1
|
Freitas PFS, Abdshah A, McKay RR, Sharifi N. HSD3B1, prostate cancer mortality and modifiable outcomes. Nat Rev Urol 2024:10.1038/s41585-024-00953-0. [PMID: 39543357 DOI: 10.1038/s41585-024-00953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
Androgen receptor stimulation by testosterone and dihydrotestosterone is crucial for prostate cancer progression. Despite the initial effectiveness of androgen deprivation therapy (ADT), castration-resistant prostate cancer eventually develops in most men. A common germline missense-encoding polymorphism in HSD3B1 increases extra-gonadal androgen biosynthesis from adrenal precursors owing to increased availability of the encoded enzyme 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) - hence, it is called the adrenal-permissive enzyme. This mechanism explains the more rapid progression to castration-resistant prostate cancer in men who inherit this allele than in men without it via sustained androgen receptor activation despite ADT. Multiple clinical studies, including data derived from prospective phase III studies, have linked adrenal-permissive allele inheritance to inferior clinical responses to ADT and increased mortality, but reversal is possible with upfront adrenal androgen blockade. The adrenal-permissive allele exhibits divergent frequencies across various groups worldwide, which could contribute to differences in clinical outcomes among these populations. Large-scale data from the Million Veteran Program have shown homozygous HSD3B1 adrenal-permissive allele inheritance to be an independent biomarker of prostate cancer-specific mortality. Together, these observations support the integration of HSD3B1 into germline testing and clinical trials as it might help to identify groups at increased likelihood of benefiting from early, intensified, AR-targeting interventions. Lastly, 3βHSD1 is a promising target for pharmacological inhibition, which enables new strategies for systemic prostate cancer therapy.
Collapse
Affiliation(s)
- Pedro F S Freitas
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alireza Abdshah
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rana R McKay
- Division of Hematology-Oncology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
2
|
Yazawa T, Watanabe Y, Yokohama Y, Imamichi Y, Hasegawa K, Nakajima KI, Kitano T, Ida T, Sato T, Islam MS, Umezawa A, Takahashi S, Kato Y, Jahan S, Kawabe JI. Evaluation of 3β-hydroxysteroid dehydrogenase activity using progesterone and androgen receptors-mediated transactivation. Front Endocrinol (Lausanne) 2024; 15:1480722. [PMID: 39415787 PMCID: PMC11479897 DOI: 10.3389/fendo.2024.1480722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
3β-Hydroxysteroid dehydrogenases (3β-HSDs) catalyze the oxidative conversion of delta (5)-ene-3-beta-hydroxy steroids and ketosteroids. Human 3β-HSD type 2 (HSD3B2) is predominantly expressed in gonadal and adrenal steroidogenic cells for producing all classes of active steroid hormones. Mutations in HSD3B2 gene cause a rare form of congenital adrenal hyperplasia with varying degree of salt wasting and incomplete masculinization, resulting from reduced production of corticoids and androgens. Therefore, evaluation of the HSD3B2 enzymatic activity in both pathways for each steroid hormone production is important for accurately understanding and diagnosing this disorder. Using progesterone receptor (PR)- and androgen receptor (AR)-mediated transactivation, we adapted a method that easily evaluates enzymatic activity of HSD3B2 by quantifying the conversion from substrates [pregnenolone (P5) and dehydroepiandrosterone (DHEA)] to (progesterone and androstenedione). HEK293 cells were transduced to express human HSD3B2, and incubated medium containing P5 or DHEA. Depending on the incubation time with HSD3B2-expressing cells, the culture media progressively increased luciferase activities in CV-1 cells, transfected with the PR/AR expression vector and progesterone-/androgen-responsive reporter. Culture media from human and other mammalian HSD3B1-expressing cells also increased the luciferase activities. HEK293 cells expressing various missense mutations in the HSD3B2 gene revealed the potential of this system to evaluate the relationship between the enzymatic activities of mutant proteins and patient phenotype.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Yugo Watanabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Yuko Yokohama
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshitaka Imamichi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Japan
| | - Kazuya Hasegawa
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Ke-ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takanori Ida
- Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Kurume, Japan
| | - Mohammad Sayful Islam
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuhito Kato
- Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Japan
| | - Sharmin Jahan
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Jun-ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
3
|
Sharifi N, Azad AA, Patel M, Hearn JWD, Wozniak M, Zohren F, Sugg J, Haas GP, Stenzl A, Armstrong AJ. HSD3B1 genotype and outcomes in metastatic hormone-sensitive prostate cancer with androgen deprivation therapy and enzalutamide: ARCHES. Cell Rep Med 2024; 5:101644. [PMID: 39168093 PMCID: PMC11384952 DOI: 10.1016/j.xcrm.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
HSD3B1 encodes 3β-hydroxysteroid dehydrogenase-1, which converts adrenal dehydroepiandrosterone to 5α-dihydrotestosterone and is inherited in adrenal-permissive (AP) or adrenal-restrictive forms. The AP allele is linked to castration resistance, mainly in low-volume tumors. Here, we investigate the association of HSD3B1 alleles with outcomes in ARCHES, a multinational, double-blind, randomized, placebo-controlled phase 3 trial that demonstrated clinical benefit with enzalutamide plus androgen deprivation therapy (ADT) in men with metastatic hormone-sensitive prostate cancer (mHSPC) compared to those treated with placebo plus ADT. There are no significant differences between genotypes for clinical efficacy endpoints. Enzalutamide significantly improves radiographic progression-free survival and overall survival vs. placebo irrespective of HSD3B1 status. Men with the AP genotype have higher post-progression mortality and treatment-emergent adverse events, including hypertension, cardiovascular events, and gynecomastia, but a lower fracture rate. Overall, enzalutamide is beneficial in men with mHSPC independent of the HSD3B1 genotype. Inherited polymorphisms of HSD3B1 may account for differential toxicities.
Collapse
Affiliation(s)
- Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mona Patel
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andrew J Armstrong
- Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate & Urologic Cancers, Durham, NC, USA
| |
Collapse
|
4
|
McKay RR, Nelson TJ, Pagadala MS, Teerlink CC, Gao A, Bryant AK, Agiri FY, Guram K, Thompson RF, Pridgen KM, Seibert TM, Lee KM, Carter H, Lynch JA, Hauger RL, Rose BS. Adrenal-Permissive Germline HSD3B1 Allele and Prostate Cancer Outcomes. JAMA Netw Open 2024; 7:e242976. [PMID: 38506808 PMCID: PMC10955379 DOI: 10.1001/jamanetworkopen.2024.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/25/2024] [Indexed: 03/21/2024] Open
Abstract
Importance The adrenal androgen-metabolizing 3β-hydroxysteroid dehydrogenase-1 enzyme, encoded by the HSD3B1 gene, catalyzes the rate-limiting step necessary for synthesizing nontesticular testosterone and dihydrotestosterone production. The common adrenal-permissive HSD3B1(1245C) allele is responsible for encoding the 3β-HSD1 protein with decreased susceptibility to degradation resulting in higher extragonadal androgen synthesis. Retrospective studies have suggested an association of the HSD3B1 adrenal-permissive homozygous genotype with androgen deprivation therapy resistance in prostate cancer. Objective To evaluate differences in mortality outcomes by HSD3B1 genetic status among men with prostate cancer. Design, Setting, and Participants This cohort study of patients with prostate cancer who were enrolled in the Million Veteran Program within the Veterans Health Administration (VHA) system between 2011 and 2023 collected genotyping and phenotyping information. Exposure HSD3B1 genotype status was categorized as AA (homozygous adrenal-restrictive), AC (heterozygous adrenal-restrictive), or CC (homozygous adrenal-permissive). Main Outcomes and Measures The primary outcome of this study was prostate cancer-specific mortality (PCSM), defined as the time from diagnosis to death from prostate cancer, censored at the date of last VHA follow-up. Secondary outcomes included incidence of metastases and PCSM in predefined subgroups. Results Of the 5287 participants (median [IQR] age, 69 [64-74] years), 402 (7.6%) had the CC genotype, 1970 (37.3%) had the AC genotype, and 2915 (55.1%) had the AA genotype. Overall, the primary cause of death for 91 patients (1.7%) was prostate cancer. Cumulative incidence of PCSM at 5 years after prostate cancer diagnosis was higher among men with the CC genotype (4.0%; 95% CI, 1.7%-6.2%) compared with the AC genotype (2.1%; 95% CI, 1.3%-2.8%) and AA genotype (1.9%; 95% CI, 1.3%-2.4%) (P = .02). In the 619 patients who developed metastatic disease at any time, the cumulative incidence of PCSM at 5 years was higher among patients with the CC genotype (36.0%; 95% CI, 16.7%-50.8%) compared with the AC genotype (17.9%; 95% CI, 10.5%-24.7%) and AA genotype (18.5%; 95% CI, 12.0%-24.6%) (P = .01). Conclusions and Relevance In this cohort study of US veterans undergoing treatment for prostate cancer at the VHA, the HSD3B1 CC genotype was associated with inferior outcomes. The HSD3B1 biomarker may help identify patients who may benefit from therapeutic targeting of 3β-hydroxysteroid dehydrogenase-1 and the androgen-signaling axis.
