1
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
2
|
Dumesic DA, Abbott DH, Chazenbalk GD. An Evolutionary Model for the Ancient Origins of Polycystic Ovary Syndrome. J Clin Med 2023; 12:6120. [PMID: 37834765 PMCID: PMC10573644 DOI: 10.3390/jcm12196120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy of reproductive-aged women, characterized by hyperandrogenism, oligo-anovulation and insulin resistance and closely linked with preferential abdominal fat accumulation. As an ancestral primate trait, PCOS was likely further selected in humans when scarcity of food in hunter-gatherers of the late Pleistocene additionally programmed for enhanced fat storage to meet the metabolic demands of reproduction in later life. As an evolutionary model for PCOS, healthy normal-weight women with hyperandrogenic PCOS have subcutaneous (SC) abdominal adipose stem cells that favor fat storage through exaggerated lipid accumulation during development to adipocytes in vitro. In turn, fat storage is counterbalanced by reduced insulin sensitivity and preferential accumulation of highly lipolytic intra-abdominal fat in vivo. This metabolic adaptation in PCOS balances energy storage with glucose availability and fatty acid oxidation for optimal energy use during reproduction; its accompanying oligo-anovulation allowed PCOS women from antiquity sufficient time and strength for childrearing of fewer offspring with a greater likelihood of childhood survival. Heritable PCOS characteristics are affected by today's contemporary environment through epigenetic events that predispose women to lipotoxicity, with excess weight gain and pregnancy complications, calling for an emphasis on preventive healthcare to optimize the long-term, endocrine-metabolic health of PCOS women in today's obesogenic environment.
Collapse
Affiliation(s)
- Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - David H. Abbott
- Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, 1223 Capitol Court, Madison, WI 53715, USA;
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| |
Collapse
|
3
|
Swenson KS, Wang D, Jones AK, Nash MJ, O’Rourke R, Takahashi DL, Kievit P, Hennebold JD, Aagaard KM, Friedman JE, Jones KL, Rozance PJ, Brown LD, Wesolowski SR. Metformin Disrupts Signaling and Metabolism in Fetal Hepatocytes. Diabetes 2023; 72:1214-1227. [PMID: 37347736 PMCID: PMC10450827 DOI: 10.2337/db23-0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.
Collapse
Affiliation(s)
- Karli S. Swenson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Amanda K. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Michael J. Nash
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Rebecca O’Rourke
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Diana L. Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Jon D. Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine & Texas Children’s Hospital, Houston, TX
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura D. Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | |
Collapse
|
4
|
Nash MJ, Dobrinskikh E, Soderborg TK, Janssen RC, Takahashi DL, Dean TA, Varlamov O, Hennebold JD, Gannon M, Aagaard KM, McCurdy CE, Kievit P, Bergman BC, Jones KL, Pietras EM, Wesolowski SR, Friedman JE. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep 2023; 42:112393. [PMID: 37058409 PMCID: PMC10570400 DOI: 10.1016/j.celrep.2023.112393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Collapse
Affiliation(s)
- Michael J Nash
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor K Soderborg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Bryan C Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric M Pietras
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Wilson RC, Lo JO, Romero Jimenez G, Lindner JR, Slayden OD, Roberts VHJ. Utilizing Contrast-Enhanced Ultrasonography with Phosphatidylserine Microbubbles to Detect Placental Inflammation in Rhesus Macaques. Molecules 2023; 28:2894. [PMID: 37049657 PMCID: PMC10096139 DOI: 10.3390/molecules28072894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The ability to comprehensively monitor physiological and detect pathophysiologic processes early during pregnancy can reduce maternal and fetal morbidity and mortality. Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technology that utilizes the acoustic detection of microbubbles to examine vascular spaces. Furthermore, microbubbles conjugated to specific compounds can focus studies on precise physiological pathways. We hypothesized that CEUS with phosphatidylserine microbubbles (MB-PS) could be employed to monitor placental inflammation. We tested this hypothesis in rhesus macaques (Macaca mulatta), a translational and relevant animal model of human placental health. As placental inflammation impacts many at-risk pregnancies, we performed CEUS with MB-PS in pregnant macaques fed a high-fat diet (e.g., a western-style diet, WSD) in the presence or absence of testosterone (T) to mimic the increased risk of polycystic ovary syndrome and subfertility. We have previously demonstrated a placental inflammation phenotype in this model, and, thus, we related the MB-PS CEUS signal intensity to placental inflammation markers: selectin p and angiopoietins. Testosterone exposure increased the MB-PS signal in the placental microcirculation on the maternal side compared to control animals. We found that T increased placental weight and decreased angiopoietin 2 (ANGPT2) immunoreactivity. Furthermore, a significant inverse correlation was found between MB-PS signal and ANGPT2. This indicated that CEUS with MB-PS can be used to monitor placental parameters. We propose that CEUS with MB-PS could aid in the identification of pregnancies at risk of placental vascular compromise.
