1
|
Denver N, Khan S, Homer NZM, MacLean MR, Andrew R. Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol 2019; 192:105373. [PMID: 31112747 PMCID: PMC6726893 DOI: 10.1016/j.jsbmb.2019.04.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC-MS, GC-MS/MS, LC-MS and LC-MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5-5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment.
Collapse
Affiliation(s)
- Nina Denver
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Shazia Khan
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom.
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| | - Ruth Andrew
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, UK, EH16 4TJ.
| |
Collapse
|
2
|
Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, MacLean MR, Alzoubi A, Oka M. Gender, sex hormones and pulmonary hypertension. Pulm Circ 2013; 3:294-314. [PMID: 24015330 PMCID: PMC3757824 DOI: 10.4103/2045-8932.114756] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most subtypes of pulmonary arterial hypertension (PAH) are characterized by a greater susceptibility to disease among females, although females with PAH appear to live longer after diagnosis. While this "estrogen paradoxȍ of enhanced female survival despite increased female susceptibility remains a mystery, recent progress has begun to shed light upon the interplay of sex hormones, the pathogenesis of pulmonary hypertension, and the right ventricular response to stress. For example, emerging data in humans and experimental models suggest that estrogens or differential sex hormone metabolism may modify disease risk among susceptible subjects, and that estrogens may interact with additional local factors such as serotonin to enhance the potentially damaging chronic effects of estrogens on the pulmonary vasculature. Regardless, it remains unclear why not all estrogenic compounds behave equally, nor why estrogens appear to be protective in certain settings but detrimental in others. The contribution of androgens and other compounds, such as dehydroepiandrosterone, to pathogenesis and possibly treatment must be considered as well. In this review, we will discuss the recent understandings on how estrogens, estrogen metabolism, dehydroepiandrosterone, and additional susceptibility factors may all contribute to the pathogenesis or potentially to the treatment of pulmonary hypertension, by evaluating current human, cell-based, and experimental model data.
Collapse
Affiliation(s)
- Eric D. Austin
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tim Lahm
- Division of Pulmonary, Allergy, Critical Care, Occupational, and Sleep Medicine and Richard L. Roudebush Veterans Affairs Medical Center, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James West
- Department of Medicine, Division of Allergy, Immunology, and Pulmonary Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stevan P. Tofovic
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Katrine Johansen
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Margaret R. MacLean
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, USA
| | - Abdallah Alzoubi
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Masahiko Oka
- Department of Medicine and Pharmacology and Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
3
|
Rose J, Hunt J, Shelton J, Wyler S, Mecham D. The effects of estradiol and catecholestrogens on uterine glycogen metabolism in mink (Neovison vison). Theriogenology 2010; 75:857-66. [PMID: 21196035 DOI: 10.1016/j.theriogenology.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 09/03/2010] [Accepted: 10/21/2010] [Indexed: 11/19/2022]
Abstract
Glycogen is a uterine histotroph nutrient synthesized by endometrial glands in response to estradiol. The effects of estradiol may be mediated, in part, through the catecholestrogens, 2-hydroxycatecholestradiol (2-OHE2) and 4-hydroxycatecholestradiol (4-OHE2), produced by hydroxylation of estradiol within the endometrium. Using ovariectomized mink, our objectives were to determine the effects of estradiol, 4-OHE2, and 2-OHE2 on uterine: 1) glycogen concentrations and tissue localization; 2) gene expression levels for glycogen synthase, glycogen phosphorylase, and glycogen synthase kinase-3B; and 3) protein expression levels for glycogen synthase kinase-3B (total) and phospho-glycogen synthase kinase-3B (inactive). Whole uterine glycogen concentrations (mean ± SEM, mg/g dry wt) were increased by estradiol (43.79 ± 5.35), 4-OHE2 (48.64 ± 4.02), and 2-OHE2 (41.36 ± 3.23) compared to controls (4.58 ± 1.16; P ≤ 0.05). Percent glycogen content of the glandular epithelia was three-fold greater than the luminal epithelia in response to estradiol and 4-OHE2 (P ≤ 0.05). Expression of glycogen synthase mRNA, the rate limiting enzyme in glycogen synthesis, was increased by 4-OHE2 and 2-OHE2 (P ≤ 0.05), but interestingly, was unaffected by estradiol. Expression of glycogen phosphorylase and glycogen synthase kinase-3B mRNAs were reduced by estradiol, 2-OHE2, and 4-OHE2 (P ≤ 0.05). Uterine phospho-glycogen synthase kinase-3B protein was barely detectable in control mink, whereas all three steroids increased phosphorylation and inactivation of the enzyme (P ≤ 0.05). We concluded that the effects of estradiol on uterine glycogen metabolism were mediated in part through catecholestrogens; perhaps the combined actions of these hormones are required for optimal uterine glycogen synthesis in mink.
