1
|
Proliferin-1 Ameliorates Cardiotoxin-Related Skeletal Muscle Repair in Mice. Stem Cells Int 2021; 2021:9202990. [PMID: 34950212 PMCID: PMC8692050 DOI: 10.1155/2021/9202990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury. Methods and Results To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1β in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor. Conclusions These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.
Collapse
|
2
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
3
|
Nakada-Tsukui K, Marumo K, Nozaki T. A lysosomal hydrolase receptor, CPBF2, is associated with motility and invasion of the enteric protozoan parasite Entamoeba histolytica. Mol Biochem Parasitol 2020; 239:111299. [PMID: 32707151 DOI: 10.1016/j.molbiopara.2020.111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
Proper targeting and secretion of lysosomal hydrolases are regulated by transporting receptors. Entamoeba histolytica, the enteric protozoan parasite responsible for human amebiasis, has a unique family of lysosomal hydrolase receptors, cysteine protease binding protein family, CPBF. CPBFs, consisting of 11 members with conserved domain organization, bind to a wide range of cargos including cysteine proteases and glycosidases, which are also known to be involved in pathogenesis of this parasite. In this study, we characterized one of CPBFs, CPBF2, which is involved in cell motility and extracellular matrix invasion. Unexpectedly, these roles of CPBF were not related to its cargo, α-amylase. This is the first demonstration that a putative hydrolase receptor is involved in cell motility and invasion in parasitic protozoa.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | - Konomi Marumo
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-572, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
4
|
Hu L, Huang Z, Ishii H, Wu H, Suzuki S, Inoue A, Kim W, Jiang H, Li X, Zhu E, Piao L, Zhao G, Lei Y, Okumura K, Shi GP, Murohara T, Kuzuya M, Cheng XW. PLF-1 (Proliferin-1) Modulates Smooth Muscle Cell Proliferation and Development of Experimental Intimal Hyperplasia. J Am Heart Assoc 2019; 8:e005886. [PMID: 31838975 PMCID: PMC6951060 DOI: 10.1161/jaha.117.005886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Although apoptosis and cell proliferation have been extensively investigated in atherosclerosis and restenosis postinjury, the communication between these 2 cellular events has not been evaluated. Here, we report an inextricable communicative link between apoptosis and smooth muscle cell proliferation in the promotion of vascular remodeling postinjury. Methods and Results Cathepsin K-mediated caspase-8 maturation is a key initial step for oxidative stress-induced smooth muscle cell apoptosis. Apoptotic cells generate a potential growth-stimulating signal to facilitate cellular mass changes in response to injury. One downstream mediator that cathepsin K regulates is PLF-1 (proliferin-1), which can potently stimulate growth of surviving neighboring smooth muscle cells through activation of PI3K/Akt/p38MAPK (phosphatidylinositol 3-kinase/protein kinase B/p38 mitogen-activated protein kinase)-dependent and -independent mTOR (mammalian target of rapamycin) signaling cascades. We observed that cathepsin K deficiency substantially mitigated neointimal hyperplasia by reduction of Toll-like receptor-2/caspase-8-mediated PLF-1 expression. Interestingly, PLF-1 blocking, with its neutralizing antibody, suppressed neointima formation and remodeling in response to injury in wild-type mice. Contrarily, administration of recombinant mouse PLF-1 accelerated injury-induced vascular actions. Conclusions This is the first study detailing PLF-1 as a communicator between apoptosis and proliferation during injury-related vascular remodeling and neointimal hyperplasia. These data suggested that apoptosis-driven expression of PLF-1 is thus a novel target for treatment of apoptosis-based hyperproliferative disorders.
