1
|
Aguilar JI, Dunn M, Mingote S, Karam CS, Farino ZJ, Sonders MS, Choi SJ, Grygoruk A, Zhang Y, Cela C, Choi BJ, Flores J, Freyberg RJ, McCabe BD, Mosharov EV, Krantz DE, Javitch JA, Sulzer D, Sames D, Rayport S, Freyberg Z. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron 2017; 95:1074-1088.e7. [PMID: 28823729 DOI: 10.1016/j.neuron.2017.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/14/2017] [Accepted: 07/28/2017] [Indexed: 01/04/2023]
Abstract
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content.
Collapse
Affiliation(s)
- Jenny I Aguilar
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew Dunn
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Susana Mingote
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Caline S Karam
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark S Sonders
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Se Joon Choi
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anna Grygoruk
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Yuchao Zhang
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Carolina Cela
- Brain Mind Institute, EPFL, 1015 Lausanne, Switzerland
| | - Ben Jiwon Choi
- Center for Motor Neuron Biology and Disease, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Jorge Flores
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Robin J Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Eugene V Mosharov
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine University of California, Los Angeles, CA 90095, USA
| | - Jonathan A Javitch
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Department of Pharmacology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Stephen Rayport
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Chloride channels of intracellular membranes. FEBS Lett 2010; 584:2102-11. [PMID: 20100480 DOI: 10.1016/j.febslet.2010.01.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 11/20/2022]
Abstract
Proteins implicated as intracellular chloride channels include the intracellular ClC proteins, the bestrophins, the cystic fibrosis transmembrane conductance regulator, the CLICs, and the recently described Golgi pH regulator. This paper examines current hypotheses regarding roles of intracellular chloride channels and reviews the evidence supporting a role in intracellular chloride transport for each of these proteins.
Collapse
|
3
|
Protein kinase C modulates synaptic vesicle acidification in a ribbon type nerve terminal in the retina. Neurochem Int 2008; 53:155-64. [PMID: 18691623 DOI: 10.1016/j.neuint.2008.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/27/2008] [Accepted: 07/14/2008] [Indexed: 11/23/2022]
Abstract
The driving force for neurotransmitter accumulation into synaptic vesicles is provided by the generation of a transmembrane electrochemical gradient (DeltamicroH+) that has two components: a chemical gradient (DeltapH, inside acidic) and an electrical potential across the vesicular membrane (DeltaPsi, inside positive). This gradient is generated in situ by the electrogenic vacuolar H(+)-ATPase, which is responsible for the acidification and positive membrane potential of the vesicle lumen. Here, we investigate the modulation of vesicle acidification by using the acidic-organelle probe LysoTracker and the pH-sensitive probe LysoSensor at goldfish Mb-type bipolar cell terminals. Since phosphorylation can modulate secretory granule acidification in neuroendocrine cells, we investigated if drugs that affect protein kinases modulate LysoTracker staining of bipolar cell terminals. We find that protein kinase C (PKC) activation induces an increase in LysoTracker-fluorescence. By contrast, protein kinase A (PKA) or calcium/calmodulin kinase II (CaMKII) activation or inhibition did not change LysoTracker-fluorescence. Using a pH-dependent fluorescent dye (LysoSensor) we show that the PKC activation with PMA induces an increase in LysoSensor-fluorescence, whereas the inactive analog 4alpha-PMA was unable to cause the same effect. This increase induced by PMA was blocked by PKC inhibitors, calphostin C and staurosporine. These results suggest that phosphorylation by PKC may increase synaptic vesicle acidification in retinal bipolar cells and therefore has the potential to modulate glutamate concentrations inside synaptic vesicles.
