1
|
Liu Z, Zhang H, Wang J, Wang D, Zeng T, Ai X, Wang X, Zhao X, Wu K. Functional effects of BMPR1B in porcine endometrium provides novel insights into the high fecundity of Taihu pigs. Int J Biol Macromol 2024:139188. [PMID: 39732258 DOI: 10.1016/j.ijbiomac.2024.139188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Litter size in pigs is affected by factors such as ovulation number, embryonic survival, and uterine environment conditions. Endometrial epithelial and stromal cells represent the first site of contact between the embryo and sows; therefore, dynamic changes in the growth and development of these cells are among the major factors affecting the intrauterine environment and implantation. Bone morphogenetic protein receptor type-1B (BMPR1B) is a receptor of the bone morphogenetic protein (BMP) family that has been identified as a candidate gene for reproductive traits in pigs. In our previous study, we used whole-genome resequencing to identify BMPR1B as a candidate gene affecting sow litter size in Taihu pigs and revealed the transcriptional regulation of BMPR1B in the endometrium. However, the functional role of BMPR1B in the growth and development of the endometrium in pigs has not been comprehensively elucidated. In this study, we isolated, characterized, and immortalized Meishan pig endometrial cells, and systematically explored the biological function of BMPR1B using a cell model. BMPR1B promoted cell proliferation and migration of endometrial stromal cells but inhibited that of endometrial epithelial cells. Transcriptome sequencing revealed potential pathways through which BMPR1B influences the growth and development of endometrial cells, including vascular system development, gland morphology, cell migration and adhesion, and reproductive system development. Moreover, the outstanding uterine function of Meishan pigs from endometrial genomic aspects was performed elucidated through CUT&Tag experiments. Most biological process, including reproductive system development, embryonic morphogenesis, and angiogenesis, were enriched by genes that were differentially bound by enhancer markers. These findings provide a valuable resource for future research on the mechanisms underlying the excellent uterine function in Meishan pigs.
Collapse
Affiliation(s)
- Zhexi Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen 518119, China
| | - Han Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ji Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tong Zeng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohua Ai
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Wang
- Beijing Municipal General Station for Animal Husbandry & Veterinary Service, Beijing 100107, China
| | - Xingbo Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Keliang Wu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; CAU-SC Advanced Agricultural & Industrial institute, CAU-SCCD Advanced Agricultural & Industrial institute, China Agricultural University, Chengdu 611430, China.
| |
Collapse
|
2
|
Zhou H, Tan L, Zhang B, Kwong DLW, Wong CN, Zhang Y, Ru B, Lyu Y, Siu KTH, Luo J, Yang Y, Liu Q, Chen Y, Zhang W, He C, Jiang P, Qin Y, Liu B, Guan XY. GPRC5A promotes lung colonization of esophageal squamous cell carcinoma. Nat Commun 2024; 15:9950. [PMID: 39550386 PMCID: PMC11569164 DOI: 10.1038/s41467-024-54251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Emerging evidence suggests that cancer cells may disseminate early, prior to the formation of traditional macro-metastases. However, the mechanisms underlying the seeding and transition of early disseminated cancer cells (DCCs) into metastatic tumors remain poorly understood. Through single-cell RNA sequencing, we show that early lung DCCs from esophageal squamous cell carcinoma (ESCC) exhibit a trophoblast-like 'tumor implantation' phenotype, which enhances their dissemination and supports metastatic growth. Notably, ESCC cells overexpressing GPRC5A demonstrate improved implantation and persistence, resulting in macro-metastases in the lungs. Clinically, elevated GPRC5A level is associated with poorer outcomes in a cohort of 148 ESCC patients. Mechanistically, GPRC5A is found to potentially interact with WWP1, facilitating the polyubiquitination and degradation of LATS1, thereby activating YAP1 signaling pathways essential for metastasis. Importantly, targeting YAP1 axis with CA3 or TED-347 significantly diminishes early implantation and macro-metastases. Thus, the GPRC5A/WWP1/LATS1/YAP1 pathway represents a crucial target for therapeutic intervention in ESCC lung metastases.
Collapse
Grants
- Hong Kong Research Grant Council (RGC) grants including Collaborative Research Funds (C7065-18GF, C7026-18GF and C4039-19GF), Research Impact Fund (R4017-18, R1020-18F and R7022-20), General Research Fund (17119322), Theme-based Research Scheme Fund (T12-703/22-R), the National Natural Science Foundation of China (82072738, 82273483), Shenzhen Key Laboratory for cancer metastasis and personalized therapy (ZDSYS20210623091811035), Shenzhen Science and Technology Program (JCYJ20220818103014030, KQTD20180411185028798, JCYJ20220818103012025), Sanming Project of Medicine in Shenzhen (SZSM202211017), Guangdong Science and Technology Department (2020B1212030004), the Program for Guangdong Introducing Innovative and Entrepreneurial Team (2019BT02Y198)
- National Natural Science Foundation of China (82303160), GuangdongBasic and Applied Basic Research Foundation (2023A1515010109)
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Licheng Tan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Dora Lai Wan Kwong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Beibei Ru
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yingchen Lyu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Luo
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qin Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yixin Chen
- Department of Liver Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaohui He
- Department of Cardiovascular Surgery, Songshan Lake Central Hospital of Dongguan City, Dongguan, China
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanru Qin
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Centre for Cancer Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Kleinová M, Varga I, Čeháková M, Valent M, Klein M. Exploring the black box of human reproduction: endometrial organoids and assembloids - generation, implantation modeling, and future clinical perspectives. Front Cell Dev Biol 2024; 12:1482054. [PMID: 39507423 PMCID: PMC11539068 DOI: 10.3389/fcell.2024.1482054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
One of the critical processes in human reproduction that is still poorly understood is implantation. The implantation of an early human embryo is considered a significant limitation of successful pregnancy. Therefore, researchers are trying to develop an ideal model of endometrium in vitro that can mimic the endometrial micro-environment in vivo as much as possible. The ultimate goal of endometrial modeling is to study the molecular interactions at the embryo-maternal interface and to use this model as an in vitro diagnostic tool for infertility. Significant progress has been made over the years in generating such models. The first experiments of endometrial modeling involved animal models, which are undoubtedly valuable, but at the same time, their dissimilarities with human tissue represent a significant obstacle to further research. This fact led researchers to develop basic monolayer coculture systems using uterine cells obtained from biopsies and, later on, complex and multilayer coculture models. With successful tissue engineering methods and various cultivation systems, it is possible to form endometrial two-dimensional (2D) models to three-dimensional (3D) organoids and novel assembloids that can recapitulate many aspects of endometrial tissue architecture and cell composition. These organoids have already helped to provide new insight into the embryo-endometrium interplay. The main aim of this paper is a comprehensive review of past and current approaches to endometrial model generation, their feasibility, and potential clinical application for infertility treatment.
Collapse
Affiliation(s)
- Mária Kleinová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michaela Čeháková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Valent
- Department of Gynecology and Obstetrics, University Hospital Bratislava – Kramáre Workplace, Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
4
|
Yun BS, Yun NY, Lee JE, Go M, Jang HY, Park JE, Roh JW, Shim SS. Endometrial E-cadherin and N-cadherin Expression during the Mid-Secretory Phase of Women with Ovarian Endometrioma or Uterine Fibroids. J Pers Med 2024; 14:920. [PMID: 39338174 PMCID: PMC11433430 DOI: 10.3390/jpm14090920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Endometriosis and uterine fibroids are benign conditions frequently linked to subfertility/infertility. Recent research has highlighted the importance of epithelial-mesenchymal transition between embryonic and endometrial cells in the context of embryo implantation. Additionally, the adverse endometrial environment during implantation has been proposed as a mechanism contributing to infertility in endometriosis. Nevertheless, the role of cadherin molecule alterations in relation to endometrial receptivity and embryo invasion remains a subject of controversy. METHODS We investigated the expression patterns of E-cadherin and N-cadherin in the endometria of women with ovarian endometrioma or uterine fibroids and assessed whether they differed from those of healthy women. We enrolled 17 women with ovarian endometrioma, 16 with uterine fibroids, and 6 healthy women. Endometrial tissues were obtained at the mid-secretory phase on days 19-24 of the menstrual cycle. The E-cadherin and N-cadherin mRNA and protein expression levels were measured using quantitative reverse transcriptase polymerase chain reaction and Western blot analysis, respectively. RESULTS The E-cadherin and N-cadherin mRNA expression levels were higher and lower, respectively, in the endometrium of women with ovarian endometrioma than in those of the controls. In the endometrium of women with uterine fibroids, similar patterns with higher E-cadherin and lower N-cadherin levels were observed compared with that of the controls. Protein expression showed similar patterns. CONCLUSIONS Our findings revealed higher E-cadherin expression and lower N-cadherin expression in the endometria of women with infertility-related diseases than in those of healthy women in the mid-secretory phase. This suggests a resistance to endometrial receptivity, potentially reflecting mesenchymal-epithelial transition properties.