Collapse
Affiliation(s)
- Rachel C. Wilson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jamie O. Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gabriel Romero Jimenez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jonathan R. Lindner
- Cardiovascular Division, University of Virginia Medical Center, Charlottesville, VA 22903, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
6
|
Prevalence and risk factors for vascular calcification based on the ankle-brachial index in the general population: a cross-sectional study. BMC Cardiovasc Disord 2022; 22:227. [PMID: 35585487 PMCID: PMC9118712 DOI: 10.1186/s12872-022-02668-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate the prevalence of vascular calcification based on the ankle‐brachial index (ABI) value and analyse the risk factors for vascular calcification in the general population. Methods A cross-sectional study was conducted to collect clinical, laboratory, and lifestyle data in individuals aged 30–70 recruited from the physical examination centre. The automatic arteriosclerosis detector was used to measure the ABI. Difference tests, correlation analyses, and multivariate logistic regression analyses were performed to identify risk factors for vascular calcification. Results The overall prevalence of vascular calcification was 24.39% in 1033 subjects. The prevalence of vascular calcification in males was much higher than that in females (27.80% vs. 17.49%, P < 0.001). The differences in age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), hypertension, and fatty liver disease were statistically significant in males (P < 0.05). The differences between serum uric acid (UA), total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C), estimated glomerular filtration rate (eGFR), alcohol consumption, exercise, and postmenopausal status were statistically significant in females (P < 0.05). Increased age (odds ratio (OR) = 1.028, 95% confidence interval (CI) 1.008–1.049, P = 0.007), increased BMI (OR = 1.238, 95% CI 1.147–1.337, P < 0.001) and elevated DBP (OR = 2.563, 95% CI 1.262–5.205, P = 0.009) were independent risk factors for vascular calcification in males after adjusting for confounding factors. Increased BMI (OR = 1.159, 95% CI 1.029–1.304, P = 0.015), elevated UA (OR = 1.545, 95% CI 1.077–2.216, P = 0.018), elevated LDL-C (OR = 1.044, 95% CI 1.060–1.027, P < 0.001), and a lack of exercise (OR = 2.402, 95% CI 1.073–5.373, P = 0.033) were independent risk factors for vascular calcification in females. Conclusions The prevalence of vascular calcification based on the ABI value is also high in the general population of our centre. Increased age, BMI, and elevated DBP are independent risk factors for vascular calcification in males. Increased BMI, UA, LDL-C, and a lack of exercise are independent risk factors for vascular calcification in females. Attention should be given to strengthening the prevention and control of vascular calcification in the general population.