Collapse
Affiliation(s)
- Rana R McKay
- Division of Hematology-Oncology, Department of Internal Medicine, University of California, San Diego, La Jolla
| | - Tyler J Nelson
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Meghana S Pagadala
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Craig C Teerlink
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Anthony Gao
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Alex K Bryant
- Department of Radiation Oncology, University of Michigan, Ann Arbor
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan
| | - Fatai Y Agiri
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Kripa Guram
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
| | - Reid F Thompson
- Department of Radiation Medicine, Oregon Health and Sciences University, Portland
- Division of Hospital and Specialty Medicine, Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - Kathryn M Pridgen
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Bioengineering, University of California, San Diego, La Jolla
- Department of Radiology, University of California, San Diego, La Jolla
| | - Kyung Min Lee
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla
| | - Julie A Lynch
- Veterans Affairs Informatics and Computing Infrastructure (VINCI), Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City
| | - Richard L Hauger
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Center for Behavioral Genetics of Aging, University of California San Diego, La Jolla
| | - Brent S Rose
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
5
|
Ganguly S, Lone Z, Muskara A, Imamura J, Hardaway A, Patel M, Berk M, Smile TD, Davicioni E, Stephans KL, Ciezki J, Weight CJ, Gupta S, Reddy CA, Tendulkar RD, Chakraborty AA, Klein EA, Sharifi N, Mian OY. Intratumoral androgen biosynthesis associated with 3β-hydroxysteroid dehydrogenase 1 promotes resistance to radiotherapy in prostate cancer. J Clin Invest 2023; 133:e165718. [PMID: 37966114 PMCID: PMC10645386 DOI: 10.1172/jci165718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
Half of all men with advanced prostate cancer (PCa) inherit at least 1 copy of an adrenal-permissive HSD3B1 (1245C) allele, which increases levels of 3β-hydroxysteroid dehydrogenase 1 (3βHSD1) and promotes intracellular androgen biosynthesis. Germline inheritance of the adrenally permissive allele confers worse outcomes in men with advanced PCa. We investigated whether HSD3B1 (1245C) drives resistance to combined androgen deprivation and radiotherapy. Adrenally permissive 3βHSD1 enhanced resistance to radiotherapy in PCa cell lines and xenograft models engineered to mimic the human adrenal/gonadal axis during androgen deprivation. The allele-specific effects on radiosensitivity were dependent on availability of DHEA, the substrate for 3βHSD1. In lines expressing the HSD3B1 (1245C) allele, enhanced expression of DNA damage response (DDR) genes and more rapid DNA double-strand break (DSB) resolution were observed. A correlation between androgen receptor (AR) expression and increased DDR gene expression was confirmed in 680 radical prostatectomy specimens. Treatment with the nonsteroidal antiandrogen enzalutamide reversed the resistant phenotype of HSD3B1 (1245C) PCa in vitro and in vivo. In conclusion, 3βHSD1 promotes prostate cancer resistance to combined androgen deprivation and radiotherapy by upregulating DNA DSB repair. This work supports prospective validation of early combined androgen blockade for high-risk men harboring the HSD3B1 (1245C) allele.
Collapse
Affiliation(s)
| | - Zaeem Lone
- Translational Hematology and Oncology Research
| | | | | | | | - Mona Patel
- Department of Cancer Biology, Lerner Research Institute
| | - Mike Berk
- Department of Cancer Biology, Lerner Research Institute
| | - Timothy D Smile
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Kevin L Stephans
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jay Ciezki
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Shilpa Gupta
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Rahul D Tendulkar
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Lerner Research Institute
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eric A Klein
- Veracyte Inc., San Francisco, California, USA
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nima Sharifi
- Glickman Urologic and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Ohio, USA
| | - Omar Y Mian
- Translational Hematology and Oncology Research
- Department of Radiation Oncology, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Poutanen M, Hagberg Thulin M, Härkönen P. Targeting sex steroid biosynthesis for breast and prostate cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00609-y. [PMID: 37684402 DOI: 10.1038/s41568-023-00609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.
- Turku Center for Disease Modelling, University of Turku, Turku, Finland.
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland.
| | - Malin Hagberg Thulin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pirkko Härkönen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Center, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
7
|
Sang J, Chu J, Zhao X, Quan H, Ji Z, Wang S, Tang Y, Hu Z, Li H, Li L, Ge RS. Curcuminoids inhibit human and rat placental 3β-hydroxysteroid dehydrogenases: Structure-activity relationship and in silico docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116051. [PMID: 36572324 DOI: 10.1016/j.jep.2022.116051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, curcuma longa L has been applied to treat pain and tumour-related symptoms for over thousands of years. Curcuminoids, polyphenolic compounds, are the main pharmacological component from the rhizome of Curcuma longa L. Pharmacological investigations have found that curcuminoids have many pharmacological activities of anti-inflammatory, anti-tumour, and anti-metastasis. AIM OF THE STUDY 3β-Hydroxysteroid dehydrogenase (3β-HSD1) catalyses the production of steroid precursors for androgens and estrogens, which play an essential role in cancer metastasis. We explored the potency and mode of action of curcuminoids and their metabolites of inhibiting 3β-HSD1 activity and compared the species difference between human and rat. MATERIALS AND METHODS In this study, we investigated the direct inhibition of 6 curcuminoids on human placental 3β-HSD1 activity and compared the species-dependent difference in human 3β-HSD1 and rat placental homolog 3β-HSD4. RESULTS The inhibitory potency of curcuminoids on human 3β-HSD1 was demethoxycurcumin (IC50, 0.18 μM) > bisdemethoxycurcumin (0.21 μM)>curcumin (2.41 μM)> dihydrocurcumin (4.13 μM)>tetrahydrocurcumin (15.78 μM)>octahydrocurcumin (ineffective at 100 μM). The inhibitory potency of curcuminoids on rat 3β-HSD4 was bisdemethoxycurcumin (3.34 μM)>dihydrocurcumin (5.12 μM)>tetrahydrocurcumin (41.82 μM)>demethoxycurcumin (88.10 μM)>curcumin (137.06 μM)> octahydrocurcumin (ineffective at 100 μM). Human choriocarcinoma JAr cells with curcuminoid treatment showed that these chemicals had similar potency to inhibit progesterone secretion under basal and 8bromo-cAMP stimulated conditions. Docking analysis showed that all chemicals bind pregnenolone-binding site with mixed/competitive mode for 3β-HSD. CONCLUSION Some curcuminoids are potent human placental 3β-HSD1 inhibitors, possibly being potential drugs to treat prostate cancer and breast cancer.