Collapse
Affiliation(s)
- Jack Rose
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho 83209, USA.
| | | | | | | | | |
Collapse
|
4
|
Tofovic SP. Estrogens and development of pulmonary hypertension: interaction of estradiol metabolism and pulmonary vascular disease. J Cardiovasc Pharmacol 2010; 56:696-708. [PMID: 20881610 PMCID: PMC3027839 DOI: 10.1097/fjc.0b013e3181f9ea8d] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe pulmonary arterial hypertension (PAH) is characterized by clustered proliferation of endothelial cells (ECs) in the lumina of small size pulmonary arteries resulting in concentric obliteration of the lumina and formation of complex vascular structures known as plexiform lesions. This debilitating disease occurs more frequently in women, yet both animal studies in classical models of PAH and limited clinical data suggest protective effects of estrogens: the estrogen paradox in pulmonary hypertension. Little is known about the role of estrogens in PAH, but one line of evidence strongly suggests that the vascular protective effects of 17β-estradiol (estradiol; E2) are mediated largely by its downstream metabolites. Estradiol is metabolized to 2-hydroxyestradiol (2HE) by CYP1A1/CYP1B1, and 2HE is converted to 2-methoxyestradiol (2ME) by catechol-O-methyl transferase. 2ME is extensively metabolized to 2-methoxyestrone, a metabolite that lacks biologic activity, but which may be converted back to 2ME. 2ME has no estrogenic activity, and its effects are mediated by estrogen receptors–independent mechanism(s). Notably, in systemic and pulmonary vascular ECs, smooth muscle cells, and fibroblasts, 2ME exerts stronger antimitotic effects than E2 itself. E2 and 2ME, despite having similar effects on other cardiovascular cells, have opposing effects on ECs; that is, in ECs, E2 is promitogenic, proangiogenic, and antiapoptotic, whereas 2ME is antimitogenic, antiangiogenic, and proapoptotic. This may have significant ramifications in severe PAH that involves uncontrolled proliferation of monoclonal apoptosis-resistant ECs. Based on its cellular effects, 2ME should be expected to attenuate the progression of disease and provide protection in severe PAH. In contrast, E2, due to its mitogenic, angiogenic, and antiapoptotic effects (otherwise desirable in normal quiescent ECs), may even adversely affect endothelial remodeling in PAH, and this may be even more significant if the E2's effects on injured endothelium are not opposed by 2ME (eg, in the event of reduced E2 conversion to 2ME due to hypoxia, inflammation, drugs, environmental factors, or genetic polymorphism of metabolizing enzymes). This review focuses on the effects of estrogens and their metabolites on pulmonary vascular pathobiology and the development of experimental PAH and offers potential explanation for the estrogen paradox in PAH. Furthermore, we propose that unbalanced estradiol metabolism may lead to the development of PAH. Recent animal data and studies in patients with PAH support this concept.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Division of Pulmonary, Allergy and Critical Care Medicine, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Bridge side 542, 100 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