Collapse
Affiliation(s)
- Bo Seong Yun
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang 10414, Republic of Korea
| | - Na Yeon Yun
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jung Eun Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Minyeon Go
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Hee Yeon Jang
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Ji Eun Park
- Center for Genome Diagnostics, CHA Biotech Inc., Seoul 06125, Republic of Korea
| | - Ju-Won Roh
- Department of Obstetrics and Gynecology, CHA Ilsan Medical Center, CHA University, Goyang 10414, Republic of Korea
| | - Sung Shin Shim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University, Seoul 06125, Republic of Korea
| |
Collapse
|
5
|
Mousavi SO, Reshi QUA, Godakumara K, Kodithuwakku S, Fazeli A. Extracellular vesicles as mediators of stress response in embryo-maternal communication. Front Cell Dev Biol 2024; 12:1440849. [PMID: 39161594 PMCID: PMC11330882 DOI: 10.3389/fcell.2024.1440849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: The pivotal role of extracellular vesicles (EVs) in facilitating effective communication between the embryo and maternal cells during the preimplantation stage of pregnancy has been extensively explored. Nonetheless, inquiries persist regarding the alterations in EV cargo from endometrial cells under stress conditions and its potential to elicit specific stress responses in trophoblast cells. Thus, the aim of this study was to elucidate the involvement of EV miRNA miRNAs in transmitting stress signals from maternal cells to trophoblasts. Methods: The receptive endometrial epithelium analogue RL95-2 cells were subjected to stress induction with 200 µM CoCl2 for 24 h before EV isolation. JAr trophoblast spheroids, which serve as embryos, were subjected to treatment with stressed or unstressed EVs derived from RL95-2 cells for 24 h. Transcriptomic alterations in the treated JAr spheroids as well as in the untreated group, as a negative control, were investigated by mRNA sequencing. Furthermore, the changes in EV miRNAs were assessed by sequencing EV samples. Results: A comprehensive analysis comparing the miRNA profiles between stressed and unstressed EVs revealed significant changes in 25 miRNAs. Furthermore, transcriptomic analysis of JAr spheroids treated with stressed RL95-2EVs versus unstressed EVs or the untreated group demonstrated 6 and 27 differentially expressed genes, respectively. Pathway enrichment analysis showed that stressed EVs induce alterations in gene expression in trophoblast cells, which is partially mediated by EV microRNAs. Discussion: Our results suggest that EVs can transfer stress signals from endometrial cells to the embryo. These discoveries shed new light on the mechanism underlying implantation failures under stress conditions. Unraveling the role of EVs in transmitting stress signals, can extend our knowledge to pave the way for targeted interventions to manage stress-related implantation failures.
Collapse
Affiliation(s)
- Seyed Omid Mousavi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Chavez-Badiola A, Farías AFS, Mendizabal-Ruiz G, Silvestri G, Griffin DK, Valencia-Murillo R, Drakeley AJ, Cohen J. Use of artificial intelligence embryo selection based on static images to predict first-trimester pregnancy loss. Reprod Biomed Online 2024; 49:103934. [PMID: 38824762 DOI: 10.1016/j.rbmo.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 06/04/2024]
Abstract
RESEARCH QUESTION Can an artificial intelligence embryo selection assistant predict the incidence of first-trimester spontaneous abortion using static images of IVF embryos? DESIGN In a blind, retrospective study, a cohort of 172 blastocysts from IVF cases with single embryo transfer and a positive biochemical pregnancy test was ranked retrospectively by the artificial intelligence morphometric algorithm ERICA. Making use of static embryo images from a light microscope, each blastocyst was assigned to one of four possible groups (optimal, good, fair or poor), and linear regression was used to correlate the results with the presence or absence of a normal fetal heart beat as an indicator of ongoing pregnancy or spontaneous abortion, respectively. Additional analyses included modelling for recipient age and chromosomal status established by preimplantation genetic testing for aneuploidy (PGT-A). RESULTS Embryos classified as optimal/good had a lower incidence of spontaneous abortion (16.1%) compared with embryos classified as fair/poor (25%; OR = 0.46, P = 0.005). The incidence of spontaneous abortion in chromosomally normal embryos (determined by PGT-A) was 13.3% for optimal/good embryos and 20.0% for fair/poor embryos, although the difference was not significant (P = 0.531). There was a significant association between embryo rank and recipient age (P = 0.018), in that the incidence of spontaneous abortion was unexpectedly lower in older recipients (21.3% for age ≤35 years, 17.9% for age 36-38 years, 16.4% for age ≥39 years; OR = 0.354, P = 0.0181). Overall, these results support correlation between risk of spontaneous abortion and embryo rank as determined by artificial intelligence; classification accuracy was calculated to be 67.4%. CONCLUSIONS This preliminary study suggests that artificial intelligence (ERICA), which was designed as a ranking system to assist with embryo transfer decisions and ploidy prediction, may also be useful to provide information for couples on the risk of spontaneous abortion. Future work will include a larger sample size and karyotyping of miscarried pregnancy tissue.
Collapse
Affiliation(s)
- Alejandro Chavez-Badiola
- University of Kent, School of Biosciences, Canterbury, UK; IVF 2.0 Ltd, London, UK; New Hope Fertility Center, Guadalajara, Mexico; Conceivable Life Sciences, New York, NY, USA
| | | | - Gerardo Mendizabal-Ruiz
- Conceivable Life Sciences, New York, NY, USA; Departamento de Ciencias Computacionales, Universidad de Guadalajara, Guadalajara, Mexico
| | - Giuseppe Silvestri
- University of Kent, School of Biosciences, Canterbury, UK; Conceivable Life Sciences, New York, NY, USA
| | | | | | - Andrew J Drakeley
- IVF 2.0 Ltd, London, UK; Hewitt Fertility Centre, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Jacques Cohen
- IVF 2.0 Ltd, London, UK; Conceivable Life Sciences, New York, NY, USA
| |
Collapse
|
7
|
Deng ZM, Dai FF, Wang RQ, Deng HB, Yin TL, Cheng YX, Chen GT. Organ-on-a-chip: future of female reproductive pathophysiological models. J Nanobiotechnology 2024; 22:455. [PMID: 39085921 PMCID: PMC11290169 DOI: 10.1186/s12951-024-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fang-Fang Dai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Rui-Qi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Hong-Bing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
8
|
Sun B, Cheng X, Wu Q. The Endometrial Stem/Progenitor Cells and Their Niches. Stem Cell Rev Rep 2024; 20:1273-1284. [PMID: 38635126 DOI: 10.1007/s12015-024-10725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Endometrial stem/progenitor cells are a type of stem cells with the ability to self-renew and differentiate into multiple cell types. They exist in the endometrium and form niches with their neighbor cells and extracellular matrix. The interaction between endometrial stem/progenitor cells and niches plays an important role in maintaining, repairing, and regenerating the endometrial structure and function. This review will discuss the characteristics and functions of endometrial stem/progenitor cells and their niches, the mechanisms of their interaction, and their roles in endometrial regeneration and diseases. Finally, the prospects for their applications will also be explored.
Collapse
Affiliation(s)
- Baolan Sun
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Wu
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
9
|
Bui BN, Kukushkina V, Meltsov A, Olsen C, van Hoogenhuijze N, Altmäe S, Mol F, Teklenburg G, de Bruin J, Besselink D, Stevens Brentjens L, Obukhova D, Zamani Esteki M, van Golde R, Romano A, Laisk T, Steba G, Mackens S, Salumets A, Broekmans F. The endometrial transcriptome of infertile women with and without implantation failure. Acta Obstet Gynecol Scand 2024; 103:1348-1365. [PMID: 38520066 PMCID: PMC11168281 DOI: 10.1111/aogs.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION Implantation failure after transferring morphologically "good-quality" embryos in in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) may be explained by impaired endometrial receptivity. Analyzing the endometrial transcriptome analysis may reveal the underlying processes and could help in guiding prognosis and using targeted interventions for infertility. This exploratory study investigated whether the endometrial transcriptome profile was associated with short-term or long-term implantation outcomes (ie success or failure). MATERIAL AND METHODS Mid-luteal phase endometrial biopsies of 107 infertile women with one full failed IVF/ICSI cycle, obtained within an endometrial scratching trial, were subjected to RNA-sequencing and differentially expressed genes analysis with covariate adjustment (age, body mass index, luteinizing hormone [LH]-day). Endometrial transcriptomes were compared between implantation failure and success groups in the short term (after the second fresh IVF/ICSI cycle) and long term (including all fresh and frozen cycles within 12 months). The short-term analysis included 85/107 women (33 ongoing pregnancy vs 52 no pregnancy), excluding 22/107 women. The long-term analysis included 46/107 women (23 'fertile' group, ie infertile women with a live birth after ≤3 embryos transferred vs 23 recurrent implantation failure group, ie no live birth after ≥3 good quality embryos transferred), excluding 61/107 women not fitting these categories. As both analyses drew from the same pool of 107 samples, there was some sample overlap. Additionally, cell type enrichment scores and endometrial receptivity were analyzed, and an endometrial development pseudo-timeline was constructed to estimate transcriptomic deviations from the optimum receptivity day (LH + 7), denoted as ΔWOI (window of implantation). RESULTS There were no significantly differentially expressed genes between implantation failure and success groups in either the short-term or long-term analyses. Principal component analysis initially showed two clusters in the long-term analysis, unrelated to clinical phenotype and no longer distinct following covariate adjustment. Cell type enrichment scores did not differ significantly between groups in both analyses. However, endometrial receptivity analysis demonstrated a potentially significant displacement of the WOI in the non-pregnant group compared with the ongoing pregnant group in the short-term analysis. CONCLUSIONS No distinct endometrial transcriptome profile was associated with either implantation failure or success in infertile women. However, there may be differences in the extent to which the WOI is displaced.