Collapse
|
7
|
Gastiazoro MP, Rossetti MF, Schumacher R, Stoker C, Durando M, Zierau O, Ramos JG, Varayoud J. Epigenetic disruption of placental genes by chronic maternal cafeteria diet in rats. J Nutr Biochem 2022; 106:109015. [DOI: 10.1016/j.jnutbio.2022.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
8
|
Beetch M, Alejandro EU. Placental mTOR Signaling and Sexual Dimorphism in Metabolic Health across the Lifespan of Offspring. CHILDREN 2021; 8:children8110970. [PMID: 34828683 PMCID: PMC8619510 DOI: 10.3390/children8110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022]
Abstract
Robust evidence of fetal programming of adult disease has surfaced in the last several decades. Human and preclinical investigations of intrauterine insults report perturbations in placental nutrient sensing by the mechanistic target of rapamycin (mTOR). This review focuses on pregnancy complications associated with placental mTOR regulation, such as fetal growth restriction (FGR), fetal overgrowth, gestational diabetes mellitus (GDM), polycystic ovarian syndrome (PCOS), maternal nutrient restriction (MNR), preeclampsia (PE), maternal smoking, and related effects on offspring birthweight. The link between mTOR-associated birthweight outcomes and offspring metabolic health trajectory with a focus on sexual dimorphism are discussed. Both human physiology and animal models are summarized to facilitate in depth understanding. GDM, PCOS and fetal overgrowth are associated with increased placental mTOR, whereas FGR, MNR and maternal smoking are linked to decreased placental mTOR activity. Generally, birth weight is reduced in complications with decreased mTOR (i.e., FGR, MNR, maternal smoking) and higher with increased mTOR (GDM, PCOS). Offspring display obesity or a higher body mass index in childhood and adulthood, impaired glucose and insulin tolerance in adulthood, and deficiencies in pancreatic beta-cell mass and function compared to offspring from uncomplicated pregnancies. Defining causal players in the fetal programming of offspring metabolic health across the lifespan will aid in stopping the vicious cycle of obesity and type II diabetes.
Collapse
|
9
|
Hawkins Bressler L, Fritz MA, Wu SP, Yuan L, Kafer S, Wang T, DeMayo FJ, Young SL. Poor Endometrial Proliferation After Clomiphene is Associated With Altered Estrogen Action. J Clin Endocrinol Metab 2021; 106:2547-2565. [PMID: 34058008 PMCID: PMC8372647 DOI: 10.1210/clinem/dgab381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/25/2022]
Abstract
CONTEXT Suboptimal endometrial thickening is associated with lower pregnancy rates and occurs in some infertile women treated with clomiphene. OBJECTIVE To examine cellular and molecular differences in the endometrium of women with suboptimal vs optimal endometrial thickening following clomiphene. METHODS Translational prospective cohort study from 2018 to 2020 at a university-affiliated clinic. Reproductive age women with unexplained infertility treated with 100 mg of clomiphene on cycle days 3 to 7 who developed optimal (≥8mm; n = 6, controls) or suboptimal (<6mm; n = 7, subjects) endometrial thickness underwent preovulatory blood and endometrial sampling. The main outcome measures were endometrial tissue architecture, abundance and location of specific proteins, RNA expression, and estrogen receptor (ER) α binding. RESULTS The endometrium of suboptimal subjects compared with optimal controls was characterized by a reduced volume of glandular epithelium (16% vs 24%, P = .01), decreased immunostaining of markers of proliferation (PCNA, ki67) and angiogenesis (PECAM-1), increased immunostaining of pan-leukocyte marker CD45 and ERβ, but decreased ERα immunostaining (all P < .05). RNA-seq identified 398 differentially expressed genes between groups. Pathway analysis of differentially expressed genes indicated reduced proliferation (Z-score = -2.2, P < .01), decreased angiogenesis (Z-score = -2.87, P < .001), increased inflammation (Z-score = +2.2, P < .01), and ERβ activation (Z-score = +1.6, P < .001) in suboptimal subjects. ChIP-seq identified 6 genes bound by ERα that were differentially expressed between groups (P < .01), some of which may play a role in implantation. CONCLUSION Women with suboptimal endometrial thickness after clomiphene exhibit aberrant ER expression patterns, architectural changes, and altered gene and protein expression suggesting reduced proliferation and angiogenesis in the setting of increased inflammation.