5
|
Kasımay Ö, Şener G, Çakır B, Yüksel M, Çetinel Ş, Contuk G, Yeğen BÇ. Estrogen Protects against Oxidative Multiorgan Damage in Rats with Chronic Renal Failure. Ren Fail 2009; 31:711-25. [DOI: 10.3109/08860220903134563] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Tofovic SP, Salah EM, Mady HH, Jackson EK, Melhem MF. Estradiol metabolites attenuate monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol 2006; 46:430-7. [PMID: 16160593 DOI: 10.1097/01.fjc.0000175878.32920.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PH) is a deadly disease characterized by pulmonary arterial vasoconstriction and hypertension, pulmonary vasculature remodeling, and right ventricular hypertrophy. Our previous in vivo studies, performed in several models of cardiac, vascular, and/or renal injury, suggest that the metabolites of 17beta-estradiol may inhibit vascular and cardiac remodeling. The goal of this study was to determine whether 2-methoxyestradiol (2ME), major non-estrogenic estradiol metabolite, prevents the development and/or retards the progression of monocrotaline (MCT)-induced PH. First, a total of 27 male Sprague Dawley rats were injected with distillated water (Cont, n=6) or monocrotaline (MCT; 60 mg/kg, i.p.; n=21). Subsets of MCT animals (n=7 per group) received 2ME or its metabolic precursor 2-hydroxyestradiol (2HE; 10 microg/kg/h via osmotic minipumps) for 21 days. Next, an additional set (n=24) of control and MCT rats was monitored for 28 days, before right ventricular peak systolic pressure (RVPSP) was measured. Some pulmonary hypertensive animals (n=8) were treated with 2ME (10 microg/kg/h) beginning from day 14 after MCT administration. MCT caused pulmonary hypertension (ie, increased right ventricle/left ventricle+septum [RV/LV+S] ratio and wall thickness of small-sized pulmonary arteries, and elevated RVPSP) and produced high and late (days 22 to 27) mortality. Pulmonary hypertension was associated with strong proliferative response (PCNA staining) and marked inflammation (ED1+cells) in lungs. Both metabolites significantly attenuated the RV/LV+S ratio and pulmonary arteries media hypertrophy and reduced proliferative and inflammatory responses in the lungs. Furthermore, in diseased animals, 2ME (given from day 14 to 28) significantly decreased RVPSP, RV/LV+S ratio and wall thickness, and reduced mortality by 80% (mortality rate: 62.5% vs. 12.5%, MCT vs. MCT+2ME day 14 to 28). This study provides the first evidence that 2ME, a major non-estrogenic, non-carcinogenic metabolite of estradiol, prevents the development and retards the progression of monocrotaline-induced pulmonary hypertension. Further evaluation of 2ME for management of pulmonary arterial hypertension is warranted.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, and the VA Pittsburgh Health System, Pittsburgh, PA 15219-3138, USA.