Collapse
Affiliation(s)
- Bich Ngoc Bui
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Alvin Meltsov
- Competence Center on Health TechnologiesTartuEstonia
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Catharina Olsen
- Center for Medical Genetics, Research Group Reproduction and GeneticsVrije Universiteit BrusselBrusselsBelgium
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore)VUB‐ULBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in Brussels (IB)BrusselsBelgium
| | - Nienke van Hoogenhuijze
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Signe Altmäe
- Department of Biochemistry and Molecular Biology, Faculty of SciencesUniversity of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria, ibs.GRANADAGranadaSpain
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institute and Karolinska University HospitalStockholmSweden
| | - Femke Mol
- Center for Reproductive Medicine, Reproduction and Development, Amsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Jan‐Peter de Bruin
- Department of Obstetrics and GynecologyJeroen Bosch Hospital‘s‐HertogenboschThe Netherlands
| | - Dagmar Besselink
- Department of Obstetrics and GynecologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Linda Stevens Brentjens
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Darina Obukhova
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
- Department of Genetics and Cell Biology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Ron van Golde
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW, School for Oncology and ReproductionMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Triin Laisk
- Estonian Genome Center, Institute of GenomicsUniversity of TartuTartuEstonia
| | - Gaby Steba
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Shari Mackens
- Brussels IVFUniversitair Ziekenhuis Brussel, Vrije Universiteit BrusselBrusselsBelgium
| | - Andres Salumets
- Competence Center on Health TechnologiesTartuEstonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC)Karolinska Institute and Karolinska University HospitalStockholmSweden
- Department of Obstetrics and Gynecology, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Frank Broekmans
- Department of Gynecology and Reproductive MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
- Center for Infertility Care, Dijklander HospitalPurmerendThe Netherlands
| |
Collapse
|
10
|
Patronia MM, Potiris A, Mavrogianni D, Drakaki E, Karampitsakos T, Machairoudias P, Topis S, Zikopoulos A, Vrachnis D, Moustakli E, Skentou C, Domali E, Vrachnis N, Drakakis P, Stavros S. The Expression of microRNAs and Their Involvement in Recurrent Pregnancy Loss. J Clin Med 2024; 13:3361. [PMID: 38929888 PMCID: PMC11203554 DOI: 10.3390/jcm13123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Recurrent pregnancy loss refers to the spontaneous demise of two or more pregnancies before the 24 weeks of gestation. In almost half of the cases of recurrent miscarriages, the causes remain unknown since there is no reliable way of prognosis, early diagnosis, or treatment. Recent research has detected differential expression of certain miRNAs in reproductive system pathologies. Methods: The aim of the present review is to focus on microRNAs and their relationship with idiopathic recurrent miscarriages and to correlate miRNA expression with recurrent miscarriage and examine their potential role as biomarkers. Pubmed/Medline and Scopus databases were searched up to 31st January 2024 with terms related to recurrent pregnancy loss and miRNAs. Results: In total, 21 studies were selected for the review. A total of 75 different miRNAs were identified, showing a statistically significant differential expression. Around 40 miRNAs had increased expression, such as miR-520, miR-184 and miR-100-5p, 21 decreased, such as let-7c, and 14 had either increased or decreased expression depending on the study, such as miR-21. Conclusions: The dysregulation of miRNA expression is strongly associated with recurrent miscarriages. The circulating in the peripheral blood miRNAs, miR-100-5p and let-7c, might be utilized as biomarkers and establish a valuable non-invasive prognostic and diagnostic tool in the future.
Collapse
Affiliation(s)
- Maria-Markella Patronia
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Pavlos Machairoudias
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Spyridon Topis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Athanasios Zikopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Dionysios Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Chara Skentou
- Department of Obstetrics and Gynecology, Medical School of the University of Ioannina, 45110 Ioannina, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece; (M.-M.P.); (D.M.); (E.D.)
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (T.K.); (P.M.); (S.T.); (A.Z.); (D.V.); (N.V.); (P.D.); (S.S.)
| |
Collapse
|
11
|
Afzal A, Khan M, Gul Z, Asif R, Shahzaman S, Parveen A, Imran M, Khawar MB. Extracellular Vesicles: the Next Frontier in Pregnancy Research. Reprod Sci 2024; 31:1204-1214. [PMID: 38151656 DOI: 10.1007/s43032-023-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Extracellular vehicles (EVs) have been involved in several aspects of pregnancy, including endometrial receptivity, embryo implantation, and embryo-maternal communication showing them associated with pregnancy disorders, such as preeclampsia, gestational diabetes mellitus, and preterm birth. Further research is warranted to fully comprehend the exact pathophysiological roles of EVs and to develop new therapies targeting EVs thereby improving pregnancy outcomes. Herein, we review the recent knowledge on the multifaceted roles of EVs during pregnancy and address the majority of the molecular interactions between EVs, maternal, and fetal cells with an emphasis on disorders of pregnancy under the influence of EVs. Moreover, we also discuss its applications in clinical trials followed by prospects.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Madeeha Khan
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rameen Asif
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Asia Parveen
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Imran
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology & Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
12
|
Wang H, Lin Y, Chen R, Zhu Y, Wang H, Li S, Yu L, Zhang K, Liu Y, Jing T, Sun F. Human Seminal Extracellular Vesicles Enhance Endometrial Receptivity Through Leukemia Inhibitory Factor. Endocrinology 2024; 165:bqae035. [PMID: 38518755 DOI: 10.1210/endocr/bqae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Seminal extracellular vesicles (EVs) contain different subgroups that have diverse effects on sperm function. However, the effect of seminal EVs-especially their subgroups-on endometrial receptivity is largely unknown. Here, we found that seminal EVs could be divided into high-density EVs (EV-H), medium density EVs, and low-density EVs after purification using iodixanol. We demonstrated that EV-H could promote the expression and secretion of leukemia inhibitor factor (LIF) in human endometrial cells. In EV-H-treated endometrial cells, we identified 1274 differentially expressed genes (DEGs). DEGs were enriched in cell adhesion and AKT and STAT3 pathways. Therefore, we illustrated that EV-H enhanced the adhesion of human choriocarcinoma JAr cell spheroids to endometrial cells through the LIF-STAT3 pathway. Collectively, our findings indicated that seminal EV-H could regulate endometrial receptivity through the LIF pathway, which could provide novel insights into male fertility.
Collapse
Affiliation(s)
- Hanshu Wang
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongrong Chen
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu Zhu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Hongqiang Wang
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Shengxian Li
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Lei Yu
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Kaishu Zhang
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yujie Liu
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Tao Jing
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, Zhejiang, China
- School of Basic Medical Sciences, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
13
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
14
|
Zang X, Huang Q, Gan J, Jiang L, Meng F, Gu T, Cai G, Li Z, Wu Z, Hong L. Protein Dynamic Landscape of Pig Embryos during Peri-Implantation Development. J Proteome Res 2024; 23:775-785. [PMID: 38227546 DOI: 10.1021/acs.jproteome.3c00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Properly developed embryos are critical for successful embryo implantation. The dynamic landscape of proteins as executors of biological processes in pig peri-implantation embryos has not been reported so far. In this study, we collected pig embryos from days 9, 12, and 15 of pregnancy during the peri-implantation stage for a PASEF-based quantitative proteomic analysis. In total, approximately 8000 proteins were identified. These proteins were classified as stage-exclusive proteins and stage-specific proteins, respectively, based on their presence and dynamic abundance changes at each stage. Functional analysis showed that their roles are consistent with the physiological processes of corresponding stages, such as the biosynthesis of amino acids and peptides at P09, the regulation of actin cytoskeletal organization and complement activation at P12, and the vesicular transport at P15. Correlation analysis between mRNAs and proteins showed a general positive correlation between pig peri-implantation embryonic mRNAs and proteins. Cross-species comparisons with human early embryos identified some conserved proteins that may be important in regulating embryonic development, such as STAT3, AP2A1, and PFAS. Our study provides a comprehensive overview of the pig embryo proteome during implantation, fills gaps in relevant developmental studies, and identifies some important proteins that may serve as potential targets for future research.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiuying Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527300, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| |
Collapse
|
15
|
Zhou B, Yu G, Zhao M, Li Y, Li J, Xiang Y, Tong L, Chu X, Wang C, Song Y. The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways. J Assist Reprod Genet 2024; 41:493-504. [PMID: 38049704 PMCID: PMC10894799 DOI: 10.1007/s10815-023-02995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells' adhesion to endometrial cells. METHODS WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids' adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes. RESULTS lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells. CONCLUSION These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids' adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.
Collapse
Affiliation(s)
- Bo Zhou
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, People's Republic of China
| | - Guo Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Mingqi Zhao
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Jing Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Lili Tong
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Xiying Chu
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Caiyi Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
16
|
Zahir M, Tavakoli B, Zaki-Dizaji M, Hantoushzadeh S, Majidi Zolbin M. Non-coding RNAs in Recurrent implantation failure. Clin Chim Acta 2024; 553:117731. [PMID: 38128815 DOI: 10.1016/j.cca.2023.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Recurrent implantation failure (RIF), defined as the inability to achieve conception following multiple consecutive in-vitro fertilization (IVF) attempts, represents a complex and multifaceted challenge in reproductive medicine. The emerging role of non-coding RNAs in RIF etiopathogenesis has only gained prominence over the last decade, illustrating a new dimension to our understanding of the intricate network underlying RIF. Successful embryo implantation demands a harmonious synchronization between an adequately decidualized endometrium, a competent blastocyst, and effective maternal-embryonic interactions. Emerging evidence has clarified the involvement of a sophisticated network of non-coding RNAs, including microRNAs, circular RNAs, and long non-coding RNAs, in orchestrating these pivotal processes. Disconcerted expression of these molecules can disrupt the delicate equilibrium required for implantation, amplifying the risk of RIF. This comprehensive review presents an in-depth investigation of the complex role played by non-coding RNAs in the pathogenesis of RIF. Furthermore, it underscores the vast potential of non-coding RNAs as diagnostic biomarkers and therapeutic targets, with the ultimate goal of enhancing implantation success rates in IVF cycles. As ongoing research continues to unravel the intercalated web of molecular interactions, exploiting the power of non-coding RNAs may offer promising avenues for mitigating the challenges posed by RIF and improving the outcomes of assisted reproduction.