Collapse
|
4
|
Abstract
For the purpose of analyzing and imaging chemical components of cells and tissues at the electron microscopic level, 3 fundamental methods are available, chemical, physical and biological. Among the physical methods, two methods qualifying and quantifying the elements in the structural components are very often employed. The first method is radioautography which can demonstrate the localization of radiolabeled compounds which were incorporated into cells and tissues after the administration of radiolabeled compounds. The second method is X-ray microanalysis which can qualitatively analyze and quantify the total amounts of elements present in cells and tissues. We have developed the two methodologies in combination with intermediate high or high voltage transmission electron microscopy (200-400 kV) and applied them to various kinds of organic and inorganic compounds present in biological materials. As for the first method, radioautography, I had already contributed a chapter to PHC (37/2). To the contrary, this review deals with another method, X-ray microanalysis, using semi-thin sections and intermediate high voltage electron microscopy developed in our laboratory. X-ray microanalysis is a useful method to qualify and quantify basic elements in biological specimens. We first quantified the end-products of histochemical reactions such as Ag in radioautographs, Ce in phosphatase reaction and Au in colloidal gold immunostaining using semithin sections and quantified the reaction products observing by intermediate high voltage transmission electron microscopy at accelerating voltages from 100 to 400 kV. The P/B ratios of all the end products Ag, Ce and Au increased with the increase of the accelerating voltages from 100 to 400 kV. Then we analyzed various trace elements such as Zn, Ca, S and Cl which originally existed in cytoplasmic matrix or cell organelles of various cells, or such elements as Al which was absorbed into cells and tissues after oral administration, using both conventional chemical fixation and cryo-fixation followed by cryo-sectioning and freeze-drying, or freeze-substitution and dry-sectioning, or freeze-drying and dry-sectioning producing semithin sections similarly to radioautography. As the results, some trace elements which originally existed in cytoplasmic matrix or cell organelles of various cells in different organs such as Zn, Ca, S and Cl, were effectively detected. Zn was demonstrated in Paneth cell granules of mouse intestines and its P/B ratios showed a peak at 300 kV. Ca was found in human ligaments and rat mast cells with a maximum of P/B ratios at 350 kV. S and Cl were detected in mouse colonic goblet cells with maxima of P/B ratios at 300 kV. On the other hand, some elements which were absorbed by experimental administration into various cells and tissues in various organs, such as Al in lysosomes of hepatocytes and uriniferous tubule cells in mice was detected with a maximum of P/B ratios at 300 kV. From the results, it was shown that X-ray microanalysis using semi-thin sections observed by intermediate high voltage transmission electron microscopy at 300-400 kV was very useful resulting in high P/B ratios for quantifying some trace elements in biological specimens. These methodologies should be utilized in microanalysis of various compounds and elements in various cells and tissues in various organs.
Collapse
Affiliation(s)
- Tetsuji Nagata
- Department of Anatomy and Cell Biology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| |
Collapse
|
5
|
Calcium receptor-induced serotonin secretion by parafollicular cells: role of phosphatidylinositol 3-kinase-dependent signal transduction pathways. J Neurosci 2003. [PMID: 12657663 DOI: 10.1523/jneurosci.23-06-02049.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevation of extracellular Ca2+ (increase[Ca2+]e) stimulates the Ca2+ receptor (CaR) to induce secretion of 5-hydroxytryptamine (5-HT) from the calcium-sensing parafollicular (PF) cells. The CaR has been reported to couple to Galpha(q) with subsequent activation of protein kinase C-gamma (PKCgamma). We have identified a parallel transduction pathway in primary cultures of sheep PF cells by using a combinatorial approach in which we expressed adenoviral-encoded dominant-negative signaling proteins and performed in vitro kinase assays. The role of the CaR was established by expression of a dominant-negative CaR that eliminated calcium-induced 5-HT secretion but not secretion in response to KCl or phorbol esters. The calcium-induced secretion was inhibited by a dominant-negative p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-K). PI3-K activity was also assayed using isoform-specific antibodies. The activity of p85/p110beta (PI3-Kbeta) immunocomplexes was elevated by increase[Ca2+]e and activated by Gbetagamma subunits. In addition, secretion of 5-HT was antagonized by the expression of a minigene encoding a peptide scavenger of Gbetagamma subunits (C-terminal fragment peptide of bovine beta-adrenergic receptor kinase). One target of PI3-K activity is phosphoinositide-dependent kinase-1 (PDK1), which in turn activated PKCzeta. Expression of a dominant-negative PKCzeta in PF cells reduced 5-HT secretion. Together, these observations establish that increase[Ca2+]e evokes 5-HT secretion from PF cells by stimulating both Galpha(q)- and Gbetagamma-signaling pathways downstream of the CaR. The betagamma cascade subsequently activates PI3-Kbeta-dependent signaling that is coupled to PDK1 and the downstream effector PKCzeta, and results in an increase in 5-HT release.