Collapse
Affiliation(s)
- Lina Hu
- Department of Public Health Guilin Medical College Guilin Guangxi China.,Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Zhe Huang
- Department of Neurology Occupational and Environmental Health Kitakyushu Hukuoka Japan
| | - Hideki Ishii
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hongxian Wu
- Department of Cardiology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Susumu Suzuki
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Aiko Inoue
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Weon Kim
- Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea
| | - Haiying Jiang
- Department of Physiology and Pathophysiology Yanbian University School of Medicine Yanji Jinlin China
| | - Xiang Li
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Enbo Zhu
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Limei Piao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guangxian Zhao
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Yanna Lei
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China
| | - Kenji Okumura
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Guo-Ping Shi
- Department of Cardiovascular Medicine Brigham and Women's Hospital and Harvard Medical School Boston MA
| | - Toyoaki Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - Masafumi Kuzuya
- Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center Yanbian University Hospital Yanji Jilin China.,Department of Community & Geriatrics Nagoya University Graduate School of Medicine Nagoya Japan.,Division of Cardiology Department of Internal Medicine Kyung Hee University Seoul South Korea.,Institute of Innovation for Future Society Nagoya University Nagoya Japan
| |
Collapse
|
5
|
Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The Role of Placental Hormones in Mediating Maternal Adaptations to Support Pregnancy and Lactation. Front Physiol 2018; 9:1091. [PMID: 30174608 PMCID: PMC6108594 DOI: 10.3389/fphys.2018.01091] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, the mother must adapt her body systems to support nutrient and oxygen supply for growth of the baby in utero and during the subsequent lactation. These include changes in the cardiovascular, pulmonary, immune and metabolic systems of the mother. Failure to appropriately adjust maternal physiology to the pregnant state may result in pregnancy complications, including gestational diabetes and abnormal birth weight, which can further lead to a range of medically significant complications for the mother and baby. The placenta, which forms the functional interface separating the maternal and fetal circulations, is important for mediating adaptations in maternal physiology. It secretes a plethora of hormones into the maternal circulation which modulate her physiology and transfers the oxygen and nutrients available to the fetus for growth. Among these placental hormones, the prolactin-growth hormone family, steroids and neuropeptides play critical roles in driving maternal physiological adaptations during pregnancy. This review examines the changes that occur in maternal physiology in response to pregnancy and the significance of placental hormone production in mediating such changes.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Hannah E J Yong
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Jorge Lopez-Tello
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Leksa V, Ilková A, Vičíková K, Stockinger H. Unravelling novel functions of the endosomal transporter mannose 6-phosphate/insulin-like growth factor receptor (CD222) in health and disease: An emerging regulator of the immune system. Immunol Lett 2017; 190:194-200. [PMID: 28823520 DOI: 10.1016/j.imlet.2017.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023]
Abstract
Properly balanced cellular responses require both the mutual interactions of soluble factors with cell surface receptors and the crosstalk of intracellular molecules. In particular, immune cells exposed unceasingly to an array of positive and negative stimuli must distinguish between what has to be tolerated and attacked. Protein trafficking is one of crucial pathways involved in this labour. The approximately >270-kDa protein transporter called mannose 6- phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R, CD222) is a type I transmembrane glycoprotein present largely intracellularly in the Golgi apparatus and endosomal compartments, but also at the cell surface. It is expressed ubiquitously in a vast majority of higher eukaryotic cell types. Through binding and trafficking multiple unrelated extracellular and intracellular ligands, CD222 is involved in the regulation of a plethora of functions, and thus implicated in many physiological but also pathophysiological conditions. This review describes, first, general features of CD222, such as its evolution, genomic structure and regulation, protein structure and ligands; and second, its specific functions with a special focus on the immune system.
Collapse
Affiliation(s)
- Vladimir Leksa
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria; Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | - Antónia Ilková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Kristína Vičíková
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Hannes Stockinger
- Centre for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria
| |
Collapse
|
7
|
van Beijnum JR, Pieters W, Nowak-Sliwinska P, Griffioen AW. Insulin-like growth factor axis targeting in cancer and tumour angiogenesis - the missing link. Biol Rev Camb Philos Soc 2016; 92:1755-1768. [PMID: 27779364 DOI: 10.1111/brv.12306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/15/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
Numerous molecular players in the process of tumour angiogenesis have been shown to offer potential for therapeutic targeting. Initially denoted to be involved in malignant transformation and tumour progression, the insulin-like growth factor (IGF) signalling axis has been subject to therapeutic interference, albeit with limited clinical success. More recently, IGFs and their receptors have received attention for their contribution to tumour angiogenesis, which offers novel therapeutic opportunities. Here we review the contribution of this signalling axis to tumour angiogenesis, the mechanisms of resistance to therapy and the interplay with other pro-angiogenic pathways, to offer insight in the renewed interest in the application of IGF axis targeting agents in anti-cancer combination therapies.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Wietske Pieters