Collapse
Affiliation(s)
- Mazyar Zahir
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Tavakoli
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Maragheh University, Maragheh, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Sedigheh Hantoushzadeh
- Vali-E-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Fierro JJ, Prins JR, Henning S, Bootsma H, Westra J, de Leeuw K. Endometrial immune profiling as a new tool for preconceptional assessment in patients with systemic autoimmune diseases. Front Immunol 2024; 14:1334231. [PMID: 38250081 PMCID: PMC10797870 DOI: 10.3389/fimmu.2023.1334231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Affiliation(s)
- Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Grupo Reproducción, Departamento de Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jelmer R Prins
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Svenja Henning
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Seo H, Bazer FW, Johnson GA. Early Syncytialization of the Ovine Placenta Revisited. Results Probl Cell Differ 2024; 71:127-142. [PMID: 37996676 DOI: 10.1007/978-3-031-37936-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Placentation is the development of a temporary arrangement between the maternal uterus and blastocyst-derived placental tissues designed to transport nutrients, gases, and other products from the mother to the embryo and fetus. Placentation differs histologically among species, but all types of placentation share the common trait of utilizing highly complex cell-to-cell and tissue-to-tissue morphological and biochemical interactions to remodel the uterine-placental interface. An elegant series of electron microscopy (EM) images supports the classification of ovine placentation as synepitheliochorial, because uterine luminal epithelial (LE) cells are maintained at the uterine-placental interface through incorporation into trophoblast syncytial plaques. In this review, we utilize immunofluorescence microscopy to provide further insights into early syncytialization of the ovine placenta. These observations, based on results using immunofluorescence microscopy, complement and expand, not replace, our understanding of syncytialization in sheep.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
19
|
Bolumar D, Moncayo-Arlandi J, Gonzalez-Fernandez J, Ochando A, Moreno I, Monteagudo-Sanchez A, Marin C, Diez A, Fabra P, Checa MA, Espinos JJ, Gardner DK, Simon C, Vilella F. Vertical transmission of maternal DNA through extracellular vesicles associates with altered embryo bioenergetics during the periconception period. eLife 2023; 12:RP88008. [PMID: 38149847 PMCID: PMC10752591 DOI: 10.7554/elife.88008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The transmission of DNA through extracellular vesicles (EVs) represents a novel genetic material transfer mechanism that may impact genome evolution and tumorigenesis. We aimed to investigate the potential for vertical DNA transmission within maternal endometrial EVs to the pre-implantation embryo and describe any effect on embryo bioenergetics. We discovered that the human endometrium secretes all three general subtypes of EV - apoptotic bodies (ABs), microvesicles (MVs), and exosomes (EXOs) - into the human endometrial fluid (EF) within the uterine cavity. EVs become uniformly secreted into the EF during the menstrual cycle, with the proportion of different EV populations remaining constant; however, MVs contain significantly higher levels of mitochondrial (mt)DNA than ABs or EXOs. During the window of implantation, MVs contain an eleven-fold higher level of mtDNA when compared to cells-of-origin within the receptive endometrium, which possesses a lower mtDNA content and displays the upregulated expression of mitophagy-related genes. Furthermore, we demonstrate the internalization of EV-derived nuclear-encoded (n)DNA/mtDNA by trophoblast cells of murine embryos, which associates with a reduction in mitochondrial respiration and ATP production. These findings suggest that the maternal endometrium suffers a reduction in mtDNA content during the preconceptional period, that nDNA/mtDNA become packaged into secreted EVs that the embryo uptakes, and that the transfer of DNA to the embryo within EVs occurs alongside the modulation of bioenergetics during implantation.
Collapse
Affiliation(s)
- David Bolumar
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | | | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| | - Inmaculada Moreno
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | - Carlos Marin
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | - Antonio Diez
- Igenomix Foundation, INCLIVA Health Research InstituteValenciaSpain
| | | | - Miguel Angel Checa
- Clinica FerttyBarcelonaSpain
- Department of Medicine and Life Sciences, University Pompeu FabraBarcelonaSpain
| | - Juan Jose Espinos
- Clinica FerttyBarcelonaSpain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, UABBellaterraSpain
| | - David K Gardner
- School of Biosciences, University of MelbourneParkvilleAustralia
- Melbourne IVFEast MelbourneAustralia
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of ValenciaValenciaSpain
- Department of Obstetrics and Gynecology, BIDMC, Harvard UniversityBostonUnited States
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research InstituteValenciaSpain
| |
Collapse
|
20
|
Teng W, Xian H, Wang F, Wang Y, Meng X, Zhang X, Shan X, Yi J. Effect of sequential embryo transfer on in vitro fertilization and embryo transfer outcomes: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1303493. [PMID: 38169781 PMCID: PMC10758412 DOI: 10.3389/fmed.2023.1303493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background Sequential embryo transfer has been recognized as a strategy to increase pregnancy rates in women undergoing in vitro fertilization and embryo transfer (IVF-ET). However, its impact on assisted reproductive outcomes remains to be substantiated by robust evidence. This systematic review aims to summarize and analyze the available evidence to investigate the effect of sequential embryo transfer on assisted reproductive outcomes. Methods A comprehensive literature search was executed across the Pubmed, Cochrane Library, Web of Science, and Scopus databases in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were aggregated utilizing a random effects model, and the resultant outcomes were articulated as odds ratios (ORs) along with their 95% confidence intervals (CIs). Results The pooled results revealed a statistically significant enhancement in reproductive outcomes for infertile patients undergoing sequential embryo transfer as evidenced by elevated rates of chemical pregnancy (OR = 1.67, 95% CI = 1.23-2.27), clinical pregnancy (OR = 1.78, 95% CI = 1.43-2.21), and ongoing pregnancy (OR = 1.54, 95% CI = 1.03-2.31). Compared with cleavage-stage embryo transfer, sequential transfer yielded superior outcomes in terms of chemical pregnancy rate (OR = 2.08, 95% CI = 1.35-3.19) and clinical pregnancy rate (OR = 1.78, 95% CI = 1.37-2.31). Furthermore, among the repeated implantation failure (RIF) cohort, sequential embryo transfer surpassed blastocyst-stage transfer, delivering a heightened chemical pregnancy rate (OR = 1.66, 95% CI = 1.19-2.53) and clinical pregnancy rate (OR = 1.65, 95% CI = 1.19-2.27). Conclusion Our meta-analysis indicates that sequential transfer may enhance clinical pregnancy rate in a small subgroup of well-selected women. While promising, further evidence from prospective studies is needed.
Collapse
Affiliation(s)
- Wending Teng
- Department of Reproductive Health and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Xian
- Department of Reproductive Health and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Department of Reproductive Health and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yicheng Wang
- Department of Reproductive Health and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xiaojian Zhang
- Sichuan Academy of Medical Sciences of Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xudong Shan
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiangying Yi
- Department of Reproductive Health and Infertility, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Wen B, Liao H, Lin W, Li Z, Ma X, Xu Q, Yu F. The Role of TGF-β during Pregnancy and Pregnancy Complications. Int J Mol Sci 2023; 24:16882. [PMID: 38069201 PMCID: PMC10706464 DOI: 10.3390/ijms242316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β), a multifunctional cytokine, is one of the most important inflammatory cytokines closely related to pregnancy. It plays significant roles in hormone secretion, placental development, and embryonic growth during pregnancy. TGF-β is implicated in embryo implantation and inhibits the invasion of extraepithelial trophoblast cells. It also moderates the mother-fetus interaction by adjusting the secretion pattern of immunomodulatory factors in the placenta, consequently influencing the mother's immune cells. The TGF-β family regulates the development of the nervous, respiratory, and cardiovascular systems by regulating gene expression. Furthermore, TGF-β has been associated with various pregnancy complications. An increase in TGF-β levels can induce the occurrences of pre-eclampsia and gestational diabetes mellitus, while a decrease can lead to recurrent miscarriage due to the interference of the immune tolerance environment. This review focuses on the role of TGF-β in embryo implantation and development, providing new insights for the clinical prevention and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Baohong Wen
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Huixin Liao
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Weilin Lin
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Zhikai Li
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Xiaoqing Ma
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
| | - Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Feiyuan Yu
- Basic Medical Experiment Teaching Center, Shantou University Medical College, Shantou 515041, China; (B.W.); (H.L.); (W.L.); (Z.L.); (X.M.)
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
22
|
Hao K, Wang J, Yu H, Chen L, Zeng W, Wang Z, Hu G. Peroxisome Proliferator-Activated Receptor γ Regulates Lipid Metabolism in Sheep Trophoblast Cells through mTOR Pathway-Mediated Autophagy. PPAR Res 2023; 2023:6422804. [PMID: 38020065 PMCID: PMC10651342 DOI: 10.1155/2023/6422804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key nuclear receptor transcription factor that is highly expressed in trophoblastic cells during embryonic attachment and is accompanied by rapid cell proliferation and increased lipid accumulation. We previously showed that the autophagy pathway is activated in cells after activation of PPARγ, accompanied by increased lipid accumulation. In this study, we used PPARγ agonist rosiglitazone and inhibitor GW9662, as well as autophagy activator rapamycin and inhibitor 3-methyladenine, to unravel the probable mechanism of PPARγ engaged in lipid metabolism in sheep trophoblast cells (STCs). After 12 h, 24 h, and 48 h of drug treatment, the levels of autophagy-related proteins were detected by Western blot, the triglyceride content and MDA level of cells were detected by colorimetry, and the lipid droplets and lysosomes were localized by immunofluorescence. We found that PPARγ inhibited the activity of mammalian target of rapamycin (mTOR) pathway in STCs for a certain period of time, promoted the increase of autophagy and lysosome formation, and enhanced the accumulation of lipid droplets and triglycerides. Compared with cells whose PPARγ function is activated, blocking autophagy before activating PPARγ will hinder lipid accumulation in STCs. Pretreatment of cells with rapamycin promoted autophagy with results similar to rosiglitazone treatment, while inhibition of autophagy with 3-methyladenine reduced lysosome and lipid accumulation. Based on these observations, we conclude that PPARγ can induce autophagy by blocking the mTOR pathway, thereby promoting the accumulation of lipid droplets and lysosomal degradation, providing an energy basis for the rapid proliferation of trophoblast cells during embryo implantation. In brief, this study partially revealed the molecular regulatory mechanism of PPARγ, mTOR pathway, and autophagy on trophoblast cell lipid metabolism, which provides a theoretical basis for further exploring the functional regulatory network of trophoblast cells during the attachment of sheep embryos.
Collapse
Affiliation(s)
- Kexing Hao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Hengbin Yu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lei Chen
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Guangdong Hu
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
23
|
Sui C, Liao Z, Bai J, Hu D, Yue J, Yang S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur J Med Res 2023; 28:471. [PMID: 37899459 PMCID: PMC10614333 DOI: 10.1186/s40001-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualization, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehensively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implantation. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for further research.