Collapse
|
6
|
Ashley RH. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review). Mol Membr Biol 2003; 20:1-11. [PMID: 12745921 DOI: 10.1080/09687680210042746] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parchorin, p64 and the related chloride intracellular channel (CLIC) proteins are widely expressed in multicellular organisms and have emerged as candidates for novel, auto-inserting, self-assembling intracellular anion channels involved in a wide variety of fundamental cellular events including regulated secretion, cell division and apoptosis. Although the mammalian phosphoproteins p64 and parchorin (49 and 65K, respectively) have only been indirectly implicated in anion channel activity, two CLIC proteins (CLIC1 and CLIC4, 27 and 29K, respectively) appear to be essential molecular components of anion channels, and CLIC1 can form anion channels in planar lipid bilayers in the absence of other cellular proteins. However, these putative ion channel proteins are controversial because they exist in both soluble and membrane forms, with at least one transmembrane domain. Even more surprisingly, soluble CLICs share the same glutaredoxin fold as soluble omega class glutathione-S-transferases. Working out how these ubiquitous, soluble proteins unfold, insert into membranes and then refold to form integral membrane proteins, and how cells control this potentially dangerous process and make use of the associated ion channels, are challenging prospects. Critical to this future work is the need for better characterization of membrane topology, careful functional analysis of reconstituted and native channels, including their conductances and selectivities, and detailed structure/function studies including targeted mutagenesis to investigate the structure of the putative pore, the role of protein phosphorylation and the role of conserved cysteine residues.
Collapse
Affiliation(s)
- R H Ashley
- Department of Biomedical Sciences, University of Edinburgh, UK.
| |
Collapse
|
7
|
Pothos EN, Mosharov E, Liu KP, Setlik W, Haburcak M, Baldini G, Gershon MD, Tamir H, Sulzer D. Stimulation-dependent regulation of the pH, volume and quantal size of bovine and rodent secretory vesicles. J Physiol 2002; 542:453-76. [PMID: 12122145 PMCID: PMC2316149 DOI: 10.1113/jphysiol.2002.018630] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation-induced acidification of chromaffin vesicles was [Ca2+]o-dependent and blocked by agents that inhibit the vacuolar proton pump (vH+-ATPase) or flux through Cl- channels. Stimulation also increased the average volume of chromaffin vesicles and the proportion that displayed a clear halo around their dense cores (called active vesicles). Stimulation-induced increases in internal acidity and size were greatest in active vesicles. Stimulation of chromaffin cells in the presence of a plasma membrane marker revealed that membrane was internalized in endosomes but not in chromaffin vesicles. The stable expression of botulinum toxin E to prevent exocytosis did not affect the stimulation-induced acidification of the secretory vesicles of mouse neuroblastoma Neuro2A cells. Stimulation-induced acidification thus occurs independently of exocytosis. The quantal size of secreted catecholamines, measured by amperometry in cultured chromaffin cells, was found to be increased either by prior exposure to L-DOPA or stimulation by high K+, and decreased by inhibition of vH+-ATPase or flux through Cl- channels. These observations are consistent with the hypothesis that the content of releasable small molecules in secretory vesicles is increased when the driving force for their uptake is enhanced, either by increasing the transmembrane concentration or pH gradients.
Collapse
Affiliation(s)
- Emmanuel N Pothos
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 0211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 2002. [PMID: 11756497 DOI: 10.1523/jneurosci.22-01-00142.2002] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate transport into synaptic vesicles is a prerequisite for its regulated neurosecretion. Here we functionally identify a second isoform of the vesicular glutamate transporter (VGLUT2) that was previously identified as a plasma membrane Na+-dependent inorganic phosphate transporter (differentiation-associated Na+/P(I) transporter). Studies using intracellular vesicles from transiently transfected PC12 cells indicate that uptake by VGLUT2 is highly selective for glutamate, is H+ dependent, and requires Cl- ion. Both the vesicular membrane potential (Deltapsi) and the proton gradient (DeltapH) are important driving forces for vesicular glutamate accumulation under physiological Cl- concentrations. Using an antibody specific for VGLUT2, we also find that this protein is enriched on synaptic vesicles and selective for a distinct class of glutamatergic nerve terminals. The pathway-specific, complementary expression of two different vesicular glutamate transporters suggests functional diversity in the regulation of vesicular release at excitatory synapses. Together, the two isoforms may account for the uptake of glutamate by synaptic vesicles from all central glutamatergic neurons.