Collapse
Affiliation(s)
- Jianmin Sang
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jinjin Chu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Zhao
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hehua Quan
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhongyao Ji
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shaowei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunbing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhiyan Hu
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huitao Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linxi Li
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anaesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province and Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
8
|
Li X, Berk M, Goins C, Alyamani M, Chung YM, Wang C, Patel M, Rathi N, Zhu Z, Willard B, Stauffer S, Klein E, Sharifi N. BMX controls 3βHSD1 and sex steroid biosynthesis in cancer. J Clin Invest 2023; 133:e163498. [PMID: 36647826 PMCID: PMC9843047 DOI: 10.1172/jci163498] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 01/18/2023] Open
Abstract
Prostate cancer is highly dependent on androgens and the androgen receptor (AR). Hormonal therapies inhibit gonadal testosterone production, block extragonadal androgen biosynthesis, or directly antagonize AR. Resistance to medical castration occurs as castration-resistant prostate cancer (CRPC) and is driven by reactivation of the androgen-AR axis. 3β-hydroxysteroid dehydrogenase-1 (3βHSD1) serves as the rate-limiting step for potent androgen synthesis from extragonadal precursors, thereby stimulating CRPC. Genetic evidence in men demonstrates the role of 3βHSD1 in driving CRPC. In postmenopausal women, 3βHSD1 is required for synthesis of aromatase substrates and plays an essential role in breast cancer. Therefore, 3βHSD1 lies at a critical junction for the synthesis of androgens and estrogens, and this metabolic flux is regulated through germline-inherited mechanisms. We show that phosphorylation of tyrosine 344 (Y344) occurs and is required for 3βHSD1 cellular activity and generation of Δ4, 3-keto-substrates of 5α-reductase and aromatase, including in patient tissues. BMX directly interacts with 3βHSD1 and is necessary for enzyme phosphorylation and androgen biosynthesis. In vivo blockade of 3βHSD1 Y344 phosphorylation inhibits CRPC. These findings identify what we believe to be new hormonal therapy pharmacologic vulnerabilities for sex-steroid dependent cancers.
Collapse
Affiliation(s)
- Xiuxiu Li
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | | | - Mohammad Alyamani
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Chenyao Wang
- Department of Inflammation and Immunity, Lerner Research Institute
| | - Monaben Patel
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Nityam Rathi
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | - Ziqi Zhu
- Genitourinary Malignancies Research Center, Lerner Research Institute
| | | | - Shaun Stauffer
- Center for Therapeutics Discovery, Lerner Research Institute
| | - Eric Klein
- Genitourinary Malignancies Research Center, Lerner Research Institute
- Department of Urology, Glickman Urological and Kidney Institute, and
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute
- Department of Urology, Glickman Urological and Kidney Institute, and
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
McManus JM, Vargas R, Bazeley PS, Schumacher FR, Sharifi N. Association Between Adrenal-Restrictive HSD3B1 Inheritance and Hormone-Independent Subtypes of Endometrial and Breast Cancer. JNCI Cancer Spectr 2022; 6:pkac061. [PMID: 35947687 PMCID: PMC9475354 DOI: 10.1093/jncics/pkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The germline variant rs1047303 (HSD3B1[1245A/C]), restricting or enabling production of potent androgens and estrogens from adrenal precursors, affects outcomes of castration-resistant prostate cancer and is associated with estrogen receptor positivity in postmenopausal breast cancer. Like breast cancer, endometrial cancer is another malignancy with hormone-dependent and hormone-independent subtypes. We hypothesized that adrenal-restrictive HSD3B1 genotype would associate with hormone-independent cancer subtypes. METHODS We employed a previously described classification of tumors in The Cancer Genome Atlas into genomic clusters. We determined HSD3B1 genotype frequencies by endometrial cancer genomic cluster and calculated the odds per adrenal-restrictive A allele for the largely hormone-independent copy-number (CN) high subtype vs other subtypes. An equivalent analysis was performed for the genomically similar, hormone-independent basal breast cancer subtype. Last, we performed survival analyses for UK Biobank participants with endometrial cancer by HSD3B1 genotype. All statistical tests were 2-sided. RESULTS The adrenal-restrictive HSD3B1(1245A) allele was associated with the CN-high endometrial cancer subtype (odds ratio [OR] = 1.63, 95% confidence interval [CI] = 1.14 to 2.32; P = .007). Similarly, HSD3B1(1245A) was associated with the basal breast cancer subtype (OR = 1.54, 95% CI = 1.13 to 2.08; P = .006). In the UK Biobank, endometrial cancer patients homozygous for HSD3B1(1245A) had worse overall (hazard ratio [HR] = 1.39, 95% CI = 1.16 to 1.68; P < .001) and cancer-specific (HR = 1.39, 95% CI = 1.14 to 1.70; P = .001) survival, consistent with the A allele being enriched in the more aggressive CN-high subtype. CONCLUSIONS These findings suggest roles for adrenal-restrictive vs adrenal-permissive steroidogenesis, by way of rs1047303 genotype, in the development of and/or outcomes from at least 3 commonly hormone-associated types of cancer: prostate, breast, and endometrial.
Collapse
Affiliation(s)
- Jeffrey M McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roberto Vargas
- Department of Gynecologic Oncology, Women’s Health Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Peter S Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Fredrick R Schumacher
- Department of Population Health and Quantitative Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
10
|
Amrousy Y, Haffez H, Abdou D, Atya H. Role of single nucleotide polymorphisms of the HSD3B1 gene (rs6203 and rs33937873) in the prediction of prostate cancer risk. Mol Med Rep 2022; 26:271. [PMID: 35795973 PMCID: PMC9309536 DOI: 10.3892/mmr.2022.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
3-β-hydroxysteroid dehydrogenase 1 (HSD3B1) is shown to affect dihydrotestosterone level in prostatic tissue which is a risk factor for prostate cancer (PC). The present study aimed to determine whether rs33937873 (G313A) and rs6203 (C338T) single nucleotide polymorphisms (SNP) in HSD3B1 gene was a potential risk factor for PC susceptibility and can predict the recurrence of PC in Egyptian patients. A total of 186 Egyptian patients were selected with incident primary PC and compared with 180 age healthy controls. The frequencies and the main effect of rs33937873 and rs6203 in HSD3B1 were compared and investigated between the patients and control using genotyping technique and statistical analysis. The mutant GA genotype of G313A in rs33937873 SNP was considered as an independent risk for PC in the multivariate regression analysis [odds ratio (OR)=2.7, 95% confidence intervals (CI): 1.2-5.5, P=0.01] together with positive history of hypertension (HTN) (OR=6.2, 95% CI: 3.2-12.1, P=0.0001) and begin prostatic hyperplasia (BPH; OR=8.9, 95% CI: 4.5-17.5, P=0.0001). Conversely, in rs6203 (C338T), C allele is considered as major risk allele in the development of PC (OR=1.8, 95% CI: 1.3-2.4, P=0.0003). The univariate logistic regression analyses indicated that CC genotype of rs6203 was a PC risk factor (OR=1.9, 95% CI: 1.3-2.9, P=0.002). In addition, the frequency of the A-C haplotype established by rs33937873-rs6203 was also significantly higher for PC (P=0.013). The predication of PC recurrence was associated only with positive family history (OR=7.7, 95% CI: 2.3-25.9, P=0.001) and not for The G313A and C338T SNPs. These results suggested that the two HSD3B1 polymorphisms rs33937873 and rs6203 may modify the risk of PC, particularly among patients with HTN and history of BPH, suggesting them as prominent future markers for prediction of PC risk.