Collapse
Affiliation(s)
- Leah Hawkins Bressler
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc A Fritz
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lingwen Yuan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suzanna Kafer
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Steven L Young
- Department of Obstetrics & Gynecology, Division of Reproductive Endocrinology & Infertility, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Silva P, Maronezi MC, Padilha-Nakaghi LC, Gasser B, Pavan L, Nogueira Aires LP, Russo M, Spada S, Ramirez Uscategui RA, Moraes PC, Rossi Feliciano MA. Contrast-enhanced ultrasound evaluation of placental perfusion in brachicephalic bitches. Theriogenology 2021; 173:230-240. [PMID: 34399387 DOI: 10.1016/j.theriogenology.2021.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed to investigate placental hemodynamics to determine quantitative and qualitative parameters for pregnant brachycephalic bitches as well as describe placental vascularization and perfusion in females with fetal abnormalities close to delivery. Forty-four healthy fetuses from 22 brachycephalic bitches and 9 fetuses with gestational abnormalities (anasarca and hydrocephalus) from 8 brachycephalic bitches were evaluated. All female dogs were artificially inseminated intravaginally and underwent cesarean section at the end of gestation. Pregnancy diagnosis was made on the 25th day and experimental evaluations were performed on Days 25 (M1), 45 (M2), and 58 (M3) of gestation in normal pregnancies. Fetuses with gestational abnormalities were evaluated at the last time point. Biometric values of the fetuses were determined by B-mode and vascular indices by Doppler fluxometry of the umbilical artery, whereas qualitative assessment of contrast filling and quantitative parameters of placental perfusion were performed using CEUS. Parameter comparisons among the examined fetuses (normal and abnormal) and between the moments (M1, M2, and M3) were performed by Student's t-test and ANOVA tests, and then correlated using the Spearman test. In healthy fetuses, systolic and diastolic velocities as well as the time averages of minimum and maximum velocities increased significantly from M2 to M3 (P < 0.05), whereas the pulsatility index (P < 0.043) and vascular resistance (P < 0.001) decreased. Contrast distribution was always homogeneous in placental tissues and CEUS filling parameters remained constant during the evaluated periods (P < 0.05). In fetuses with hydrops, Doppler values were similar to those obtained in healthy subjects (P > 0.05), but CEUS evaluation demonstrated a heterogeneous distribution with lower intensity of placental tissue filling and a delay in perfusion time (P < 0.05) with a diagnostic accuracy of 75%. The association of dopplerfluxometry and CEUS allowed evaluation of qualitative and quantitative parameters of physiological pregnancy hemodynamics in all gestational thirds without evidence of significant changes in the physiology of the maternal-fetal binomial, and CEUS was shown to be applicable in the detection of failures in placental vascular filling (tissue dysfunction) in fetuses with anasarca and hydrocephaly.
Collapse
Affiliation(s)
- Priscila Silva
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marjury Cristina Maronezi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Beatriz Gasser
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Luiz Paulo Nogueira Aires
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marco Russo
- Department of Veterinary Medicine and Animal Sciences University of Naples "Federico II", Italy
| | - Stefano Spada
- Department of Veterinary Medicine and Animal Sciences University of Naples "Federico II", Italy
| | - Ricardo Andrés Ramirez Uscategui
- Institute of Agricultural Sciences, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Unaí, Minas Gerais, Brazil
| | - Paola Castro Moraes
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcus Antônio Rossi Feliciano
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil; Diagnostic Imaging Service, Department of Large Animal Clinic, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Roberts VHJ, Streblow AD, Gaffney JE, Rettke SP, Frias AE, Slayden OD. Placental Glucose Uptake in a Nonhuman Primate Model of Western-Style Diet Consumption and Chronic Hyperandrogenemia Exposure. Reprod Sci 2021; 28:2574-2581. [PMID: 33721298 DOI: 10.1007/s43032-021-00526-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022]
Abstract
We reported that consumption of a western-style diet (WSD) with and without hyperandrogenemia perturbed placental perfusion and altered levels of glucose transporter proteins in rhesus macaques. Based on that result, we hypothesized that placental glucose uptake would be dysregulated in this model. In this study, female rhesus macaques were assigned at puberty to one of four groups: subcutaneous cholesterol implants + standard chow diet (controls, C); testosterone implants + chow (T); cholesterol implants + a high-fat, WSD; and T+WSD. After ~6 years of treatment, animals were mated, and pregnancies were delivered by cesarean section at gestational day (G) 130 (the term is G168). Placental villous explants were immediately prepared for radiolabeled glucose assay. Linear glucose uptake was observed between 0 and 30 s. At 20 s, glucose uptake in placental villous explants did not differ across the four treatment groups with values as follows: C: 25.5 ± 6.33, T: 22.9 ± 0.404, WSD: 26.9.0 ± 3.71, and T+WSD: 33.0 ± 3.12 (mean ± SD expressed in pmol/mg). Unlike our prior experiment, glucose transporter expression was reduced in WSD placentas, and our in vitro functional assay did not demonstrate a difference in glucose uptake across the transporting epithelium of the placenta. Notably, maternal blood glucose levels were significantly elevated in animals chronically fed a WSD. This disparity may indicate differences in glucose utilization and metabolism by the placenta itself, as glucose transporter expression and circulating fetal glucose concentrations were comparable across all four groups in this pregnancy cohort.