Collapse
|
9
|
Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 2001; 29:185-96. [PMID: 11182090 DOI: 10.1016/s0896-6273(01)00189-1] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several plasma membrane chloride channels are well characterized, but much less is known about the molecular identity and function of intracellular Cl- channels. ClC-3 is thought to mediate swelling-activated plasma membrane currents, but we now show that this broadly expressed chloride channel is present in endosomal compartments and synaptic vesicles of neurons. While swelling-activated currents are unchanged in mice with disrupted ClC-3, acidification of synaptic vesicles is impaired and there is severe postnatal degeneration of the retina and the hippocampus. Electrophysiological analysis of juvenile hippocampal slices revealed no major functional abnormalities despite slightly increased amplitudes of miniature excitatory postsynaptic currents. Mice almost lacking the hippocampus survive and show several behavioral abnormalities but are still able to acquire motor skills.
Collapse
Affiliation(s)
- S M Stobrawa
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Martinistrasse 85, D-20246, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
11
|
Ca(2+)-evoked serotonin secretion by parafollicular cells: roles in signal transduction of phosphatidylinositol 3'-kinase, and the gamma and zeta isoforms of protein kinase C. J Neurosci 2000. [PMID: 10662827 DOI: 10.1523/jneurosci.20-04-01365.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parafollicular (PF) cells secrete 5-HT in response to stimulation of a G-protein-coupled Ca(2+) receptor (CaR) by increased extracellular Ca(2+) (upward arrow[Ca(2+)](e)). We tested the hypothesis that protein kinase C (PKC) participates in stimulus-secretion coupling. Immunoblots from membrane and cytosolic fractions of isolated PF cells revealed conventional (alpha, betaI, and gamma), novel (delta and epsilon), and atypical (iota/lambda and zeta) PKCs. Only PKCgamma was found to have been translocated to the membrane fraction when secretion of 5-HT was evoked by upward arrow[Ca(2+)](e) or phorbol esters. Although phorbol downregulation caused PKCgamma to disappear, secretion was only partially inhibited. A similar reduction of upward arrow[Ca(2+)](e)-evoked secretion was produced by inhibitors of conventional and/or novel PKCs (Gö 6976, calphostin C, and pseudoA), and these compounds did not inhibit secretion at all when applied to phorbol-downregulated cells. In contrast, the phorbol downregulation-resistant component of secretion was abolished by pseudoZ, which inhibits the atypical PKCzeta. Stimulation of PF cells with upward arrow[Ca(2+)](e) increased the activity of immunoprecipitated PKCzeta (but not PKCiota/lambda), and the activity of this PKCzeta was inhibited by pseudoZ. PF cells were found to express regulatory (p85) and catalytic (p110alpha and p110beta) subunits of phosphatidylinositol 3'-kinase (PI3'-kinase). upward arrow[Ca(2+)](e) increased the activity of immunoprecipitated PI3'-kinase; moreover, PI3'-kinase inhibitors (wortmannin and LY294002) antagonized secretion. We suggest that PKC isoforms mediate secretion of 5-HT by PF cells in response to stimulation of the CaR. PKC involvement can be accounted for by PKCgamma and an isoform sensitive to inhibition by pseudoZ, probably PKCzeta, which is activated via PI3'-kinase.
Collapse
|
12
|
Edwards JC. A novel p64-related Cl- channel: subcellular distribution and nephron segment-specific expression. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F398-408. [PMID: 10070163 DOI: 10.1152/ajprenal.1999.276.3.f398] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several closely related proteins that have been implicated as chloride channels of intracellular membranes have recently been described. We report here the molecular cloning and characterization of a new member of this family from human cells. On the basis of sequence similarity, we conclude that this new protein represents the human version of a previously described protein from rat brain named p64H1. The human version of p64H1 (huH1) is a 28.7-kDa protein that shows an apparent molecular mass of 31 kDa by SDS-PAGE. A single 4.5-kb message is detected on Northern blots and is present in all tissues probed. The protein is expressed in an intracellular vesicular pattern in Panc-1 cells that is distinct from the endoplasmic reticulum, fluid-phase endocytic, and transferrin-recycling compartments, but which does colocalize with caveolin. In human kidney, huH1 is highly expressed in a diffuse pattern in the apical domain of proximal tubule cells. huH1 is expressed less abundantly in a vesicular pattern in glomeruli and distal nephron.