Collapse
Affiliation(s)
- Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
24
|
Li X, Jin J, Long X, Weng R, Xiong W, Liang J, Liu J, Sun J, Cai X, Zhang L, Liu Y. METTL3-regulated m6A modification impairs the decidualization of endometrial stromal cells by regulating YTHDF2-mediated degradation of FOXO1 mRNA in endometriosis-related infertility. Reprod Biol Endocrinol 2023; 21:99. [PMID: 37891533 PMCID: PMC10605339 DOI: 10.1186/s12958-023-01151-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Endometriosis-related infertility is a common worldwide reproductive health concern. Despite ongoing research, the causes of infertility remain unclear. Evidence suggests that epigenetic regulation is crucial in reproduction. However, the role of N6-methyladenosine (m6A) modification of RNA in endometriosis-related infertility requires further investigation. METHODS We examined the expression of m6A and methyltransferase-like 3 (METTL3) in endometrial samples taken from normal fertile women in the proliferative phase (the NP group) or the mid-secretory phase (the NS group) or from women with endometriosis-related infertility at the mid-secretory phase (the ES group). We treated primary endometrial stromal cells (ESCs) with medroxyprogesterone acetate and 8-Bromo-cyclic adenosine monophosphate for in vitro decidualization and detected the expression of m6A, METTL3, and decidual markers. We analyzed the expression of m6A, METTL3, and forkhead box O1 (FOXO1) in ESCs from normal fertile women (the ND group) or women with endometriosis-related infertility (the ED group). We also assessed the expression of m6A, METTL3, and decidual markers, as well as the embryo adhesion rate, upon METTL3 overexpression or knockdown. Additionally, we investigated the role of METTL3 in embryo implantation in vivo by applying mice with endometriosis. Furthermore, we performed RNA stability assays, RNA immunoprecipitation (RIP), and methylated RIP assays to explore the mechanisms underlying the regulation of FOXO1 by METTL3-mediated m6A. RESULTS The expression of m6A and METTL3 was reduced only in the NS group; the NP and ES groups demonstrated increased m6A and METTL3 levels. m6A and METTL3 levels decreased in ESCs with prolonged decidual treatment. Compared to the ND group, m6A and METTL3 levels in the ED group increased after decidual treatment, whereas the expression of FOXO1 decreased. METTL3 overexpression suppressed the expression of decidual markers and embryo implantation in vitro; METTL3 knockdown exhibited the opposite effect. Inhibition of METTL3 promoted embryo implantation in vivo. Furthermore, we observed that METTL3-mediated m6A regulated the degradation of FOXO1 mRNA through YTHDF2, a m6A binding protein. CONCLUSIONS METTL3-regulated m6A promotes YTHDF2-mediated decay of FOXO1 mRNA, thereby affecting cellular decidualization and embryo implantation. These findings provide novel insights into the development of therapies for women with endometriosis-related infertility.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jie Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xuefeng Long
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ruiwen Weng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Junjun Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Jingwen Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Xueqin Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
25
|
Pan X, Qing Q, Zhou J, Sun H, Li L, Cao W, Ye F, Zhu J, Sun Y, Wang L. Effect of Chinese patent medicine Kunling Pill on endometrial receptivity: A clinical trial, network pharmacology, and animal-based study. Drug Discov Ther 2023; 17:257-269. [PMID: 37599077 DOI: 10.5582/ddt.2023.01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Although pregnancy success rates are raised with assisted reproductive technology, it still cannot meet clinical demands. Kunling Pill (KLP), a traditional Chinese medicine, is widely used in various gynecological disorders, particularly in improving fertility and pregnancy rates. However, the underlying mechanism of how KLP affects pregnancy outcomes remains unclear. This study aimed to explore the effects and mechanisms of KLP on endometrial receptivity. Firstly, a retrospective trial was conducted to validate the efficacy of KLP on repeated implantation failure (RIF) patients. The result indicated a significant increase in the proportion of live birth in KLP group (30.56%) compared to the control group (16.89%). Secondly, network pharmacology methods predicted the active components and network targets of KLP. Endometrial receptivity is closely associated with the activation of inflammatory factors, predicting the function of KLP on the immune system. The estrogen and apoptotic signaling pathways were also highlighted in the gene ontology enrichment analysis. Thirdly, a decreased endometrial receptivity model was established by controlled ovarian hyperstimulation (COH) in female C57BL/6 mice, divided into the COH and KLP groups. Normal female mice are as control group. In vivo, KLP administration could increase endometrial thickness and the number of endometrial glands and pinopodes. In the endometrium, KLP supplementation upregulated the expressions of estrogen receptor α, progesterone receptor, endothelial nitric oxide synthase, and integrin αVβ3 in the murine uterus and reduced serum levels of estrogen and progesterone. KLP regulated the uterine immune cells and inhibited cell apoptosis in the ovary via Bcl-2/Bax/caspase-3 pathway. In conclusion, KLP administration raised the live birth rate in RIF patients to optimize medication regimens, mainly because KLP ameliorated impaired endometrial receptivity.
Collapse
Affiliation(s)
- Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Qi Qing
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Feijun Ye
- Reproductive Medicine Center, Zhoushan Maternal and Child Health Care Hospital, Zhoushan, Zhejiang, China
| | - Jun Zhu
- Department of Obstetrics and Gynecology, Wenling People's Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Yan Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
26
|
Jiao B, Wang Y, Li S, Lu J, Liu J, Xia J, Li Y, Xu J, Tian X, Qi B. Dissecting human placental cells heterogeneity in preeclampsia and gestational diabetes using single-cell sequencing. Mol Immunol 2023; 161:104-118. [PMID: 37572508 DOI: 10.1016/j.molimm.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are pregnancy-specific complications, which affect maternal health and fetal outcomes. Currently, clinical and pathological studies have shown that placenta homeostasis is affected by these two maternal diseases. In this study, we aimed to gain insight into the heterogeneous changes in cell types in placental tissue-isolated from cesarean section by single-cell sequencing, including those patients diagnosed with PE (n = 5), GDM (n = 5) and healthy control (n = 5). A total of 96,048 cells (PE: 31,672; GDM: 25,294; control: 39,082) were identified in six cell types, dominated by trophoblast cells and immune cells. In addition, trophoblast cells were divided into four subtypes, including cytotrophoblast cells (CTBs), villous cytotrophoblasts (VCTs), syncytiotrophoblast (STB), and extravillous trophoblasts (EVTs). Immune cells are divided into lymphocytes and macrophages, of which macrophages have 3 subtypes (decidual macrophages, Hofbauer cells and macrophages), and lymphocytes have 4 subtypes (BloodNK, T cells, plasma cells, and decidual natural killer cells). Meanwhile, we also proved the orderly differentiation sequence of CTB into VCT, then STB and EVT. By pair-wise analysis of the expression and enrichment of differentially expressed genes in trophoblast cells between PE, GDM and control, it was found that these cells were involved in immune, nutrient transfer, hormone and oxidative stress pathways. In addition, T cells and macrophages play an immune defense role in both PE and GDM. The proportion of CTB and EVT cells in placental tissue was confirmed by flow cytometry. Taken together, our results suggested that the human placenta is a dynamic heterogenous organ dominated by trophoblast and immune cells, which perform their respective roles and interact with other cells in the environment to maintain normal placental function.
Collapse
Affiliation(s)
- Bo Jiao
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yan Wang
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Shenghua Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jianan Lu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jian Liu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Ji Xia
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yisha Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Juanjuan Xu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Xiujuan Tian
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| | - Bangruo Qi
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| |
Collapse
|
27
|
Segura-Benítez M, Bas-Rivas A, Juárez-Barber E, Carbajo-García MC, Faus A, De Los Santos MJ, Pellicer A, Ferrero H. Human blastocysts uptake extracellular vesicles secreted by endometrial cells containing miRNAs related to implantation. Hum Reprod 2023:dead138. [PMID: 37407281 DOI: 10.1093/humrep/dead138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
STUDY QUESTION Are the extracellular vesicles (EVs) secreted by the maternal endometrium uptaken by human embryos and is their miRNA cargo involved in implantation and embryo development? SUMMARY ANSWER Data suggest that EVs secreted by human endometrial epithelial cells are internalized by human blastocysts, and transport miRNAs to modulate biological processes related to implantation events and early embryo development. WHAT IS KNOWN ALREADY Successful implantation is dependent on coordination between maternal endometrium and embryo, and EVs role in the required cell-to-cell crosstalk has recently been established. In this regard, our group previously showed that protein cargo of EVs secreted by primary human endometrial epithelial cells (pHEECs) is implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development. However, little is known about the regulation of these biological processes through EVs secreted by the endometrium at a transcriptomic level. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Endometrial biopsies were collected from healthy oocyte donors with confirmed fertility on the day of oocyte retrieval, 36 h after the LH surge. pHEECs were isolated from endometrial biopsies (n = 8 in each pool) and cultured in vitro. Subsequently, conditioned medium was collected and EVs were isolated and characterized. Uptake of EVs by human blastocysts and miRNA cargo of these EVs (n = 3 pools) was analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. EVs were fluorescently labeled with Bodipy-TR ceramide, and their uptake by human blastocysts was analyzed using confocal microscopy. Analysis of the miRNA cargo of EVs was performed using miRNA sequencing, target genes of the most expressed miRNA were annotated, and functional enrichment analysis was performed. MAIN RESULTS AND THE ROLE OF CHANCE EVs measured 100-300 nm in diameter, a concentration of 1.78 × 1011 ± 4.12 × 1010 (SD) particles/ml and expressed intraluminal protein markers Heat shock protein 70 (HSP70) and Tumor Susceptibility Gene 101 (TSG101), in addition to CD9 and CD81 transmembrane proteins. Human blastocysts efficiently internalized fluorescent EVs within 1-2 h, and more pronounced internalization was observed in the hatched pole of the embryos. miRNA-seq analysis featured 149 annotated miRNAs, of which 37 were deemed most relevant. The latter had 6592 reported gene targets, that in turn, have functional implications in several processes related to embryo development, oxygen metabolism, cell cycle, cell differentiation, apoptosis, metabolism, cellular organization, and gene expression. Among the relevant miRNAs contained in these EVs, we highlight hsa-miR-92a-3p, hsa-let-7b-5p, hsa-miR-30a-5p, hsa-miR-24-3p, hsa-miR-21-5p, and hsa-let-7a-5p as master regulators of the biological processes. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study defines potential biomarkers of endometrial receptivity and embryo competence that could be useful diagnostic and therapeutic targets for implantation success, as well as open insight further investigations to elucidate the molecular mechanisms implicated in a successful implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), the Health Institute Carlos III awarded to E.J.-B. (FI19/00110) and awarded to H.F. by the Miguel Servet Program 'Fondo Social Europeo «El FSE invierte en tu futuro»' (CP20/00120), and Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alba Bas-Rivas
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
28
|
Giri J, Modi D. Endometrial and placental stem cells in successful and pathological pregnancies. J Assist Reprod Genet 2023; 40:1509-1522. [PMID: 37338750 PMCID: PMC10352206 DOI: 10.1007/s10815-023-02856-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Collapse
Affiliation(s)
- Jayeeta Giri
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
29
|
Brown EDL, Obeng-Gyasi B, Hall JE, Shekhar S. The Thyroid Hormone Axis and Female Reproduction. Int J Mol Sci 2023; 24:9815. [PMID: 37372963 DOI: 10.3390/ijms24129815] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Thyroid function affects multiple sites of the female hypothalamic-pituitary gonadal (HPG) axis. Disruption of thyroid function has been linked to reproductive dysfunction in women and is associated with menstrual irregularity, infertility, poor pregnancy outcomes, and gynecological conditions such as premature ovarian insufficiency and polycystic ovarian syndrome. Thus, the complex molecular interplay between hormones involved in thyroid and reproductive functions is further compounded by the association of certain common autoimmune states with disorders of the thyroid and the HPG axes. Furthermore, in prepartum and intrapartum states, even relatively minor disruptions have been shown to adversely impact maternal and fetal outcomes, with some differences of opinion in the management of these conditions. In this review, we provide readers with a foundational understanding of the physiology and pathophysiology of thyroid hormone interactions with the female HPG axis. We also share clinical insights into the management of thyroid dysfunction in reproductive-aged women.