Collapse
Affiliation(s)
- Yasmine Amrousy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Helwan University, Cairo 11795, Egypt
| | - Hesham Haffez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Doaa Abdou
- Department of Clinical and Chemical Pathology, Kasr Al Ainy, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Hanaa Atya
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
11
|
McManus JM, Sabharwal N, Bazeley P, Sharifi N. Inheritance of a common androgen synthesis variant allele is associated with female COVID susceptibility in UK Biobank. Eur J Endocrinol 2022; 187:1-14. [PMID: 35521709 PMCID: PMC9106901 DOI: 10.1530/eje-21-0996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Context A sex discordance in COVID exists, with males disproportionately affected. Although sex steroids may play a role in this discordance, no definitive genetic data exist to support androgen-mediated immune suppression neither for viral susceptibility nor for adrenally produced androgens. Objective The common adrenal-permissive missense-encoding variant HSD3B1(1245C) that enables androgen synthesis from adrenal precursors and that has been linked to suppression of inflammation in severe asthma was investigated in COVID susceptibility and outcomes reported in the UK Biobank. Methods The UK Biobank is a long-term study with detailed medical information and health outcomes for over 500 000 genotyped individuals. We obtained COVID test results, inpatient hospital records, and death records and tested for associations between COVID susceptibility or outcomes and HSD3B1(1245A/C) genotype. Primary analyses were performed on the UK Biobank Caucasian cohort. The outcomes were identification as a COVID case among all subjects, COVID positivity among COVID-tested subjects, and mortality among subjects identified as COVID cases. Results Adrenal-permissive HSD3B1(1245C) genotype was associated with identification as a COVID case (odds ratio (OR): 1.11 per C allele, 95% CI: 1.04-1.18, P = 0.0013) and COVID-test positivity (OR: 1.09, 95% CI: 1.02-1.17, P = 0.011) in older (≥70 years of age) women. In women identified as COVID cases, there was a positive linear relationship between age and 1245C allele frequency (P < 0.0001). No associations were found between genotype and mortality or between genotype and circulating sex hormone levels. Conclusion Our study suggests that a common androgen synthesis variant regulates immune susceptibility to COVID infection in women, with increasingly strong effects as women age.
Collapse
Affiliation(s)
- Jeffrey M. McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Navin Sabharwal
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peter Bazeley
- Center for Clinical Genomics, Genomics Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord 2022; 23:171-183. [PMID: 34761329 PMCID: PMC8580578 DOI: 10.1007/s11154-021-09692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that the novel Coronavirus disease-2019 (COVID-19) is deadlier for men than women both in China and in Europe. Male sex is a risk factor for COVID-19 mortality. The meccanisms underlying the reduced morbidity and lethality in women are currently unclear, even though hypotheses have been posed (Brandi and Giustina in Trends Endocrinol Metab. 31:918-27, 2020). This article aims to describe the role of sex hormones in sex- and gender-related fatality of COVID-19. We discuss the possibility that potential sex-specific mechanisms modulating the course of the disease include both the androgen- and the estrogen-response cascade. Sex hormones regulate the respiratory function, the innate and adaptive immune responses, the immunoaging, the cardiovascular system, and the entrance of the virus in the cells. Recommendations for the future government policies and for the management of COVID-19 patients should include a dimorphic approach for males and females. As the estrogen receptor signaling appears critical for protection in women, more studies are needed to translate the basic knowledge into clinical actions. Understanding the etiological bases of sexual dimorphism in COVID-19 could help develop more effective strategies in individual patients in both sexes, including designing a good vaccine.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Fondazione Italiana Per La Ricerca Sulle Malattie Dell'Osso, Florence, Italy.
| |
Collapse
|
13
|
McSweeney S, Bergom HE, Prizment A, Halabi S, Sharifi N, Ryan C, Hwang J. Regulatory genes in the androgen production, uptake and conversion (APUC) pathway in advanced prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R51-R64. [PMID: 37435458 PMCID: PMC10259352 DOI: 10.1530/eo-22-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 07/13/2023]
Abstract
The androgen receptor (AR) signaling pathway regulates the progression of prostate cancer (PC). Metastatic castration-resistant prostate cancer (mCRPC) patients generally receive AR-targeted therapies (ART) or androgen-deprivation therapies (ADT) with the initial response; however, resistance is inevitably observed. Prior studies have shown activity and upregulation of a family of androgen production, uptake, and conversion - APUC genes - based on genomic analyses of patient germlines. Genetic variants of some APUC genes, such as the conversion gene, HSD3B1, predict response to second-generation androgen-targeted therapies. Studies have begun to elucidate the overall role of APUC genes, each with unique actionable enzymatic activity, in mCRPC patient outcomes. The current role and knowledge of the genetic and genomic features of APUC genes in advanced prostate cancer and beyond are discussed in this review. These studies inform of how interpreting behavior of APUC genes through genomic tools will impact the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Sean McSweeney
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hannah E Bergom
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Prizment
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Charles Ryan
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
- Prostate Cancer Foundation, Santa Monica, California, USA
| | - Justin Hwang
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota, USA
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Biomarkers for Treatment Response in Advanced Prostate Cancer. Cancers (Basel) 2021; 13:cancers13225723. [PMID: 34830878 PMCID: PMC8616385 DOI: 10.3390/cancers13225723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Prostate cancer is a leading cause of cancer-related death among males. Many treatments are available to manage the disease, but despite this, ultimately advanced prostate cancer is incurable and fatal. In order to improve survival and minimize side effects from these various treatments, the treatments need to be given in an optimal sequence or combination. This optimal use of therapies must be individualized, and biomarkers can be used for these decisions. Biomarkers can be useful in predicting whether a patient will respond to a treatment option and may help avoid use of therapies that are not expected to be effective. Many biomarkers are already in clinical use while many others are currently being investigated and may become part of clinical practice in future. In this review, we discuss both established and novel biomarkers with a role in management of advanced prostate cancer. Abstract Multiple treatment options with different mechanisms of action are currently available for the management of metastatic prostate cancer. However, the optimal use of these therapies—specifically, the sequencing of therapies—is not well defined. In order to obtain the best clinical outcomes, patients need to be treated with the therapies that are most likely to provide benefit and avoid toxic therapies that are unlikely to be effective. Ideally, predictive biomarkers that allow for the selection of the therapies most likely to be of benefit would be employed for each treatment decision. In practice, biomarkers including tumor molecular sequencing, circulating tumor DNA, circulating tumor cell enumeration and androgen receptor characteristics, and tumor cell surface expression (PSMA), all may have a role in therapy selection. In this review, we define the established prognostic and predictive biomarkers for therapy in advanced prostate cancer and explore emerging biomarkers.