| | | | | | | | | |
Collapse
|
7
|
Tofovic SP, Salah EM, Dubey RK, Melhem MF, Jackson EK. Estradiol Metabolites Attenuate Renal and Cardiovascular Injury Induced by Chronic Nitric Oxide Synthase Inhibition. J Cardiovasc Pharmacol 2005; 46:25-35. [PMID: 15965351 DOI: 10.1097/01.fjc.0000162765.89437.ae] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our previous studies in rodent models of nephropathy demonstrate that 2-hydroxyestradiol (2HE), an estradiol metabolite with little estrogenic activity, exerts renoprotective effects. In vivo, 2HE is readily converted to 2-methoxyestradiol (2ME), a major estradiol metabolite with no estrogenic activity. The goal of this study was to determine whether 2ME has renal and cardiovascular protective effects in vivo. First, the acute (90 minutes) and chronic (14 days) effects of 2ME (10 microg/kg/h) on blood pressure and renal function were examined in normotensive and spontaneously hypertensive rats (SHR). Second, a rat model of cardiovascular and renal injury induced by chronic nitric oxide synthase inhibition (N-nitro-L-arginine; 40 mg/kg/d; LNNA group) was used to examine the protective effects of estradiol metabolites. Subsets of LNNA-treated rats were administered either 2HE or 2ME (10 microg/kg/h via osmotic minipump; LNNA+2ME and LNNA+2HE groups, respectively. 2-Methoxyestradiol had no acute or chronic effects on blood pressure or renal function in normotensive animals or on hypertension in SHR. Prolonged, 5-week NOS inhibition induced severe cardiovascular and renal disease and high mortality (75%, LNNA group). 2ME, but not 2HE, significantly decreased elevated blood pressure and attenuated the reduction in GFR. 2HE delayed the onset of proteinuria, whereas no proteinuria was detected in the 2-ME group. 2HE and 2ME reduced mortality rate by 66% and 83%, respectively (P < 0.001). In the kidney, 2HE and 2ME abolished LNNA-induced interstitial and glomerular inflammation, attenuated glomerular collagen IV synthesis, and inhibited glomerular and tubular cell proliferation. In the heart, 2HE and 2ME markedly reduced vascular and interstitial inflammation and reduced collagen synthesis and vascular/interstitial cell proliferation. This study provides the first evidence that, in a model of severe cardiovascular and renal injury, 2-methoxyestradiol (a major nonestrogenic estradiol metabolite) exerts renal and cardiovascular protective effects and reduces mortality.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
8
|
Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG. beta-Sitosterol, beta-Sitosterol Glucoside, and a Mixture of beta-Sitosterol and beta-Sitosterol Glucoside Modulate the Growth of Estrogen-Responsive Breast Cancer Cells In Vitro and in Ovariectomized Athymic Mice. J Nutr 2004; 134:1145-51. [PMID: 15113961 DOI: 10.1093/jn/134.5.1145] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We hypothesized that the phytosterols beta-sitosterol (BSS), beta-sitosterol glucoside (BSSG), and Moducare (MC; BSS:BSSG = 99:1) could modulate the growth of estrogen-dependent human breast cancer cells in vitro and in vivo. The present study evaluated the estrogenic and antiestrogenic effects of BSS, BSSG, and MC (0.001 to 150 micromol/L) on the proliferation of Michigan Cancer Foundation 7 (MCF-7) cells in vitro. Both BSS (>1 micromol/L) and MC (>50 micromol/L) increased MCF-7 cell proliferation. Treatment with 150 micro mol/L of BSS and MC increased cell growth by 2.4 and 1.5 times, respectively, compared to the negative control (NC) group. However, BSSG had no effect at the concentrations tested. The effects of dietary BSS, BSSG, and MC on the growth of MCF-7 cells implanted in ovariectomized athymic mice were also evaluated. Estrogenic effects of the phytosterols were evaluated in the NC, BSS, BSSG, and MC treatment groups, and antiestrogenic effects were evaluated in the 17 beta-estradiol (E(2)), E(2) + BSS, E(2) + BSSG, and E(2) + MC treatment groups. Mice were treated with dietary BSS (9.8 g/kg AIN93G diet), BSSG (0.2 g/kg diet), or MC (10.0 g/kg diet) for 11 wk. Dietary BSS, BSSG, and MC did not stimulate MCF-7 tumor growth. However, dietary BSS, BSSG, and MC reduced E(2)-induced MCF-7 tumor growth by 38.9% (P < 0.05), 31.6% (P = 0.08), and 42.13% (P < 0.05), respectively. The dietary phytosterols lowered serum E(2) levels by 35.1, 30.2, and 36.5% in the E(2) + BSS, E(2) + BSSG, and E(2) + MC groups, respectively (P < 0.05), compared to that of the E(2) treatment group. Estrogen-responsive pS2 mRNA expression in tumors did not differ among groups, but expression of the antiapoptotic marker B-cell lymphoma/leukemia-2 (bcl-2) in tumors from the E(2) + MC group was downregulated, compared to that of the E(2) treatment group. In summary, BSS and MC stimulated MCF-7 cell growth in vitro. Although BSSG comprises only 1% of MC, BSSG made MC less estrogenic than BSS alone in vitro. However, dietary BSS and MC protected against E(2)-stimulated MCF-7 tumor growth and lowered circulating E(2) levels.