Collapse
Affiliation(s)
- J C Edwards
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
13
|
Reimer RJ, Fon EA, Edwards RH. Vesicular neurotransmitter transport and the presynaptic regulation of quantal size. Curr Opin Neurobiol 1998; 8:405-12. [PMID: 9687352 DOI: 10.1016/s0959-4388(98)80068-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Specific transport activities package classical neurotransmitters into secretory vesicles for release by regulated exocytosis, but the proteins responsible for the vesicular transport of neurotransmitters are still being identified. One family of proteins includes vesicular transporters for monoamines and acetylcholine. Genetic manipulation in cells and in mice now shows that changes in the expression of these proteins can alter the amount of neurotransmitter stored per synaptic vesicle, the amount released and behavior. Although the mechanisms responsible for regulating these transporters in vivo remains unknown, recent work has demonstrated the potential for regulation by changes in intrinsic activity and in location. In addition, a recently identified vesicular transporter for GABA defines a novel family of proteins that mediates the packaging of amino acid neurotransmitters.
Collapse
Affiliation(s)
- R J Reimer
- Department of Neurology, UCSF School of Medicine 94143-0435, USA
| | | | | |
Collapse
|
14
|
McGehee DS, Aldersberg M, Liu KP, Hsuing S, Heath MJ, Tamir H. Mechanism of extracellular Ca2+ receptor-stimulated hormone release from sheep thyroid parafollicular cells. J Physiol 1997; 502 ( Pt 1):31-44. [PMID: 9234195 PMCID: PMC1159570 DOI: 10.1111/j.1469-7793.1997.031bl.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Expression of receptors to extracellular calcium enables parafollicular cells of the thyroid gland (PF cells) to release calcitonin (CT) and serotonin (5-HT) in response to increased external Ca2+. Recently, a calcium-sensing receptor (CaR), similar to the G protein-coupled receptor for external Ca2+ cloned from parathyroid gland, was shown to be expressed in PF cells. Using a highly purified preparation of sheep PF cells, we have examined the electrical and biochemical processes coupling CaR activation to hormone release. 2. Whole-cell recordings in the permeabilized-patch configuration show that elevated extracellular Ca2+ concentration ([Ca2+]0) depolarizes these cells and induces oscillations in membrane potential. In voltage clamp, high [Ca2+]0 activates a cation conductance that underlies the depolarization. This conductance is cation selective, with a reversal potential near -25 mV indicating poor ion selectivity. 3. The CaR expressed in these cells is activated by other multivalent cations with a rank order potency of Gd3+ > Ba2+ > Ca2+ > > Mg2+. The insensitivity of these cells to high external Mg2+ contrasts with the reported sensitivity of the cloned CaR from parathyroid. 4. Elevation of [Ca2+]0 also stimulates increases in intracellular Ca2+ concentration ([Ca2+]i) and this effect is largely inhibited by the Ca2+ channel blocker nimodipine, indicating that L-type voltage-gated Ca2+ channels contribute to the response to elevated [Ca2+]0. 5. Elevated [Ca2+]0 induces an inward current under conditions where the only permeant external cation is Ca2+, indicating that influx via the cation conductance is another source of the increases in [Ca2+]i. 6. Extracellular Ca2+ stimulates 5-HT release with an EC50 of 1.5 mM. Nimodipine blocks 90% of the Ca2+0-induced 5-HT release, while other inhibitors of voltage-gated calcium channels had no effect. These data support an important role for L-type Ca2+ channels in CaR-induced hormone secretion. Although earlier studies indicate that high [Ca2+]0 induces release of Ca2+ from intracellular stores, thapsigargin-induced depletion of these stores did not affect secretion from these cells, indicating that Ca2+ influx is necessary and sufficient for the Ca2+0-induced 5-HT secretion. 7. Inhibition of protein kinase C (PKC) using chelerythrine, staurosporine, or calphostin C inhibited Ca2+0-induced 5-HT release by 50% while phorobol ester-induced 5-HT secretion was completely inhibited. Thus, PKC is an important component of the pathway linking CaR activation to hormone release. However, another as yet unknown second messenger also contributes to this pathway. 8. We tested the contribution of two different phospholipases to the CaR responses to determine the source of the PKC activator diacylglycerol (DAG). Selective inhibition of phosphatidylinositol-specific phospholipase C (PI-PLC) with U73122 had no effect on the response to elevated [Ca2+]0. However, pretreatment with D609, a selective inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), inhibited Ca(2+)-induced 5-HT release to 50% of control indicating that phosphatidylcholine is a likely source of DAG in the response of PF cells to elevated [Ca2+]0.