Collapse
|
15
|
Kruse ML, Patel M, McManus J, Chung YM, Li X, Wei W, Bazeley PS, Nakamura F, Hardaway A, Downs E, Chandarlapaty S, Thomas M, Moore HC, Budd GT, Tang WHW, Hazen SL, Bernstein A, Nik-Zainal S, Abraham J, Sharifi N. Adrenal-permissive HSD3B1 genetic inheritance and risk of estrogen-driven postmenopausal breast cancer. JCI Insight 2021; 6:e150403. [PMID: 34520399 PMCID: PMC8564898 DOI: 10.1172/jci.insight.150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetics of estrogen synthesis and breast cancer risk has been elusive. The 1245A→C missense-encoding polymorphism in HSD3B1, which is common in White populations, is functionally adrenal permissive and increases synthesis of the aromatase substrate androstenedione. We hypothesized that homozygous inheritance of the adrenal-permissive HSD3B1(1245C) is associated with postmenopausal estrogen receptor–positive (ER-positive) breast cancer. METHODS A prospective study of postmenopausal ER-driven breast cancer was done for determination of HSD3B1 and circulating steroids. Validation was performed in 2 other cohorts. Adrenal-permissive genotype frequency was compared between postmenopausal ER-positive breast cancer, the general population, and postmenopausal ER-negative breast cancer. RESULTS Prospective and validation studies had 157 and 538 patients, respectively, for the primary analysis of genotype frequency by ER status in White female breast cancer patients who were postmenopausal at diagnosis. The adrenal-permissive genotype frequency in postmenopausal White women with estrogen-driven breast cancer in the prospective cohort was 17.5% (21/120) compared with 5.4% (2/37) for ER-negative breast cancer (P = 0.108) and 9.6% (429/4451) in the general population (P = 0.0077). Adrenal-permissive genotype frequency for estrogen-driven postmenopausal breast cancer was validated using Cambridge and The Cancer Genome Atlas data sets: 14.4% (56/389) compared with 6.0% (9/149) for ER-negative breast cancer (P = 0.007) and the general population (P = 0.005). Circulating androstenedione concentration was higher with the adrenal-permissive genotype (P = 0.03). CONCLUSION Adrenal-permissive genotype is associated with estrogen-driven postmenopausal breast cancer. These findings link genetic inheritance of endogenous estrogen exposure to estrogen-driven breast cancer. FUNDING National Cancer Institute, NIH (R01CA236780, R01CA172382, and P30-CA008748); and Prostate Cancer Foundation Challenge Award.
Collapse
Affiliation(s)
- Megan L Kruse
- Department of Hematology and Oncology, Taussig Cancer Institute
| | - Mona Patel
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Jeffrey McManus
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Yoon-Mi Chung
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Xiuxiu Li
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Wei Wei
- Cancer Biostatistics Section, Taussig Cancer Institute
| | - Peter S Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute; and
| | - Fumihiko Nakamura
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Aimalie Hardaway
- GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| | - Erinn Downs
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mathew Thomas
- Department of Hematology and Oncology, Taussig Cancer Institute
| | - Halle Cf Moore
- Department of Hematology and Oncology, Taussig Cancer Institute
| | - George T Budd
- Department of Hematology and Oncology, Taussig Cancer Institute
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, and Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, and Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Aaron Bernstein
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Serena Nik-Zainal
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jame Abraham
- Department of Hematology and Oncology, Taussig Cancer Institute
| | - Nima Sharifi
- Department of Hematology and Oncology, Taussig Cancer Institute.,GU Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute
| |
Collapse
|
16
|
Moravvej H, Pourani MR, Baghani M, Abdollahimajd F. Androgenetic alopecia and COVID-19: A review of the hypothetical role of androgens. Dermatol Ther 2021; 34:e15004. [PMID: 34033224 PMCID: PMC8209856 DOI: 10.1111/dth.15004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID‐19) has become the most emerging health issue globally. A prompt investigation regarding disease management and treatment is crucial for decreasing the burden of the disease. Many explorations and hypotheses have been posed, but the definite treatment has not been determined for COVID‐19. Recent studies described a substantial prevalence of COVID‐19 and also a higher rate of morbidity and mortality in men afflicted with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection. The gender‐related discordance in COVID‐19 infection may be due to hormonal differences, socioeconomic factors, genetic susceptibility, gender‐related comorbidities, and habits like alcohol consumption. On the other hand, several studies proposed that androgens could improve the immune system and have a protective role in COVID‐19, and decreased levels of androgens might be associated with unsatisfactory outcomes. In the field of dermatology, androgenetic alopecia (AGA) is correlated with a hyperandrogenic state and may be related to COVID‐19 severity. Furthermore, recent research has assessed the plausible association of AGA and COVID‐19. In this review, we investigate all evidence on AGA and its relationship with COVID‐19, including the possible role of androgens in COVID‐19 severity and outcomes as well as candidate androgen‐related drugs for the treatment of COVID‐19.
Collapse
Affiliation(s)
- Hamideh Moravvej
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Baghani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Abdollahimajd
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
Huggins and Hodges demonstrated the therapeutic effect of gonadal testosterone deprivation in the 1940s and therefore firmly established the concept that prostate cancer is a highly androgen-dependent disease. Since that time, hormonal therapy has undergone iterative advancement, from the types of gonadal testosterone deprivation to modalities that block the generation of adrenal and other extragonadal androgens, to those that directly bind and inhibit the androgen receptor (AR). The clinical states of prostate cancer are the product of a superimposition of these therapies with nonmetastatic advanced prostate cancer, as well as frankly metastatic disease. Today's standard of care for advanced prostate cancer includes gonadotropin-releasing hormone agonists (e.g., leuprolide), second-generation nonsteroidal AR antagonists (enzalutamide, apalutamide, and darolutamide) and the androgen biosynthesis inhibitor abiraterone. The purpose of this review is to provide an assessment of hormonal therapies for the various clinical states of prostate cancer. The advancement of today's standard of care will require an accounting of an individual's androgen physiology that also has recently recognized germline determinants of peripheral androgen metabolism, which include HSD3B1 inheritance.
Collapse
Affiliation(s)
- Kunal Desai
- Department of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeffrey M McManus
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Graham LS, True LD, Gulati R, Schade GR, Wright J, Grivas P, Yezefski T, Nega K, Alexander K, Hou WM, Yu EY, Montgomery B, Mostaghel EA, Matsumoto AA, Marck B, Sharifi N, Ellis WJ, Reder NP, Lin DW, Nelson PS, Schweizer MT. Targeting backdoor androgen synthesis through AKR1C3 inhibition: A presurgical hormonal ablative neoadjuvant trial in high-risk localized prostate cancer. Prostate 2021; 81:418-426. [PMID: 33755225 PMCID: PMC8044035 DOI: 10.1002/pros.24118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Localized prostate cancers (PCs) may resist neoadjuvant androgen receptor (AR)-targeted therapies as a result of persistent intraprostatic androgens arising through upregulation of steroidogenic enzymes. Therefore, we sought to evaluate clinical effects of neoadjuvant indomethacin (Indo), which inhibits the steroidogenic enzyme AKR1C3, in addition to combinatorial anti-androgen blockade, in men with high-risk PC undergoing radical prostatectomy (RP). METHODS This was an open label, single-site, Phase II neoadjuvant trial in men with high to very-high-risk PC, as defined by NCCN criteria. Patients received 12 weeks of apalutamide (Apa), abiraterone acetate plus prednisone (AAP), degarelix, and Indo followed by RP. Primary objective was to determine the pathologic complete response (pCR) rate. Secondary objectives included minimal residual disease (MRD) rate, defined as residual cancer burden (RCB) ≤ 0.25cm3 (tumor volume multiplied by tumor cellularity) and elucidation of molecular features of resistance. RESULTS Twenty patients were evaluable for the primary endpoint. Baseline median prostate-specific antigen (PSA) was 10.1 ng/ml, 4 (20%) patients had Gleason grade group (GG) 4 disease and 16 had GG 5 disease. At RP, 1 (5%) patient had pCR and 6 (30%) had MRD. Therapy was well tolerated. Over a median follow-up of 23.8 months, 1 of 7 (14%) men with pathologic response and 6 of 13 (46%) men without pathologic response had a PSA relapse. There was no association between prostate hormone levels or HSD3B1 genotype with pathologic response. CONCLUSIONS In men with high-risk PC, pCR rates remained low even with combinatorial AR-directed therapy, although rates of MRD were higher. Ongoing follow-up is needed to validate clinical outcomes of men who achieve MRD.