Collapse
Affiliation(s)
- Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA.
| | - Aaron D Streblow
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Jessica E Gaffney
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Samantha P Rettke
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| | - Antonio E Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA.,Department of Obstetrics and Gynecology, OHSU, Portland, OR, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center (ONPRC), Oregon Health & Science University (OHSU), Beaverton, OR, USA
| |
Collapse
|
12
|
Valent AM, Barbour LA. Management of Women with Polycystic Ovary Syndrome During Pregnancy. Endocrinol Metab Clin North Am 2021; 50:57-69. [PMID: 33518186 DOI: 10.1016/j.ecl.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy among reproductive age women and is associated with subfertility and adverse perinatal outcomes, which may include early pregnancy loss, gestational diabetes mellitus, hypertensive spectrum disorder, preterm birth, fetal growth disorders, and cesarean deliveries. The phenotypic heterogeneity, different diagnostic criteria, and PCOS-related conditions that women enter pregnancy with have limited evidenced-based studies and guidelines to reduce pregnancy complications among this high-risk population. This review summarizes the available evidence on the approach and management of women with PCOS preconception, prenatal, and postpartum.
Collapse
Affiliation(s)
- Amy M Valent
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Mail Location L-458, Portland, OR 97239, USA.
| | - Linda A Barbour
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, RC1 South Room 7103, Aurora, CO 80045, USA; Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, RC1 South Room 7103, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, Takahashi DL, Kievit P, Chavez SL, Hennebold JD. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 2021; 6:138312. [PMID: 33616080 PMCID: PMC7934943 DOI: 10.1172/jci.insight.138312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,21st Century Medicine Inc., Fontana, California, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Nash Redmayne
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dorothy Wang
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Carrie A McArthur
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| |
Collapse
|
14
|
Bishop CV, Luo F, Gao L, Fei SS, Slayden OD. Mild hyperandrogenemia in presence/absence of a high-fat, Western-style diet alters secretory phase endometrial transcriptome in nonhuman primates. F&S SCIENCE 2020; 1:172-182. [PMID: 33554152 PMCID: PMC7861567 DOI: 10.1016/j.xfss.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To identify novel transcriptomic changes to eutopic endometrium by exposure to chronic mild hypernadrogenemia (testosterone [T]) with/without exposure to an obesogenic Western-style diet (WSD). DESIGN Two-by-two factorial arrangement of treatments. SETTING National primate research center. ANIMALS Rhesus macaque females were chronically exposed to T and/or consumed a WSD from menarche through adulthood. After 4.5 years of treatment, Tru-Cut endometrial biopsies were obtained at the midsecretory phase (n = 6-4/group), and paired-end sequencing of RNA was performed. Several females in the T, WSD, and T+WSD cohorts developed endometriosis within 6 months of biopsy; a separate analysis was performed contrasting diagnosis of endometriosis stage 0-2 versus stages 3 and 4 (American Society for Reproductive Medicine revised criteria). INTERVENTIONS Chronic exposure to mild elevation of T (~five-fold elevation) and/or WSD from menarche until adulthood. MAIN OUTCOME MEASURES Limma voom empirical Bayes pipeline was performed to detect differentially expressed RNAs (DEs) significantly impacted by treatments and endometriosis severity. Differentially expressed RNAs were then interrogated by Ingenuity Pathway Analyses and Protein Analysis through Evolutionary Relationships. RESULTS Total DEs included C versus T, 469; C versus WSD, 525; C versus T+WSD, 549; and T versus T+WSD, 1,505. The majority of DEs mapped to the ontology pathways: heterotrimeric G-protein signaling pathways Gi alpha and Gs alpha (C vs. T), WNT signaling (C vs. WSD and T vs. T+WSD), and Huntington disease (C vs. T+WSD). A total of 2,171 DEs from eutopic endometrium were altered by the presence of stage 3 and 4 endometriosis lesions. CONCLUSIONS The present global transcriptomic analyses demonstrate that the greatest magnitude of changes occurred in contrasts of C and T versus T+WSD, adding to the evidence that these two insults have a synergistic effect on female physiology. These data also support the concept that prior alterations to the function of eutopic endometrium increase the risk for endometriosis.
