total food intake of rats. However, time-restricted feeding of HSD significantly suppressed the increased plasma triglyceride levels. Moreover, time-restricted feeding also ameliorated HSD-induced liver lipid accumulation, whereas circadian oscillations of liver clock gene or transcriptional factor gene expression for lipid metabolism were not altered significantly. These results demonstrated that restricting sucrose intake only during the active phase in rats ameliorates the abnormal lipid metabolism caused by excess sucrose intake.
Collapse
Affiliation(s)
- Shumin Sun
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, Japan
| | - Fumiaki Hanzawa
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Miki Umeki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| | - Saiko Ikeda
- Department of Nutritional Science, Nagoya University of Arts and Sciences, Nisshin, Japan
| | - Satoshi Mochizuki
- Faculty of Education and Welfare Science, Oita University, Oita, Japan
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
19
|
Anevska K, Cheong JN, Wark JD, Wlodek ME, Romano T. Maternal stress does not exacerbate long-term bone deficits in female rats born growth restricted, with differential effects on offspring bone health. Am J Physiol Regul Integr Comp Physiol 2018; 314:R161-R170. [DOI: 10.1152/ajpregu.00215.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Females born growth restricted have poor adult bone health. Stress exposure during pregnancy increases risk of pregnancy complications. We determined whether maternal stress exposure in growth-restricted females exacerbates long-term maternal and offspring bone phenotypes. On gestational day 18, bilateral uterine vessel ligation (restricted) or sham (control) surgery was performed on Wistar-Kyoto rats. At 4 mo, control and restricted females were mated and allocated to unstressed or stressed pregnancies. Stressed pregnancies had physiological measurements performed; unstressed females were not handled. After birth, mothers were aged to 13 mo. Second-generation (F2) offspring generated four experimental groups: control unstressed, restricted unstressed, control stressed and restricted stressed. F2 offspring were studied at postnatal day 35 (PN35), 6, 12, and 16 mo. Peripheral quantitative computed tomography was performed on maternal and F2 offspring femurs. Restricted females, irrespective of stress during pregnancy, had decreased endosteal circumference, bending strength, and increased osteocalcin concentrations after pregnancy at 13 mo. F2 offspring of stressed mothers were born lighter. F2 male offspring from stressed pregnancies had decreased trabecular content at 6 mo and decreased endosteal circumference at 16 mo. F2 female offspring from growth-restricted mothers had reduced cortical thickness at PN35 and reduced endosteal circumference at 6 mo. At 12 mo, females from unstressed restricted and stressed control mothers had decreased trabecular content. Low birth weight females had long-term bone changes, highlighting programming effects on bone health. Stress during pregnancy did not exacerbate these programmed effects. Male and female offspring responded differently to maternal growth restriction and stress, indicating gender-specific programming effects.
Collapse
Affiliation(s)
- Kristina Anevska
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Jean N. Cheong
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - John D. Wark
- Department of Medicine, The University of Melbourne and Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Mary E. Wlodek
- Department of Physiology, The University of Melbourne, Parkville, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| |
Collapse
|
20
|
Shahanoor Z, Sultana R, Baker MR, Romeo RD. Neuroendocrine stress reactivity of male C57BL/6N mice following chronic oral corticosterone exposure during adulthood or adolescence. Psychoneuroendocrinology 2017; 86:218-224. [PMID: 29020649 DOI: 10.1016/j.psyneuen.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 01/24/2023]
Abstract
Adolescence is associated with the maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the major neuroendocrine axis mediating the hormonal stress response. Adolescence is also a period in development marked by a variety of stress-related vulnerabilities, including psychological and physiological dysfunctions. Many of these vulnerabilities are accompanied by a disrupted HPA axis. In adult mice, a model of disrupted HPA function has been developed using oral chronic corticosterone administration via the drinking water, which results in various physiological and neurobehavioral abnormalities, including changes in stress reactivity and anxiety-like behaviors. In an effort to further complement and extend this model, we tested the impact of HPA disruption in adolescent mice. We also examined whether this disruption led to different outcomes depending on whether the treatment happened during adolescence or adulthood. In the current set of experiments, we exposed adult (70days of age) or adolescent (30days of age) male C57BL/6N mice to 4 weeks of either 0 or 25μg/ml oral corticosterone via their drinking water. We measured body weight during treatment and plasma corticosterone levels and activation of the paraventricular nucleus (PVN), as indexed by FOS immunohistochemistry, before and after a 30min session of restraint stress. Our data indicate that adolescent animals exposed to chronic corticosterone showed weight loss during treatment, an effect not observed in adults. Further, we found stress failed to elevate plasma corticosterone levels in treated mice, regardless of whether exposure occurred in adulthood or adolescence. Despite this reduced hormonal responsiveness, we found significant neural activation in the PVN of both adult- and adolescent-treated mice, indicating a dissociation between stress-induced peripheral and central stress responses following chronic corticosterone exposure. Moreover, stress-induced neural activation in the PVN was unaffected by chronic corticosterone treatment in adult animals, but led to a hyper-responsive PVN in the corticosterone-treated adolescent animals, suggesting an age-specific effect of corticosterone treatment on later PVN stress reactivity. Together, these experiments highlight the influence of developmental stage on somatic and neuroendocrine outcomes following chronic HPA disruption by noninvasive, oral corticosterone treatment. Given the substantial vulnerabilities to HPA dysfunctions during adolescence this model may prove useful in better understanding these vulnerabilities.
Collapse
Affiliation(s)
- Ziasmin Shahanoor
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Razia Sultana
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Madelyn R Baker
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States
| | - Russell D Romeo
- Department of Psychology and Neuroscience and Behavior Program, Barnard College of Columbia University, New York, NY 10027, United States.
| |
Collapse
|
21
|
|