Collapse
Affiliation(s)
- Laura S Graham
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Roman Gulati
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - George R Schade
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jonathan Wright
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Petros Grivas
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Todd Yezefski
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Katie Nega
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Katerina Alexander
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Wen-Min Hou
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Evan Y Yu
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Geriatric Research Education and Clinical Care, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Elahe A Mostaghel
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Geriatric Research Education and Clinical Care, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Alvin A Matsumoto
- Geriatric Research Education and Clinical Care, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Brett Marck
- Geriatric Research Education and Clinical Care, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Nicholas P Reder
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel W Lin
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael T Schweizer
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
19
|
Prostate Cancer Mortality Associated with Aggregate Polymorphisms in Androgen-Regulating Genes: The Atherosclerosis Risk in the Communities (ARIC) Study. Cancers (Basel) 2021; 13:cancers13081958. [PMID: 33921650 PMCID: PMC8072683 DOI: 10.3390/cancers13081958] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Genetic variations in androgen metabolism may influence prostate cancer (PC) prognosis. Clinical studies consistently linked PC prognosis with four single nucleotide polymorphisms (SNPs) in the critical androgen-regulating genes: 3-beta-hydroxysteroid dehydrogenase (HSD3B1) rs1047303, 5-alpha-reductase 2 (SRD5A2) rs523349, and solute carrier organic ion (SLCO2B1) rs1789693 and rs12422149. We tested the association of four androgen-regulating SNPs, individually and combined, with PC-specific mortality in the ARIC population-based prospective cohort. Men diagnosed with PC (N = 622; 79% White, 21% Black) were followed for death (N = 350) including PC death (N = 74). Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95%CI adjusting for center, age, stage, and grade at diagnosis using separate hazards for races. A priori genetic risk score (GRS) was created as the unweighted sum of risk alleles in the four pre-selected SNPs. The gain-of-function rs1047303C allele was associated PC-specific mortality among men with metastatic PC at diagnosis (HR = 4.89 per risk allele, p = 0.01). Higher GRS was associated with PC-specific mortality (per risk allele: HR = 1.26, p = 0.03). We confirmed that the gain-of-function allele in HSD3B1 rs1047303 is associated with greater PC mortality in men with metastatic disease. Additionally, our findings suggest a cumulative effect of androgen-regulating genes on PC-specific mortality; however, further validation is required.
Collapse
|
20
|
Devlies W, Eckstein M, Cimadamore A, Devos G, Moris L, Van den Broeck T, Montironi R, Joniau S, Claessens F, Gevaert T. Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells 2020; 9:E2494. [PMID: 33212909 PMCID: PMC7698403 DOI: 10.3390/cells9112494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The development of targeted therapies increases treatment options for metastatic castration resistant prostate cancer (mCRPC) patients. There is a need for strong predictive and prognostic signatures to guide physicians in treating mCRPC patients. In this review we unravel the possible actionability in the AR pathway, PI3K AKT signaling, and DNA repair pathways. Additionally, we make recommendations on biomarker trial design, and the clinical use of this new type of data.
Collapse
Affiliation(s)
- Wout Devlies
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Markus Eckstein
- Department of Pathology, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60121 Ancona, Italy; (A.C.); (R.M.)
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Lisa Moris
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Thomas Van den Broeck
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60121 Ancona, Italy; (A.C.); (R.M.)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Thomas Gevaert
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
21
|
Thomas L, Sharifi N. Germline HSD3B1 Genetics and Prostate Cancer Outcomes. Urology 2020; 145:13-21. [PMID: 32866512 PMCID: PMC7657962 DOI: 10.1016/j.urology.2020.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Dihydrotestosterone synthesis in prostate cancer from adrenal DHEA/DHEA-sulfate requires enzymatic conversion in tumor tissues. 3β-hydroxysteroid dehydrogenase-1 is an absolutely necessary enzyme for such dihydrotestosterone synthesis and is encoded by the gene HSD3B1 which comes in 2 functional inherited forms described in 2013. The adrenal-permissive HSD3B1(1245C) allele allows for rapid dihydrotestosterone synthesis. The adrenal-restrictive HSD3B1(1245A) allele limits androgen synthesis. Studies from multiple cohorts show that adrenal-permissive allele inheritance confers worse outcomes and shorter survival after castration in low-volume prostate cancer and poor outcomes after abiraterone or enzalutamide treatment for castration-resistant prostate cancer. Here, we review the clinical data and implications.
Collapse
Affiliation(s)
- Lewis Thomas
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
22
|
Moradi F, Enjezab B, Ghadiri-Anari A. The role of androgens in COVID-19. Diabetes Metab Syndr 2020; 14:2003-2006. [PMID: 33091758 PMCID: PMC7557269 DOI: 10.1016/j.dsx.2020.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM The coronavirus disease 2019 (COVID-19) pandemic is a global health emergency. According to the findings, male patients with COVID-19 infection are at an increased risk for severe complications than females. The causes of this issue are unknown and are most probably multifactorial. Sexual hormones affect the immune system, so estrogen strengthens the immune system, and testosterone suppresses it. Due to the reports of the high prevalence of androgenic alopecia in hospitalized patients with COVID-19 and a higher risk of respiratory disease and increased use of allergy/asthma medications among patients with polycystic ovary syndrome (PCOS) as a hyperandrogenism condition compared with non-PCOS women, this review aimed to evaluate androgens role in COVID-19. METHODS 42 related articles from 2008 to 2020 were reviewed with the keywords of androgens, hormonal factors, and hair loss in combination with COVID-19 in medical research databases. RESULTS The evidence of transmembrane protease, serine 2 (TMPRSS2) expression in lung tissue, which is an androgen-regulated gene and expressed mainly in the adult prostate may interpret the increased susceptibility of the male gender to severe COVID-19 complications. Moreover, angiotensin-converting enzyme 2 (ACE-2) acts as a functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and male hormones are effective in the ACE-2 passageway and simplify SARS-CoV-2 entry into host cells. CONCLUSION Further studies on the severity of symptoms in patients with COVID-19 in other hyperandrogenism conditions compared to the control group are recommended.
Collapse
Affiliation(s)
| | - Behnaz Enjezab
- Research Center for Nursing and Midwifery Care, Department of Midwifery, Faculty of Nursing and Midwifery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Akram Ghadiri-Anari
- Department of Internal Medicine, Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
23
|
Mariappan V, S R R, Balakrishna Pillai A. Angiotensin-converting enzyme 2: A protective factor in regulating disease virulence of SARS-COV-2. IUBMB Life 2020; 72:2533-2545. [PMID: 33031602 DOI: 10.1002/iub.2391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023]
Abstract
Novel SARS-CoV-2 named due to its close homology with severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiologic agent for the ongoing pandemic outbreak causing loss of life and severe economic burden globally. The virus is believed to be evolved in a recombined form of bat and animal coronavirus with the capacity to infect human host using the ACE2 receptors as an entry point. Though the disease pathogenesis is not elucidated completely, the virus-mediated host response retains a similar pattern to that of previous SARS-CoV. Based on the available trend it is assumed that pediatric groups are less susceptible to the coronavirus. Understanding the possible mechanism that protects the children from hyper-inflammatory or disease severity could lead to better treatment modalities. In the present review, we have discussed the significance of age and sex-dependent pattern of ACE2 receptor expression and ACE2 variants in the immune protective mechanism of the disease virulence. We have also added a brief note on the importance of sex hormones in the pathogenesis of ACE2 mediated SARS-CoV2 infection.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Rao S R
- Research, Innovation, and Development, Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, India
| |
Collapse
|
24
|
Naelitz BD, Sharifi N. Through the Looking-Glass: Reevaluating DHEA Metabolism Through HSD3B1 Genetics. Trends Endocrinol Metab 2020; 31:680-690. [PMID: 32565196 PMCID: PMC7442716 DOI: 10.1016/j.tem.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022]
Abstract
Dehydroepiandrosterone (DHEA) and DHEA sulfate together are abundant adrenal steroids whose physiological effects are mediated through their conversion to potent downstream androgens. 3β-Hydroxysteroid dehydrogenase isotype 1 (3βHSD1) facilitates the rate-limiting step of DHEA metabolism and gates the flux of substrate into the distal portion of the androgen synthesis pathway. Notably, a germline, missense-encoding change, HSD3B1(1245C), results in expression of 3βHSD1 protein that is resistant to degradation, yielding greater potent androgen production in the periphery. In contrast, HSD3B1(1245A) encodes 3βHSD1 protein that is easily degraded, limiting peripheral androgen synthesis. These adrenal-permissive (AP) and adrenal-restrictive (AR) alleles have recently been associated with divergent outcomes in androgen-sensitive disease states, underscoring the need to reevaluate DHEA metabolism using HSD3B1 genetics.