Collapse
Affiliation(s)
- Young H Ju
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
9
|
Takanashi K, Osanai Y, Kyo T, Yoshizawa I. Comparison of ex vivo inhibitory effect between 2-hydroxyestradiol and its 17-sulfate on rat hepatic microsomal lipid peroxidation. Lipids 2003; 38:847-54. [PMID: 14577664 DOI: 10.1007/s11745-003-1135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two endogenous antioxidants that are speculated to be defense substances against preeclampsia, 2-hydroxyestradiol (2-OH-E2) and its 17-sulfate, 2-hydroxyestradiol 17-sulfate (2-OH-E2-17-S), were administered to rats to compare their inhibitory effects on hepatic microsomal lipid peroxidation, and the lipid peroxides were determined in NADPH- and ascorbic acid-dependent systems. The two catechols showed a strong inhibitory effect on lipid peroxidation in both systems, and the effect was dose dependent. However, a large difference was observed in their inhibition patterns. After administration of 2-OH-E2, the effect appeared immediately and decreased gradually with time. In contrast, the effect of 2-OH-E2-17-S appeared some time after administration and persisted for a longer time. Both catechols also showed a striking difference in their dynamics. After administration, 2-OH-E2 was detected in the blood together with its metabolites, 2-methoxyestradiol and 2-methoxyestrone, and they disappeared immediately. In contrast, 2-OH-E2-17-S was present in the blood for a longer time together with its O-methylated product, 2-methoxyestradiol 17-sulfate, but disappeared from liver microsomes within 2 h after administration. The results imply no occurrence of a direct inhibition effect of 2-OH-E2-17-S.
Collapse
Affiliation(s)
- Kaori Takanashi
- Hokkaido College of Pharmacy, Otaru, Hokkaido 047-0264, Japan
| | | | | | | |
Collapse
|
10
|
Takanashi K. [Studies on 2-hydroxyestradiol 17-sulfate derived from fetoplacental unit: the antioxidant as a potential defense substance against preeclampsia]. YAKUGAKU ZASSHI 2003; 123:399-411. [PMID: 12822484 DOI: 10.1248/yakushi.123.399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The antioxidant 2-hydroxyestradiol 17-sulfate (2-OH-E2-17-S) was found to be present in the placenta and to prevent the onset of preeclampsia. From experiments using rats, 2-OH-E2-17-S was confirmed to be a highly functional compound with stronger antioxidant activity than alpha-tocopherol and to sustain its antioxidant activity. 2-OH-E2-17-S was confirmed to be produced in the placenta from its precursor, estradiol 17-sulfate (E2-17-S), which is derived from fetal testosterone sulfate (TS). Since the fetal adrenal gland has been shown to convert testosterone (T) into TS, the following metabolic pathway may exist during pregnancy: T-->TS-->E2-17-S-->2-OH-E2-17-S. This fetoplacental pathway may contribute to the maintenance of healthy pregnancy. Details and the experimental outline of these discoveries are reported in this review.
Collapse
Affiliation(s)
- Kaori Takanashi
- Laboratory of Pharmaceutical Analysis, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru 047-0264, Japan.