Collapse
Affiliation(s)
- Ethan D L Brown
- Reproductive Physiology and Pathophysiology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Barnabas Obeng-Gyasi
- Department of Education, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Janet E Hall
- Reproductive Physiology and Pathophysiology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Skand Shekhar
- Reproductive Physiology and Pathophysiology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
30
|
Singh VP, Hassan H, Deng F, Tsuchiya D, McKinney S, Ferro K, Gerton JL. Myc promotes polyploidy in murine trophoblast cells and suppresses senescence. Development 2023; 150:dev201581. [PMID: 37278344 PMCID: PMC10309589 DOI: 10.1242/dev.201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.
Collapse
Affiliation(s)
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Fengyan Deng
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Godakumara K, Heath PR, Fazeli A. Rhythm of the First Language: Dynamics of Extracellular Vesicle-Based Embryo-Maternal Communication in the Pre-Implantation Microenvironment. Int J Mol Sci 2023; 24:ijms24076811. [PMID: 37047784 PMCID: PMC10095160 DOI: 10.3390/ijms24076811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
One of the most critical steps in mammalian reproduction is implantation. Embryos with an impaired capacity for embryo-maternal crosstalk are thought to have a reduced potential for implantation. One agent of embryo-maternal communication is extracellular vesicles (EV). EVs are lipid bilayer-bound biological nanoparticles implicated in intercellular communication between many of the known cell types. In the current study, we isolated EVs from trophoblast analogue JAr spheroids and supplemented the EVs with receptive endometrium analogue RL95-2 cells to simulate pre-implantation embryo-maternal dialogue. The transcriptome of the endometrial cells was examined at 30 min, 4 h and 48 h intervals using Oxford Nanopore® technology. At the time points, 30 min, 4 h and 48 h, the endometrial cells showed a significantly altered transcriptome. It seems trophoblast EVs induce a swift and drastic effect on the endometrial transcriptome. The effect peaks at around 4 h of EV supplementation, indicating a generalized effect on cell physiology. Alterations are especially apparent in biological pathways critical to embryonic implantation, such as extracellular matrix-receptor interactions and cytokine-receptor interactions. These observations can be helpful in elucidating the dynamics of embryo-maternal communication in the pre-implantation period.
Collapse
Affiliation(s)
- Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITRAN), University of Sheffield, 385a Glossop Rd., Broomhall, Sheffield S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 14B Ravila, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
32
|
Azizi E, Mofarahe ZS, Naji M. MicroRNAs, small regulatory elements with significant effects on human implantation: a review. J Assist Reprod Genet 2023; 40:697-717. [PMID: 36723761 PMCID: PMC10224887 DOI: 10.1007/s10815-023-02735-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
Embryo implantation is a critical process for achieving a successful pregnancy and live birth. The proper implantation must have a synchronized interaction between blastocyst and a receptive endometrium. Many genes are involved in the modulation of precise molecular events during implantation. MicroRNAs (miRNAs) have been extensively reported as gene regulatory molecules on post-transcriptional levels involved in various biological processes such as gametogenesis, embryogenesis, and the quality of sperm, oocyte, and embryos. A plethora of evidence has demonstrated critical roles for miRNAs in regulating genes involved in the implantation process; hence, dysregulation of miRNAs could be associated with significant impairments in implantation, such as recurrent implantation failure. In addition to the indispensable role of miRNAs in the intracellular control of gene expression, they can also be secreted into extracellular fluid and circulation. Therefore, miRNAs in body fluids and blood may be exploited as non-invasive diagnostic biomarkers for different pathological and physiological conditions. Recently, several studies have focused on the discovery of miRNAs function in the implantation process by appraising miRNAs and their target genes in human embryos, endometrial tissue, and cell culture models. Moreover, it was revealed that there could be a significant association between endometrial receptivity or implantation status and the expression of miRNAs in human body fluids, reinforcing their role as non-invasive biomarkers. In the current work, we reviewed the studies concerning the role of intracellular and extracellular miRNAs in human implantation and the influence of their dysregulation on implantation disorders.
Collapse
Affiliation(s)
- Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Gonzalez Fernandez J, Moncayo Arlandi J, Ochando A, Simon C, Vilella F. The role of extracellular vesicles in intercellular communication in human reproduction. Clin Sci (Lond) 2023; 137:281-301. [PMID: 36762584 DOI: 10.1042/cs20220793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Embryo-maternal cross-talk has emerged as a vitally important process for embryo development and implantation, which is driven by secreted factors and extracellular vesicles (EVs). The EV cargo of bioactive molecules significantly influences target cells and primes them for critical stages of reproductive biology, including embryo development, adhesion, and implantation. Recent research has suggested that EVs and their cargo represent a powerful non-invasive tool that can be leveraged to assess embryo and maternal tissue quality during assisted reproduction treatments. Here, we review the current scientific literature regarding the intercellular cross-talk between embryos and maternal tissues from fertilization to implantation, focusing on human biology and signaling mechanisms identified in animal models.
Collapse
Affiliation(s)
- Javier Gonzalez Fernandez
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Javier Moncayo Arlandi
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
34
|
Vani V, Vasan SS, Adiga SK, Varsha SR, Seshagiri PB. Molecular regulators of human blastocyst development and hatching: Their significance in implantation and pregnancy outcome. Am J Reprod Immunol 2023; 89:e13635. [PMID: 36254379 DOI: 10.1111/aji.13635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 02/01/2023] Open
Abstract
In humans, blastocyst hatching and implantation events are two sequential, critically linked and rate-limiting events for a prospective pregnancy. These events are regulated by embryo-endometrium derived molecular factors which include hormones, growth factors, cytokines, immune-modulators, cell adhesion molecules and proteases. Due to poor viability of blastocysts, they fail to hatch and implant, leading to a low 'Live Birth Rates', majorly contributing to infertility. Here, embryo-derived biomarkers analysis plays a key role to assess potential biological viability of blastocysts which are capable of implantation and prospective pregnancy. Thus far, embryo-derived biomarkers examined are mostly immune-modulators which are thought to be associated with blastocyst development-implantation and progression of pregnancy, leading to live births. There is an urgent need to develop a quantitative and a reliable non-invasive approach aiding embryo selection for elective single embryo transfer and to minimize recurrent pregnancy loss and multiple pregnancies. In this article, we provide a comprehensive review on our current knowledge and understanding of potential embryo-derived molecular regulators, that is, biomarkers, of development of human blastocysts, their hatching and implantation. We discuss their potential implications in the assessment of blastocyst implantation potential and pregnancy outcome in terms of live births in humans.