Collapse
Affiliation(s)
- Bryan D Naelitz
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA; Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Barani M, Sabir F, Rahdar A, Arshad R, Kyzas GZ. Nanotreatment and Nanodiagnosis of Prostate Cancer: Recent Updates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1696. [PMID: 32872181 PMCID: PMC7559844 DOI: 10.3390/nano10091696] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The fabrication and development of nanomaterials for the treatment of prostate cancer have gained significant appraisal in recent years. Advancements in synthesis of organic and inorganic nanomaterials with charge, particle size, specified geometry, ligand attachment etc have resulted in greater biocompatibility and active targeting at cancer site. Despite all of the advances made over the years in discovering drugs, methods, and new biomarkers for cancer of the prostate (PCa), PCa remains one of the most troubling cancers among people. Early on, effective diagnosis is an essential part of treating prostate cancer. Prostate-specific antigen (PSA) or serum prostate-specific antigen is the best serum marker widely accessible for diagnosis of PCa. Numerous efforts have been made over the past decade to design new biosensor-based strategies for biomolecules detection and PSA miniaturization biomarkers. The growing nanotechnology is expected to have a significant effect in the immediate future on scientific research and healthcare. Nanotechnology is thus predicted to find a way to solve one of the most and long-standing problem, "early cancer detection". For early diagnosis of PCa biomarkers, different nanoparticles with different approaches have been used. In this review, we provide a brief description of the latest achievements and advances in the use of nanoparticles for PCa biomarker diagnosis.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 7616914111, Iran;
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
26
|
Sharifi N. Homozygous HSD3B1(1245C) inheritance and poor outcomes in metastatic castration-resistant prostate cancer with abiraterone or enzalutamide: what does it mean? Ann Oncol 2020; 31:1103-1105. [PMID: 32592760 DOI: 10.1016/j.annonc.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/03/2023] Open
Affiliation(s)
- Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, USA; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, USA.
| |
Collapse
|
27
|
Chen WS, Feng EL, Aggarwal R, Foye A, Beer TM, Alumkal JJ, Gleave M, Chi KN, Reiter RE, Rettig MB, Evans CP, Small EJ, Sharifi N, Zhao SG. Germline polymorphisms associated with impaired survival outcomes and somatic tumor alterations in advanced prostate cancer. Prostate Cancer Prostatic Dis 2020; 23:316-323. [PMID: 31745256 PMCID: PMC7529063 DOI: 10.1038/s41391-019-0188-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/19/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Germline variants in androgen metabolism genes may influence clinical response to androgen deprivation therapy (ADT) in advanced prostate cancer. We sought to investigate the prognostic significance of germline variants in androgen metabolism genes with respect to overall survival (OS) after ADT, and to associate germline variants with tumor genomic features. METHODS Germline and somatic whole-genome sequencing (WGS) data were evaluated in a cohort of 101 men with metastatic castration-resistant prostate cancer (mCRPC). Survival analyses were performed to identify polymorphisms associated with impaired OS after primary ADT. Germline variants found to be prognostic of OS were associated with tumor somatic DNA-sequence alterations based on WGS performed on paired metastasis biopsies from the same 101 patients. Gene set enrichment analysis was performed based on tumor RNA-sequencing data to identify genomic pathways differentially expressed in patients with germline variants. RESULTS A comprehensive literature review identified 17 candidate polymorphisms in nine androgen metabolism genes that have been previously shown to have an association with response to ADT in prostate cancer. Of these, the variant rs1856888 allele located 13 kb upstream of HSD3B1 was found to be significantly associated with impaired OS (P = 0.029). Variant rs1856888 was commonly co-inherited with the well-characterized HSD3B1(1245A>C) polymorphism, and there was a trend toward shorter median OS in patients with HSD3B1(1245A>C) compared with homozygous wild-type patients (P = 0.052). While HSD3B1 germline variants were not associated with common somatic tumor DNA alterations, they were associated with increased tumor expression of cell proliferation and cell cycle genes. CONCLUSIONS This study presents a comprehensive assessment of germline variants in androgen metabolism genes and highlights HSD3B1 polymorphisms as prognostic of OS after ADT and associated with an aggressive gene expression tumor profile in mCRPC.
Collapse
Affiliation(s)
- William S Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Yale School of Medicine, New Haven, CT, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric L Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Adam Foye
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Joshi J Alumkal
- Rogel Cancer Center and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Martin Gleave
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Kim N Chi
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Matthew B Rettig
- University of California Los Angeles, Los Angeles, CA, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, CA, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Wollina U, Karadağ AS, Rowland-Payne C, Chiriac A, Lotti T. Cutaneous signs in COVID-19 patients: A review. Dermatol Ther 2020; 33:e13549. [PMID: 32390279 PMCID: PMC7273098 DOI: 10.1111/dth.13549] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID‐19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) primarily affects the epithelium of the airways. With the increasing involvement of dermatologist in management of this crisis, cutaneous symptoms gained more and more attention. In this review, we will describe cutaneous symptoms of patients of all ages in association with COVID‐19. We will focus on such disorders that are caused by direct action of SARS‐CoV‐2 on tissues, complement, and coagulation system and on nonspecific eruption of the systemic viral infection. Drug‐induced reactions are only mentioned in the differential diagnoses. Although more systematic investigations are warranted, it becomes clear that some symptoms are clinical signs of a milder COVID‐19 course, while others are a red flag for a more severe course. Knowledge of the cutaneous manifestations of COVID‐19 may help in early diagnosis, triage of patients, and risk stratification.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - Ayşe Serap Karadağ
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | | | - Anca Chiriac
- Department of Dermatology, Apollonia University, Iasi, Romania.,Division of Dermatology, Nicolina Medical Center, Iasi, Romania.,"P. Poni" Institute of Macromolecular Chemistry, Romanian Academy, Iasi, Romania
| | - Torello Lotti
- Department of Dermatology and Venereology, University of Rome G. Marconi, Rome, Italy
| |
Collapse
|
29
|
Hearn JWD, Sweeney CJ, Almassi N, Reichard CA, Reddy CA, Li H, Hobbs B, Jarrard DF, Chen YH, Dreicer R, Garcia JA, Carducci MA, DiPaola RS, Sharifi N. HSD3B1 Genotype and Clinical Outcomes in Metastatic Castration-Sensitive Prostate Cancer. JAMA Oncol 2020; 6:e196496. [PMID: 32053149 DOI: 10.1001/jamaoncol.2019.6496] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance The adrenal-restrictive HSD3B1(1245A) allele limits extragonadal dihydrotestosterone synthesis, whereas the adrenal-permissive HSD3B1(1245C) allele augments extragonadal dihydrotestosterone synthesis. Retrospective studies have suggested an association between the adrenal-permissive allele, the frequency of which is highest in white men, and early development of castration-resistant prostate cancer (CRPC). Objective To examine the association between the adrenal-permissive HSD3B1(1245C) allele and early development of CRPC using prospective data. Design, Setting, and Participants The E3805 Chemohormonal Therapy vs Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer (CHAARTED) was a large, multicenter, phase 3 trial of castration with or without docetaxel treatment in men with newly diagnosed metastatic prostate cancer. From July 28, 2006, through December 31, 2012, 790 patients underwent randomization, of whom 527 had available DNA samples. In this study, the HSD3B1 germline genotype was retrospectively determined in 475 white men treated in E3805 CHAARTED, and clinical outcomes were analyzed by genotype. Data analysis was performed from July 28, 2006, to October 17, 2018. Interventions Men were randomized to