| |
Collapse
|
11
|
Tofovic SP, Dubey R, Salah EM, Jackson EK. 2-Hydroxyestradiol attenuates renal disease in chronic puromycin aminonucleoside nephropathy. J Am Soc Nephrol 2002; 13:2737-47. [PMID: 12397044 DOI: 10.1097/01.asn.0000031804.77546.f5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It has been previously shown that 2-hydroxyestradiol (2-OHE) attenuates the development of renal disease in genetic nephropathy associated with obesity and the metabolic syndrome. The purpose of this study was to test the hypothesis that 2-OHE, irrespective of its effects on metabolic status and/or obesity, exerts direct renoprotective effects in vivo. First, the effects of increasing doses of 2-OHE on mesangial cell growth, proliferation, and collagen synthesis in isolated rat glomerular mesangial cells were evaluated in vitro. Second, the effects of 12-wk administration of 2-OHE (10 micro g/h per kg) on renal function and structure in chronic puromycin aminonucleoside (PAN)-induced nephropathy in rats were evaluated in vivo. 2-OHE concentration-dependently (0.001 to 1 micro mol/L; P < 0.001) inhibited serum (2.5%)-induced cell growth ((3)H-thymidine incorporation), collagen synthesis ((3)H-proline incorporation), and cell proliferation (cell number). Importantly, the inhibitory effects of 2-OHE (0.1 micro mol/L) were not blocked by ICI182780 (50 micro mol/L), an estrogen receptor antagonist. In vivo, chronic administration of PAN (75 mg/kg + 5 x 20 mg/kg) over 12 wk induced severe chronic renal disease. Chronic treatment with 2-OHE significantly (P < 0.05) attenuated PAN-induced decrease in glomerular filtration, reduced proteinuria, and the elevated BP, and it had no effect on PAN-induced increase in plasma cholesterol and triglycerides levels. 2-OHE had no effects on plasma testosterone levels in male nephropathic animals. Immunohistochemical staining for collagen IV and proliferating cell nuclear antigen (PCNA) in glomeruli and transforming growth factor-beta (TGF-beta) in renal tubular cells were significantly higher in PAN nephropatic rats versus control animals with intact kidneys. PAN also markedly increased glomerular and interstitial macrophage infiltration (ED1(+) cells). 2-OHE had no effects on renal tubular cell TGF-beta, but it significantly reduced glomerular PCNA and collagen IV and glomerular and interstitial macrophage infiltration. In summary, this study provides the first evidence that 2-OHE exerts direct renoprotective effects in vivo. These effects are mediated by estrogen receptor-independent mechanisms and are due, at least in part, to the inhibition of some of the key proliferative mechanisms involved in glomerular remodeling and sclerosis.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
17beta-estradiol (estradiol), the most abundant endogenous estrogen, affords cardiovascular protection. However, in a given cohort of postmenopausal women, estradiol replacement therapy provides cardiovascular protection in only a subset. The reasons for this variable action can only be understood once the mechanisms by which estradiol induces its cardiovascular protective effects are known. Because most biological effects of estradiol are mediated via estrogen receptors (ERs) and the heart and blood vessels contain both ER-alpha and ER-beta, the prevailing view is that ERs mediate estradiol-induced cardiovascular protection. However, recent findings that estradiol protects against vascular injury in arteries of mice lacking either ER-alpha or ER-beta seriously challenges this concept. Thus other non-ER mechanisms may be operative. Endogenous estradiol is enzymatically converted to several nonestrogenic metabolites, and some of these metabolites induce potent biological effects via ER-independent mechanisms. Therefore, it is conceivable that the cardiovascular protective effects of estradiol are mediated via its endogenous metabolites. On the basis of the evidence cited in this review, the cardiovascular protective effects of estradiol are both ER dependent and independent. The purpose of this article is to review the evidence regarding the cardiovascular protective effects of estradiol metabolites and to discuss the cellular, biochemical, and molecular mechanisms involved.