Collapse
Affiliation(s)
- Venkatappa Vani
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| | | | - Satish K Adiga
- Kasturba Medical College, Department of Clinical Embryology, Manipal, Karnataka, India
| | | | - Polani B Seshagiri
- Indian Institute of Science, Department of Molecular Reproduction, Development and Genetics, Sir C.V. Raman Road, Bangalore, Karnataka, India
| |
Collapse
|
35
|
Ntostis P, Swanson G, Kokkali G, Iles D, Huntriss J, Pantou A, Tzetis M, Pantos K, Picton HM, Krawetz SA, Miller D. Trophectoderm non-coding RNAs reflect the higher metabolic and more invasive properties of young maternal age blastocysts. Syst Biol Reprod Med 2023; 69:3-19. [PMID: 36576378 DOI: 10.1080/19396368.2022.2153636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increasing female age is accompanied by a corresponding fall in her fertility. This decline is influenced by a variety of factors over an individual's life course including background genetics, local environment and diet. Studying both coding and non-coding RNAs of the embryo could aid our understanding of the causes and/or effects of the physiological processes accompanying the decline including the differential expression of sub-cellular biomarkers indicative of various diseases. The current study is a post-hoc analysis of the expression of trophectoderm RNA data derived from a previous high throughput study. Its main aim is to determine the characteristics and potential functionalities that characterize long non-coding RNAs. As reported previously, a maternal age-related component is potentially implicated in implantation success. Trophectoderm samples representing the full range of maternal reproductive ages were considered in relation to embryonic implantation potential, trophectoderm transcriptome dynamics and reproductive maternal age. The long non-coding RNA (lncRNA) biomarkers identified here are consistent with the activities of embryo-endometrial crosstalk, developmental competency and implantation and share common characteristics with markers of neoplasia/cancer invasion. Corresponding genes for expressed lncRNAs were more active in the blastocysts of younger women are associated with metabolic pathways including cholesterol biosynthesis and steroidogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Georgia Kokkali
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - David Iles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Huntriss
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Agni Pantou
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - Maria Tzetis
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Helen M Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Miller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
36
|
Mukherjee N, Sharma R, Modi D. Immune alterations in recurrent implantation failure. Am J Reprod Immunol 2023; 89:e13563. [PMID: 35587052 DOI: 10.1111/aji.13563] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
A failure to achieve pregnancy after three or more embryo transfer cycles with high-quality blastocysts is referred to as recurrent implantation failure (RIF). RIF can be due to altered uterine factors or male factors or embryo factors. Disrupted endometrial receptivity, altered expression of genes in several pathways, immunologic disturbances in the peripheral blood and/or the endometrium, and epigenetic alterations are associated with RIF. Amongst the immunologic disturbances, altered Th1/Th2 ratio, altered NK cell and macrophage numbers are observed in women with RIF. However, not all women with RIF have the same kind of immune dysfunction suggesting that RIF is a heterogeneous condition associated with varied immune responses and one size may not fit all. Thus, personalized therapies based on the immune status of the patient are being tested in women with RIF. In general, women with a high Th1/Th2 ratio are offered Tacrolimus, while intravenous IgG is recommended in women with high NK cell numbers/HLA mismatch. Women with hyperactivated immune status in the uterus are offered progesterone support, prednisolone, vitamin E, and intralipid treatment to suppress inflammation and oxidative stress, while endometrial scratching and intrauterine hCG administration are offered to women with hypo-active immune status. There is a need for standardized tests for evaluation of immune status in patients and sufficiently powered randomized controlled trials for personalized therapies to determine which of these will be beneficial in women with RIF. Till then, the ART community should limit the use of such add-on interventions in women with RIF.
Collapse
Affiliation(s)
- Nupur Mukherjee
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), Parel, Mumbai, Maharashtra, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), Parel, Mumbai, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research (ICMR), Parel, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Modulating Morphological and Redox/Glycative Alterations in the PCOS Uterus: Effects of Carnitines in PCOS Mice. Biomedicines 2023; 11:biomedicines11020374. [PMID: 36830911 PMCID: PMC9953026 DOI: 10.3390/biomedicines11020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS uterus and search for modulating effects of different carnitine formulations. (2) Methods: CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg L-carnitine (LC) and 0.20 mg acetyl-L-carnitine (ALC) in the presence or absence of 0.08 mg propionyl-L-carnitine (PLC). Uterine horns from the four groups were subjected to histology, immunohistochemistry and immunoblotting analyses to evaluate their morphology, collagen deposition, autophagy and steroidogenesis. Oxidative-/methylglyoxal (MG)-dependent damage was investigated along with the effects on the mitochondria, SIRT1, SOD2, RAGE and GLO1 proteins. (3) Results: The PCOS uterus suffers from tissue and oxidative alterations associated with MG-AGE accumulation. LC-ALC administration alleviated PCOS uterine tissue alterations and molecular damage. The presence of PLC prevented fibrosis and maintained mitochondria content. (4) Conclusions: The present results provide evidence for oxidative and glycative damage as the main factors contributing to PCOS uterine alterations and include the uterus in the spectrum of action of carnitines on the PCOS phenotype.
Collapse
|
38
|
Cheng J, Sha Z, Li J, Li B, Luo X, Zhang Z, Zhou Y, Chen S, Wang Y. Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization. Reprod Sci 2023; 30:1746-1757. [PMID: 36694081 DOI: 10.1007/s43032-023-01169-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Embryo implantation and decidualization are key steps in establishing a successful pregnancy. Defects in embryo implantation and decidualization can cause a series of adverse chain reactions which can contribute to harmful pregnancy outcomes, such as embryo growth retardation, preeclampsia, miscarriage, premature birth, and so on. Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Decidualization, characterized by proliferation and differentiation of uterine stromal cells, is one of the essential conditions for blastocyst implantation, placental formation, and maintenance of pregnancy and is indispensable for the establishment of pregnancy in many species. Embryo implantation and decidualization are closely regulated by estrogen and progesterone secreted by the ovaries. Many cellular events and molecular signaling network pathways are involved in this process. This article reviews the recent advances in the molecular mechanisms of estrogen- and progesterone-regulating uterine receptivity establishment, blastocyst implantation, and decidualization, in order to better understand the underlying molecular mechanisms of hormonal regulation of embryo implantation and to develop new strategies for preventing or treating embryo implantation defects and improving the pregnancy rate of women.
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Zizhuo Sha
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Junyang Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Bixuan Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Zhiming Zhang
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China. .,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China.
| |
Collapse
|
39
|
Zhai Y, Shi Q, Chu Q, Chen F, Feng Y, Zhang Z, Qi X, Arends D, Brockmann GA, Wang E, Lyu S. miRNA profiling in intrauterine exosomes of pregnant cattle on day 7. Front Vet Sci 2022; 9:1078394. [PMID: 36605764 PMCID: PMC9810022 DOI: 10.3389/fvets.2022.1078394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Intrauterine exosomes have been identified to be involved in the embryo development and implantation. The aim of this study was to explore the role of miRNAs in intrauterine exosomes in bovine pregnancy. Intrauterine exosomes were collected from uterine flushing fluids of three donor and three recipient Xianan cows 7 days after fertilization. Intrauterine exosomes miRNAs were extracted and the exosomal miRNAs expression levels were analyzed. Sixty miRNAs differed significantly in their amounts between donors and recipients (p-value < 0.05, |log2(FoldChange)| > 1). Twenty-two miRNAs were upregulated and 38 downregulated in the group of donor cows. The bta-miR-184 was the most significant (P Benjamini-Hochberg < 0.001). A total of 9,775 target genes were predicted using the 60 miRNAs. GO and KEGG analysis showed that the target genes were enriched in several biological processes or pathways associated with embryo implantation and endometrial development, such as cell adhesion, cell junction, focal adhesion, and Rap1 signaling pathway. Our findings suggest that, in cattle early pregnancy stage, these differently expressed miRNAs in intrauterine exosomes involved in embryo implantation and endometrial development, which may exert a significant effect and influence the uterine microenvironment for embryo implantation. These results could provide reference for screening and exploring the intrauterine exosomal miRNA affecting embryo implantation.
Collapse
Affiliation(s)
- Yaying Zhai
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Qiuxia Chu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fuying Chen
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yajie Feng
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xinglei Qi
- Center of Animal Husbandry Technical Service in Biyang, Zhumadian, China
| | - Danny Arends
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Gudrun A. Brockmann
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China,*Correspondence: Eryao Wang ✉
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China,The Shennong Laboratory, Zhengzhou, Henan, China,Shijie Lyu ✉
| |
Collapse
|
40
|
Gyselaers W. Origins of abnormal placentation: why maternal veins must not be forgotten. Am J Obstet Gynecol 2022:S0002-9378(22)02292-X. [PMID: 36539026 DOI: 10.1016/j.ajog.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The importance of uterine microvascular adaptations during placentation in pregnancy has been well established for decades. Inadequate dilatation of spiral arteries is associated with gestational complications, such as preeclampsia and/or intrauterine growth restriction. More recently, it has become clear that trophoblast cells invade and adapt decidual veins and lymphatic vessels 1 month before spiral arteries become patent and before intervillous space perfusion starts. Normal intervillous space hemodynamics is characterized by high volume flow at low velocity and pressure in the interseptal compartments surrounding the chorionic villi, hereby facilitating efficient maternal-fetal exchange. In case of shallow decidual vein dilatation, intervillous arterial supply exceeds venous drainage. This will cause congestion in the interseptal compartments with subsequently reduced perfusion and increased pressure. An efficient mechanism to counteract venous congestion and safeguard the viability of the conceptus is by reducing arterial inflow via shallow dilatation of the spiral arteries. This review made the case for intervillous space congestion as an unexplored trigger for inadequate spiral artery dilatation during the placentation process, eventually leading to abnormal systemic circulatory dysfunctions. An abnormal maternal venous function can result from an abnormal maternal immune response to paternal antigens with an imbalanced release of vasoactive mediators or can exist before conception. To get the full picture of abnormal placentation, maternal veins must not be forgotten.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics and Gynaecology, Ziekenhuis Oost Limburg, Genk, Belgium; Faculty Medicine and Life Sciences, Department of Physiology, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
41
|
Siriwardena D, Boroviak TE. Evolutionary divergence of embryo implantation in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210256. [PMID: 36252209 DOI: 10.1098/rstb.2021.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Implantation of the conceptus into the uterus is absolutely essential for successful embryo development. In humans, our understanding of this process has remained rudimentary owing to the inaccessibility of early implantation stages. Non-human primates recapitulate many aspects of human embryo development and provide crucial insights into trophoblast development, uterine receptivity and embryo invasion. Moreover, primate species exhibit a variety of implantation strategies and differ in embryo invasion depths. This review examines conservation and divergence of the key processes required for embryo implantation in different primates and in comparison with the canonical rodent model. We discuss trophectoderm compartmentalization, endometrial remodelling and embryo adhesion and invasion. Finally, we propose that studying the mechanism controlling invasion depth between different primate species may provide new insights and treatment strategies for placentation disorders in humans. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Dylan Siriwardena
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
42
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
43
|
Maziotis E, Kalampokas T, Giannelou P, Grigoriadis S, Rapani A, Anifantakis M, Kotsifaki A, Pantou A, Triantafyllidou O, Tzanakaki D, Neofytou S, Vogiatzi P, Bakas P, Simopoulou M, Vlahos N. Commercially Available Molecular Approaches to Evaluate Endometrial Receptivity: A Systematic Review and Critical Analysis of the Literature. Diagnostics (Basel) 2022; 12:2611. [PMID: 36359455 PMCID: PMC9689742 DOI: 10.3390/diagnostics12112611] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 08/17/2023] Open
Abstract
Despite the advances in the field of reproductive medicine, implantation failure represents a challenging condition affecting 10-30% of patients subjected to in vitro fertilization (IVF). Research has focused on the identification of molecules playing crucial roles in endometrial receptivity, with the aim of designing predictive tools for efficient detection of the implantation window. To that end, novel molecular genomic and transcriptomic approaches have been introduced as promising tools to enable personalized approaches with the aim of optimizing embryo transfer dating. However, the clinical value of these approaches remains unclear. The aim of this study is to provide a systematic review and critical analysis of the existing evidence regarding the employment of commercially available novel approaches to evaluate endometrial receptivity. An Embase and PubMed/Medline search was performed on 1 February 2022. From the 475 articles yielded, only 27 were included and analyzed. The considerable heterogeneity of the included articles indicates the uniqueness of the implantation window, showcasing that the optimal time for embryo transfer varies significantly between women. Moreover, this study provides information regarding the technical aspects of these advanced molecular tools, as well as an analysis of novel possible biomarkers for endometrial receptivity, providing a basis for future research in the field.