castration plus docetaxel, 75 mg/m2, every 3 weeks for 6 cycles or castration alone. Main Outcomes and Measures Two-year freedom from CRPC and 5-year overall survival, with results stratified by disease volume. Patients were combined across study arms according to genotype to assess the overall outcome associated with genotype. Secondary analyses by treatment arm evaluated whether the docetaxel outcome varied with genotype. Results Of 475 white men with DNA samples, 270 patients (56.8%) inherited the adrenal-permissive genotype (≥1 HSD3B1[1245C] allele). Mean (SD) age was 63 (8.7) years. Freedom from CRPC at 2 years was diminished in men with low-volume disease with the adrenal-permissive vs adrenal-restrictive genotype: 51.0% (95% CI, 40.9%-61.2%) vs 70.5% (95% CI, 60.0%-80.9%) (P = .01). Overall survival at 5 years was also worse in men with low-volume disease with the adrenal-permissive genotype: 57.5% (95% CI, 47.4%-67.7%) vs 70.8% (95% CI, 60.3%-81.3%) (P = .03). Hazard ratios were 1.89 (95% CI, 1.13-3.14; P = .02) for CRPC and 1.74 (95% CI, 1.01-3.00; P = .045) for death. There was no association between genotype and outcomes in men with high-volume disease. There was no interaction between genotype and benefit from docetaxel. Conclusions and Relevance Inheritance of the adrenal-permissive HSD3B1 genotype is associated with earlier castration resistance and shorter overall survival in men with low-volume metastatic prostate cancer and may help identify men more likely to benefit from escalated androgen receptor axis inhibition beyond gonadal testosterone suppression.
Collapse
Affiliation(s)
- Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor
| | - Christopher J Sweeney
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nima Almassi
- GU Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad A Reichard
- GU Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,University of Texas MD Anderson Cancer Center, Houston
| | - Chandana A Reddy
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio.,Cancer Biostatistics Section, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Hong Li
- Cancer Biostatistics Section, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Brian Hobbs
- Cancer Biostatistics Section, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - David F Jarrard
- Department of Medical Oncology, University of Wisconsin Hospital and Clinics, Madison
| | - Yu-Hui Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jorge A Garcia
- Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland
| | - Robert S DiPaola
- Department of Medical Oncology, University of Kentucky, Lexington
| | - Nima Sharifi
- GU Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.,Taussig Cancer Institute, Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
30
|
Penning TM, Detlefsen AJ. Intracrinology-revisited and prostate cancer. J Steroid Biochem Mol Biol 2020; 196:105499. [PMID: 31614208 PMCID: PMC6954292 DOI: 10.1016/j.jsbmb.2019.105499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Abstract
The formation of steroid hormones in peripheral target tissues is referred to as their intracrine formation. This process occurs in hormone dependent malignancies such as prostate and breast cancer in which the disease can be either castrate resistant or occur post-menopausally, respectively. In these instances, the major precursor steroid of androgens and estrogens is dehydroepiandrosterone (DHEA) and DHEA-SO4. This article reviews the major pathways by which adrenal steroids are converted to the potent male sex hormones, testosterone (T) and 5α-dihydrotestosterone (5α-DHT) and the discrete enzyme isoforms involved in castration resistant prostate cancer. Previous studies have mainly utilized radiotracers to investigate these pathways but have not used prevailing concentrations of precursors found in castrate male human serum. In addition, the full power of stable-isotope dilution liquid chromatography tandem mass spectrometry has not been applied routinely. Furthermore, it is clear that adaptive responses occur in the transporters and enzyme isoforms involved in response to androgen deprivation therapy that need to be considered.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, 421 Curie Blvd, 1350 BRBII/IIII, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6084, United States.
| | - Andrea J Detlefsen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania School Philadelphia, PA, United States
| |
Collapse
|
31
|
Zein J, Gaston B, Bazeley P, DeBoer MD, Igo RP, Bleecker ER, Meyers D, Comhair S, Marozkina NV, Cotton C, Patel M, Alyamani M, Xu W, Busse WW, Calhoun WJ, Ortega V, Hawkins GA, Castro M, Chung KF, Fahy JV, Fitzpatrick AM, Israel E, Jarjour NN, Levy B, Mauger DT, Moore WC, Noel P, Peters SP, Teague WG, Wenzel SE, Erzurum SC, Sharifi N. HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma. Proc Natl Acad Sci U S A 2020; 117:2187-2193. [PMID: 31932420 PMCID: PMC6995013 DOI: 10.1073/pnas.1918819117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention.
Collapse
Affiliation(s)
- Joe Zein
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Benjamin Gaston
- Herman Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Peter Bazeley
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Mark D DeBoer
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22904
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Eugene R Bleecker
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85721
| | - Deborah Meyers
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85721
| | - Suzy Comhair
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nadzeya V Marozkina
- Department of Pediatrics, Rainbow Babies and Children's Hospital, and Case Western Reserve University, Cleveland, OH 44106
| | - Calvin Cotton
- Department of Pediatrics, Rainbow Babies and Children's Hospital, and Case Western Reserve University, Cleveland, OH 44106
| | - Mona Patel
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Mohammad Alyamani
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Weiling Xu
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - William J Calhoun
- Department of Medicine, University of Texas Medical Branch, TX 77555
| | - Victor Ortega
- Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27587
| | - Gregory A Hawkins
- Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27587
| | - Mario Castro
- Department of Medicine, University of Kansas School of Medicine, Kansas City, KS 66160
| | - Kian Fan Chung
- The National Heart & Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - John V Fahy
- Department of Pediatrics, San Francisco School of Medicine, University of California, San Francisco, CA 94143
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Bruce Levy
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - David T Mauger
- Center for Biostatistics and Epidemiology, Pennsylvania State University School of Medicine, Hershey, PA 16802
| | - Wendy C Moore
- Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27587
| | - Patricia Noel
- Severe Asthma Research Program (SARP), National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892
| | - Stephen P Peters
- Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27587
| | - W Gerald Teague
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22904
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh Medical Center-University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Serpil C Erzurum
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Nima Sharifi
- Lerner Research Institute and the Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
32
|
Abstract
The prostate is an androgen-dependent organ that develops only in male mammals. Prostate cancer is the most common nonskin malignancy in men and the second leading cause of cancer deaths. Metastatic prostate cancer initially retains its androgen dependence, and androgen-deprivation therapy often leads to disease control; however, the cancer inevitably progresses despite treatment as castration-resistant prostate cancer, the lethal form of the disease. Although it was assumed that the cancer became androgen independent during this transition, studies over the last two decades have shown that these tumors evade treatment via mechanisms that augment acquisition of androgens from circulating precursors, increase sensitivity to androgens and androgen precursors, bypass the androgen receptor, or a combination of these mechanisms. This review summarizes the history of prostate cancer research leading to the contemporary view of androgen dependence for prostate cancers and the current treatment approaches based on this modern paradigm.
Collapse
Affiliation(s)
- Richard J Auchus
- Departments of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Glickman Urological and Kidney Institute, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
| |
Collapse
|