Collapse
Affiliation(s)
- R K Dubey
- Center for Clinical Pharmacology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
13
|
Abstract
UNLABELLED Sex-specific peculiarities of catecholamine (CA) content and turnover in neuroendocrine brain areas and their modification with neonatal steroids or prenatal stress (PS) in Wistar rats were studied. No changes in noradrenaline (NA) content and turnover rate were found in the preoptic area (POA), meanwhile dopamine (DA) turnover rates in the POA and mediobasal hypothalamus (MBH) were increased in neonatally androgenized 10-day-old females. Treatment of female neonates with various catecholestrogens increased hypothalamic NA content by 30-95% but only 4-hydroxyestradiol-17 beta induced anovulation. 6-Hydroxydopamine had no significant impact on hypothalamic CA content in neonates and did not prevent testosterone-induced persistent estrous. Maternal stress (restriction for 1 h a day, 15-21st days of pregnancy) resulted in a decrease of hypothalamic NA and blood plasma corticosterone response to acute stress in adult male offspring. Sex differences in CA content in the POA and MBH disappeared in 10-day-old prenatally stressed rats. CONCLUSIONS (1) sexual brain differentiation needs co-operative actions of sex steroids and CA to be completed; and (2) early changes in CA content and turnover induced by PS or neonatal steroid exposure predetermine long-term alterations of the stress responsiveness, reproductive behaviour and neuroendocrine control of ovulation.
Collapse
Affiliation(s)
- A G Reznikov
- Institute of Endocrinology and Metabolism, Kiev, Ukraine
| | | |
Collapse
|
14
|
Schütze N, Vollmer G, Tiemann I, Geiger M, Knuppen R. Catecholestrogens are MCF-7 cell estrogen receptor agonists. J Steroid Biochem Mol Biol 1993; 46:781-9. [PMID: 8274412 DOI: 10.1016/0960-0760(93)90319-r] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Catecholestrogens are important metabolites of estradiol and estrone in the human. Considerable interest has focused on the catecholestrogens 2-hydroxy- and 4-hydroxyestradiol since they bind to the estrogen receptor with an affinity in the range of estradiol. Using the MCF-7 cell line, we analysed the capacity of purified catecholestrogens to transform the estrogen receptor into its high affinity nuclear binding form and to affect receptor-dependent processes such as proliferation and expression of the progesterone receptor (PR). Incubations with 2-hydroxy- and 4-hydroxyestradiol at 10(-8) M for 1 h resulted in tight nuclear binding of the estrogen receptor. During treatment of the cells with catecholestrogens we obtained a marked increase in proliferation rate of 36 and 76% for 2-hydroxy- and 4-hydroxyestradiol, respectively, relative to the inductive effect of estradiol (100%). The PR level, was slightly increased by treatment with 2-hydroxyestradiol (10%), whereas treatment with 4-hydroxyestradiol increased the PR level at 28%, compared to estradiol (100%). From these results we conclude that the 2- and 4-hydroxylated derivatives of estradiol are active hormones and are able to initiate estrogen receptor mediated processes in MCF-7 cells.
Collapse
Affiliation(s)
- N Schütze
- Institut für Biochemische Endokrinologie, Medizinische Universität zu Lübeck, Germany
| | | | | | | | | |
Collapse
|
15
|
Kogo H, Johnson DC, Dey SK, Takeo S. A comparison of the effects of estradiol and 2- and 4-hydroxyestradiol on uterine ornithine decarboxylase activity in immature rats. JAPANESE JOURNAL OF PHARMACOLOGY 1993; 61:65-7. [PMID: 8437370 DOI: 10.1254/jjp.61.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effects of estradiol (E2) and catechol-estrogens (CEs: 2-OHE2 and 4-OHE2) on uterine ornithine decarboxylase (ODC) activity have been compared in immature rats. The intensity of their actions by s.c. (1 microgram) and intrauterine right-horn (i.u., 25 ng) injection was in the order of: 4-OHE2 > or = E2 > 2-OHE2. Although i.u. -injection of E2 caused an increase in ODC activity in the left (intact)-horn, which was about 60% that of the right-horn, the effects by CEs were limited only to the right-horn. The results are consistent with the previous view about the order of the potency of 4-OHE2 and 2-OHE2 and also suggest that locally produced CEs may play a role in the physiological functions of the production site.