Collapse
Affiliation(s)
- Cecily V. Bishop
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
- Department of Animal and Rangeland Sciences, College of Agriculture, Oregon State University, Corvallis
| | - Fangzhou Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
| | - Lina Gao
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Beaverton
| | - Suzanne S. Fei
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Beaverton
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
15
|
Abstract
The use of contrast agents as signal enhancers during ultrasound improves visualization and the diagnostic utility of this technology in medical imaging. Although widely used in many disciplines, contrast ultrasound is not routinely implemented in obstetrics, largely due to safety concerns of administered agents for pregnant women and the limited number of studies that address this issue. Here the microbubble characteristics that make them beneficial for enhancement of the blood pool and the quantification of real-time imaging are reviewed. Literature from pregnant animal model studies and safety assessments are detailed, and the potential for contrast-enhanced ultrasound to provide clinically relevant data and benefit our understanding of early placental development and detection of placental dysfunction is discussed.
Collapse
|
16
|
Abbott DH. Does a compromised placenta contribute to transgenerational transmission of metabolic dysfunction in polycystic ovary syndrome? Fertil Steril 2020; 113:1165-1166. [PMID: 32387276 PMCID: PMC8131035 DOI: 10.1016/j.fertnstert.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/30/2022]
Affiliation(s)
- David H Abbott
- Department of Obstetrics and Gynecology and Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Bishop CV, Reiter TE, Erikson DW, Hanna CB, Daughtry BL, Chavez SL, Hennebold JD, Stouffer RL. Chronically elevated androgen and/or consumption of a Western-style diet impairs oocyte quality and granulosa cell function in the nonhuman primate periovulatory follicle. J Assist Reprod Genet 2019; 36:1497-1511. [PMID: 31187329 DOI: 10.1007/s10815-019-01497-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To investigate the impact of chronically elevated androgens in the presence and absence of an obesogenic diet on oocyte quality in the naturally selected primate periovulatory follicle. METHODS Rhesus macaques were treated using a 2-by-2 factorial design (n = 10/treatment) near the onset of menarche with implants containing either cholesterol (C) or testosterone (T, 4-5-fold increase above C) and a standard or "Western-style" diet alone (WSD) or in combination (T+WSD). Following ~ 3.5 years of treatment, females underwent controlled ovulation (COv, n = 7-10/treatment) cycles, and contents of the naturally selected periovulatory follicle were aspirated. Follicular fluid (FF) was analyzed for cytokines, chemokines, growth factors, and steroids. RNA was extracted from luteinizing granulosa cells (LGCs) and assessed by RNA-seq. RESULTS Only healthy, metaphase (M) I/II-stage oocytes (100%) were retrieved in the C group, whereas several degenerated oocytes were recovered in other groups (33-43% of T, WSD, and T+WSD samples). Levels of two chemokines and one growth factor were reduced (p < 0.04) in FF of follicles with a MI/MII oocyte in WSD+T (CCL11) or T and WSD+T groups (CCL2 and FGF2) compared to C and/or WSD. Intrafollicular cortisol was elevated in T compared to C follicles (p < 0.02). Changes in the expression pattern of 640+ gene products were detected in LGC samples from follicles with degenerated versus MI/MII-stage oocytes. Pathway analysis on RNAs altered by T and/or WSD found enrichment of genes mapping to steroidogenic and immune cell pathways. CONCLUSIONS Female primates experiencing hyperandrogenemia and/or consuming a WSD exhibit an altered intrafollicular microenvironment and reduced oocyte quality/competency, despite displaying menstrual cyclicity.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA. .,Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Taylor E Reiter
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Carol B Hanna
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Brittany L Daughtry
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Richard L Stouffer
- Division of Reproductive & Developmental Sciences, Oregon Health & Science University, Beaverton, OR, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|