Collapse
Affiliation(s)
- D S McGehee
- Department of Anesthesia & Critical Care, University of Chicago, Whitman Laboratory, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Redhead C, Sullivan SK, Koseki C, Fujiwara K, Edwards JC. Subcellular distribution and targeting of the intracellular chloride channel p64. Mol Biol Cell 1997; 8:691-704. [PMID: 9247648 PMCID: PMC276119 DOI: 10.1091/mbc.8.4.691] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
p64 is an intracellular chloride channel originally identified in bovine kidney microsomes. Using a combination of immunofluorescent and electron microscopic technique, we demonstrate that p64 resides in the limiting membranes of perinuclear dense core vesicles which appear to be regulated secretory vesicles. Heterologous expression of p64 in PancI cells, a cell type which does not normally express p64, results in targeting to a similar compartment. Mutagenesis experiments demonstrate that both the N- and C-terminal domains of the protein independently contribute to subcellular distribution of the protein. The C-terminal domain functions to prevent expression of p64 on the plasma membrane and the N-terminal domain is necessary to deliver p64 to the appropriate membrane compartment.
Collapse
Affiliation(s)
- C Redhead
- Max Planck Institut fur Zuchtungforschung, Köln, Germany
| | | | | | | | | |
Collapse
|
16
|
Tamir H, Liu KP, Adlersberg M, Hsiung SC, Gershon MD. Acidification of serotonin-containing secretory vesicles induced by a plasma membrane calcium receptor. J Biol Chem 1996; 271:6441-50. [PMID: 8626445 DOI: 10.1074/jbc.271.11.6441] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Parafollicular (PF) cells secrete 5-hydroxytryptamine in response to increased extracellular Ca2+ ([Ca2+]e). This stimulus causes Cl- channels in PF secretory vesicles to open, leading to vesicle acidification. PF cells express a plasmalemmal heptahelical receptor (CaR) that binds Ca2+, Gd3+, and Ba2+. We now report that the CaR mediates vesicle acidification. Ca2+, Gd3+, and Ba2+ induced vesicle acidification, which was independent of channel-mediated Ca2+ entry. Agonist-induced vesicle acidification was blocked by pertussis toxin, inhibitors of phosphatidylinositol-phospholipase C, calmodulin, NO synthase, guanylyl cyclase, or protein kinase G. PF cells contained NO synthase immunoreactivity, and vesicles were acidified by NO donors and dibutyryl cGMP. [Ca2+]e, and Gd3+ mobilized thapsigargin-sensitive internal Ca2+ stores. [35S]G alpha i and [35S]G alpha q were immunoprecipitated from PF membranes incubated with agonists in the presence of [35S]adenosine 5'-O-(thiotriphosphate). Labeling of G alpha i but not G alpha q was antagonized by pertussis toxin. Vesicles acidified in response to activation of protein kinase C; however, protein kinase C inhibition blocked calcium channel- but not CaR-dependent acidification. We propose the following signal transduction pathway: CaR -> Gi -> phosphatidylinositol-phospholipase C -> inositol 1,4,5-trisphosphate -> [Ca2+]i -> Ca2+/calmodulin -> NO synthase -> NO -> guanylyl cyclase -> cGMP -> protein kinase G -> opens vesicular Cl- channel.
Collapse
Affiliation(s)
- H Tamir
- Division of Neuroscience, New York State Psychiatric Institute, New York 10032, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Lysosomes, endosomes, and a variety of other intracellular organelles are acidified by a family of unique proton pumps, termed the vacuolar H(+)-ATPases, that are evolutionarily related to bacterial membrane proton pumps and the F1-F0 H(+)-ATPases that catalyze ATP synthesis in mitochondria and chloroplasts. The electrogenic vacuolar H(+)-ATPase is responsible for generating electrical and chemical gradients across organelle membranes with the magnitude of these gradients ultimately determined by both proton pump regulatory mechanisms and, more importantly, associated ion and organic solute transporters located in vesicle membranes. Analogous to Na+, K(+)-ATPase on the cell membrane, the vacuolar proton pump not only acidifies the vesicle interior but provides a potential energy source for driving a variety of coupled transporters, many of them unique to specific organelles. Although the basic mechanism for organelle acidification is now well understood, it is already apparent that there are many differences in both the function of the proton pump and the associated transporters in different organelles and different cell types. These differences and their physiologic and pathophysiologic implications are exciting areas for future investigation.
Collapse
Affiliation(s)
- R W Van Dyke
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| |
Collapse
|