Collapse
Affiliation(s)
- H Kogo
- Department of Pharmacology, Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|
16
|
Yoshizawa I, Takanashi K, Watanabe K, Sato T, Honjo H, Tanaka K, Sakuragi N, Fujimoto S. The physiological role of estradiol 17-sulfate during pregnancy. J Steroid Biochem Mol Biol 1992; 41:567-70. [PMID: 1314078 DOI: 10.1016/0960-0760(92)90385-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To clarify the physiological role of estradiol 17-sulfate (ES) during pregnancy, experiments were conducted and the following results were obtained: (1) serum or urinary ES levels rose as a function of gestational age; (2) placental microsomes showed fairly high 2- and 4-hydroxylase activity for ES; and (3) the catechol products, 2- and 4-hydroxy-ES, had a strong inhibitory effect upon the in vitro production of lipid peroxides. These results suggest that ES acts as a precursor to the catechol metabolites which maintain normal gestation. This is coincident with the negative correlation of serum levels in ES and lipid peroxides observed in late pregnancy.
Collapse
Affiliation(s)
- I Yoshizawa
- Hokkaido Institute of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Watanabe K, Takanashi K, Yoshizawa I. Plasma estradiol 17-sulfate and 2-hydroxyestradiol 17-sulfate levels and their metabolic clearance rates in rats. JOURNAL OF STEROID BIOCHEMISTRY 1989; 32:823-7. [PMID: 2755128 DOI: 10.1016/0022-4731(89)90458-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By using highly specific antisera against estradiol 17-sulfate (E2-17-S) and against 2-hydroxyestradiol 17-sulfate (2-OH-E2-17-S), plasma concentrations of these sulfates in Wistar rats were determined. The plasma levels of E2-17-S and 2-OH-E2-17-S in the male were 23.5 +/- 5.3 and 21.6 +/- 6.2 pg/ml, respectively. During the estrus cycle of the female, the plasma concentration of E2-17-S reached its highest level 69.0 +/- 11.8 pg/ml, during the diestrus stage, and its lowest level 36.9 +/- 6.6 pg/ml, during the proestrus stage. Similar tendencies were observed in the case of 2-OH-E2-17-S. To examine the dynamic behavior of both sulfates, the plasma metabolic clearance rate (MCRp) of E2-17-S and 2-OH-E2-17-S were determined by infusion experiments. MCRp of E2-17-S and 2-OH-E2-17-S in male rats were 102 and 653 ml/h (means), respectively, and in female rats were 115 and 644 ml/h (means), respectively. The low MCRp values of both sulfates imply their slow metabolic turn-over.
Collapse
Affiliation(s)
- K Watanabe
- Hokkaido Institute of Pharmaceutical Sciences, Japan
| | | | | |
Collapse
|
18
|
|
19
|
Knuppen R, Ball P, Emons G. Importance of A-ring substitution of estrogens for the physiology and pharmacology of reproduction. JOURNAL OF STEROID BIOCHEMISTRY 1986; 24:193-8. [PMID: 3009975 DOI: 10.1016/0022-4731(86)90050-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Estrogens substituted in the ortho-position of the phenolic hydroxy-group with an additional hydroxy- or methoxy-group are quantitatively important estrogen metabolites; first isolated and identified from the urine of man and rodents have been demonstrated in blood and different organs, e.g. the pituitary and hypothalamus. The physiological importance of the preeminent representatives of this group, the 2- and 4-hydroxyestrogens, the so-called catecholestrogens, is still equivocal. For example, numerous in vivo investigations in rodents have demonstrated that gonadotrophin secretion is influenced by these catecholestrogens. However, depending on the position of the A-ring substituent, major potency differences have been observed. The significant discrepancies between the quantitative and qualitative effects of catecholestrogens in in vitro and in vivo experiments have been presented and explained on the basis of different receptor affinities and the pharmacokinetics of catecholestrogens. An array of A-ring-substituted steroid model substances has been tested with respect to the effects of 2- and/or 4-substitution on stimulation or blockade of the estrogenic potency.
Collapse
|