Collapse
Affiliation(s)
- Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
| | - Theodoros Kalampokas
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Polina Giannelou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli Str., 15232 Athens, Greece
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Anna Rapani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
| | - Marios Anifantakis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
| | - Amalia Kotsifaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli Str., 15232 Athens, Greece
| | - Olga Triantafyllidou
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Despoina Tzanakaki
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Spyridoula Neofytou
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Fertility Diagnostics Center, 3, Mesogion Str., 15126 Athens, Greece
| | - Panagiotis Bakas
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527 Athens, Greece
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 76, Vasilisis Sofias Avenue, 11528 Athens, Greece
| |
Collapse
|
44
|
Koel M, Krjutškov K, Saare M, Samuel K, Lubenets D, Katayama S, Einarsdottir E, Vargas E, Sola-Leyva A, Lalitkumar PG, Gemzell-Danielsson K, Blesa D, Simon C, Lanner F, Kere J, Salumets A, Altmäe S. Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay. Hum Reprod Open 2022; 2022:hoac043. [PMID: 36339249 PMCID: PMC9632455 DOI: 10.1093/hropen/hoac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Indexed: 08/17/2023] Open
Abstract
STUDY QUESTION Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Dmitri Lubenets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, Sweden
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Parameswaran Grace Lalitkumar
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - David Blesa
- Department of Product Development, IGENOMIX, Valencia, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA in Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| |
Collapse
|
45
|
Zhou YJ, Geng YQ, Gao RF, Liu XQ, Chen XM, He JL. Early pregnancy exposure to beta-cypermethrin compromises endometrial decidualisation in mice via downregulation of cyclin D3, CDK4/6, and p21. Food Chem Toxicol 2022; 169:113382. [PMID: 36116546 DOI: 10.1016/j.fct.2022.113382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/28/2022] [Accepted: 08/15/2022] [Indexed: 10/31/2022]
Abstract
Beta-cypermethrin (β-CYP) is a highly effective broad-spectrum insecticide that can potentially affect female reproduction. However, little is known about the effect of β-CYP on uterine decidualisation, which is a vital process by which the uterus provides a suitable microenvironment for pregnancy maintenance. Therefore, we focused on the effect and mechanism of β-CYP on endometrial decidualisation during early pregnancy in mice. The results indicated that the expression levels of HOXA10, BMP2, and IGFBP1 was significantly downregulated in the decidual tissue and primary endometrial stromal cells of pregnant and pseudopregnant mice following β-CYP treatment. Serum E2 concentration was significantly increased, whereas P4 concentration and oestrogen receptor (ERα) and progesterone receptor (PRA) expression were significantly downregulated following β-CYP exposure. The number of polyploid decidual cells was lower in the β-CYP-treated group. Furthermore, β-CYP significantly downregulated the protein expression levels of CDK4 and CDK6, and the mRNA expression levels of cyclin D3 and p21. The number of foetuses per female in the first litter was markedly reduced following exposure to β-CYP. In summary, early pregnancy exposure to β-CYP may result in defective endometrial decidualisation via compromised proliferation of uterine stromal cells and reduced expressions of cyclin D3, CDK4/6, and p21 in mice.
Collapse
Affiliation(s)
- Yong-Jiang Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; International School of Public Health and One Health, Hainan Medical University, Yixueyuan Road, Longhua District, Hainan Province, 571199, People's Republic of China.
| | - Yan-Qing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ru-Fei Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Qing Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jun-Lin He
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
46
|
Fu K, Chen X, Guo W, Zhou Z, Zhang Y, Ji T, Yang P, Tian X, Wang W, Zou Y. Effects of N Acetylcysteine on the Expression of Genes Associated with Reproductive Performance in the Goat Uterus during Early Gestation. Animals (Basel) 2022; 12:2431. [PMID: 36139290 PMCID: PMC9495183 DOI: 10.3390/ani12182431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the body and thereby promotes embryonic development and implantation and inhibits inflammation. The mechanism through which NAC regulates reproductive performance in the uteri of goats during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for the first 35 days of gestation, whereas the control group received no NAC supplementation. The regulatory genes and key pathways associated with goat reproductive performance under NAC supplementation were identified by RNA-seq. RT-qPCR was used to verify the sequencing results and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified 19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes (DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that the DEGs were enriched in pathways associated with reproductive regulation, immune regulation, resistance to oxidative stress, and cell adhesion. The RT-qPCR analysis showed that BDNF and CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in the uterus, and that CTSS, PTX3, and TGFβ-3 were most highly expressed in the oviduct, which indicated that these genes may be directly or indirectly involved in the modulation of reproduction in early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation of the reproductive performance of goats during early gestation.
Collapse
Affiliation(s)
- Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhinan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Peifang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
47
|
Shan H, Luo R, Guo X, Li R, Ye Z, Peng T, Liu F, Yang Z. Abnormal Endometrial Receptivity and Oxidative Stress in Polycystic Ovary Syndrome. Front Pharmacol 2022; 13:904942. [PMID: 35959444 PMCID: PMC9357999 DOI: 10.3389/fphar.2022.904942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of childbearing age. Individual heterogeneity is evident, and the prevalence rate ranges between 6 and 15% globally. The prevalence rate of PCOS in Chinese women of childbearing age is 5.6%. The main manifestations are infertility, sparse menstruation, irregular vaginal bleeding, long-term endometrial hyperplasia, and endometrial cancer. PCOS is often associated with hyperandrogenemia, insulin resistance, hyperinsulinemia, obesity, metabolic syndrome, and intestinal flora disorder. Although there have been many studies in the past, the underlying pathophysiological mechanism of the disease is still unclear. Studies have shown that PCOS diseases and related complications are closely related to local oxidative stress imbalance in the endometrium, leading to poor endometrial receptivity and effects on pregnancy. Previous reviews have mainly focused on the abnormal mechanism of ovarian oxidative stress in women with PCOS, while reviews on endometrial receptivity and oxidative stress are relatively insufficient. This study reviews the abnormal cellular and molecular mechanisms of oxidative stress due to comorbidities in women with PCOS, leading to a downregulation of endometrial receptivity.
Collapse
Affiliation(s)
- Hongying Shan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- First Affiliated Hospital, School of Medicine, Shihezi University, Beijing, China
| | - Renxin Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xuanying Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Rong Li,
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianliu Peng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
48
|
Ji M, Zhang L, Fu X, Xie W, Wu X, Shu J. The outcomes of sequential embryo transfer in patients undergoing in vitro fertilization with frozen-thawed embryos: A retrospective study. J Obstet Gynaecol Res 2022; 48:2563-2570. [PMID: 35868635 DOI: 10.1111/jog.15369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
AIM To explore whether sequential embryo transfer benefits patients with repeated implantation failure (RIF) undergoing frozen-thawed embryo transfer (FET) cycles. METHODS We included 311 patients with a history of RIF in this retrospective study. We did sequential transfers with a cleavage embryo on day 3 and a blastocyst on day 5 in 77 patients; blastocyst transfers with two blastocysts on day 5 in 80 patients; and cleavage embryo transfers with two cleavage embryos on day 3 in 154 patients. We compared clinical outcomes between the three groups. RESULTS The clinical pregnancy rate was comparable between the blastocyst transfer group (48.8%), the sequential transfer group(48.1%) and the cleavage embryo transfer group (48.1%). There was no statistically significant difference found (p > 0.05). The ongoing pregnancy and multipregnancy rates were also comparable between the three groups (p > 0.05). The early miscarriage rate was significantly higher in the sequential transfer group (32.4%) compared with the blastocyst group (12.8%) and the cleavage embryo group (12.2%) (p < 0.05). However, after adjusting for confounders, there was no significant difference in early miscarriage rates in the sequential transfer group compared with the blastocyst group (odds ratio [OR], 2.97; 95% confidence interval [CI], 0.85-9.24; p = 0.07) and the cleavage embryo group (OR, 3.03; 95% CI, 0.94-8.06; p = 0.08). CONCLUSIONS Sequential embryo transfer failed to improve clinical outcomes for patients with RIF.
Collapse
Affiliation(s)
- Mengxia Ji
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ling Zhang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaohua Fu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Wenjie Xie
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangli Wu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
49
|
Grund SC, Wu XX, Müller D, Wennemuth G, Grümmer R. Impact of endometrial claudin-3 deletion on murine implantation, decidualization and embryo development. Biol Reprod 2022; 107:984-997. [PMID: 35863769 DOI: 10.1093/biolre/ioac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from 6.5 dpc onwards. To evaluate the role if this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 KO mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on 6.5 and 8.5 dpc as well as the weight of the embryos on 17.5 dpc, but not of the placentas, was significantly reduced in claudin-3 KO mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 KO mice. The fact that claudin-3 KO mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.
Collapse
Affiliation(s)
- Susanne C Grund
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xin Xin Wu
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Grümmer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
50
|
Zhong C, Lu Y, Li Y, Xie H, Zhou G, Jia L. Similarities and differences between embryonic implantation and CTC invasion: Exploring the roles of abortifacients in cancer metastasis chemoprevention. Eur J Med Chem 2022; 237:114416. [DOI: 10.1016/j.ejmech.2022.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022]
|