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva (UNIGE), Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Arjan W Griffioen
- Department of Medical Oncology, Angiogenesis Laboratory, VU University Medical Center, PO box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lee JS, Kang JH, Boo HJ, Hwang SJ, Hong S, Lee SC, Park YJ, Chung TM, Youn H, Mi Lee S, Jae Kim B, Chung JK, Chung Y, William WN, Kee Shin Y, Lee HJ, Oh SH, Lee HY. STAT3-mediated IGF-2 secretion in the tumour microenvironment elicits innate resistance to anti-IGF-1R antibody. Nat Commun 2015; 6:8499. [PMID: 26465273 PMCID: PMC4608384 DOI: 10.1038/ncomms9499] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major impediment in medical oncology. Recent studies have emphasized the importance of the tumour microenvironment (TME) to innate resistance, to molecularly targeted therapies. In this study, we investigate the role of TME in resistance to cixutumumab, an anti-IGF-1R monoclonal antibody that has shown limited clinical efficacy. We show that treatment with cixutumumab accelerates tumour infiltration of stromal cells and metastatic tumour growth, and decreases overall survival of mice. Cixutumumab treatment stimulates STAT3-dependent transcriptional upregulation of IGF-2 in cancer cells and recruitment of macrophages and fibroblasts via paracrine IGF-2/IGF-2R activation, resulting in the stroma-derived CXCL8 production, and thus angiogenic and metastatic environment. Silencing IGF-2 or STAT3 expression in cancer cells or IGF-2R or CXCL8 expression in stromal cells significantly inhibits the cancer-stroma communication and vascular endothelial cells' angiogenic activities. These findings suggest that blocking the STAT3/IGF-2/IGF-2R intercellular signalling loop may overcome the adverse consequences of anti-IGF-1R monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Ji-Sun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Ju-Hee Kang
- National Cancer Center, Goyang-si, Gyeonggi-do 410 769, Korea
| | - Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Su-Jung Hwang
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621 749, Korea
| | - Sungyoul Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Su-Chan Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Young-Jun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - Tae-Moon Chung
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156 707, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110 744, Korea
| | - Byoung Jae Kim
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156 707, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110 744, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul 110 744, Korea
| | - Yeonseok Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| | - William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Young Kee Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea.,The Center for Anti-Cancer CDx, N-Bio, Seoul National University, Seoul 151 742, Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyeongnam 621 749, Korea
| | - Seung-Hyun Oh
- College of Pharmacy, Gachon University, Inchon 406 840, Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151 742, Korea
| |
Collapse
|
9
|
Maris C, D'Haene N, Trépant AL, Le Mercier M, Sauvage S, Allard J, Rorive S, Demetter P, Decaestecker C, Salmon I. IGF-IR: a new prognostic biomarker for human glioblastoma. Br J Cancer 2015; 113:729-37. [PMID: 26291053 PMCID: PMC4559821 DOI: 10.1038/bjc.2015.242] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/02/2015] [Accepted: 06/11/2015] [Indexed: 01/18/2023] Open
Abstract
Background: Glioblastomas (GBMs) are the most common malignant primary brain tumours in adults and are refractory to conventional therapy, including surgical resection, radiotherapy and chemotherapy. The insulin-like growth factor (IGF) system is a complex network that includes ligands (IGFI and IGFII), receptors (IGF-IR and IGF-IIR) and high-affinity binding proteins (IGFBP-1 to IGFBP-6). Many studies have reported a role for the IGF system in the regulation of tumour cell biology. However, the role of this system remains unclear in GBMs. Methods: We investigate the prognostic value of both the IGF ligands' and receptors' expression in a cohort of human GBMs. Tissue microarray and image analysis were conducted to quantitatively analyse the immunohistochemical expression of these proteins in 218 human GBMs. Results: Both IGF-IR and IGF-IIR were overexpressed in GBMs compared with normal brain (P<10−4 and P=0.002, respectively). Moreover, with regard to standard clinical factors, IGF-IR positivity was identified as an independent prognostic factor associated with shorter survival (P=0.016) and was associated with a less favourable response to temozolomide. Conclusions: This study suggests that IGF-IR could be an interesting target for GBM therapy.
Collapse
Affiliation(s)
- C Maris
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - N D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - A-L Trépant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - M Le Mercier
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - S Sauvage
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| | - J Allard
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - S Rorive
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| | - P Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - C Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium.,Laboratories of Image, Signal processing and Acoustics (LISA), Brussels School of Engineering/Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - I Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Académie Universitaire Wallonie-Bruxelles, Gosselies 6041, Belgium
| |
Collapse
|
10
|
Yang X, Friedl A. A positive feedback loop between prolactin and STAT5 promotes angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:265-80. [PMID: 25472543 DOI: 10.1007/978-3-319-12114-7_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 6051 WIMR, MC-2275, 1111 Highland Avenue, 53705, Madison, WI, USA,
| | | |
Collapse
|
11
|
Giakoumopoulos M, Golos TG. Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. J Endocrinol 2013; 216:R33-45. [PMID: 23291503 PMCID: PMC3809013 DOI: 10.1530/joe-12-0433] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of the placenta is imperative for successful pregnancy establishment, yet the earliest differentiation events of the blastocyst-derived trophectoderm that forms the placenta remain difficult to study in humans. Human embryonic stem cells (hESC) display a unique ability to form trophoblast cells when induced to differentiate either by the addition of exogenous BMP4 or by the formation of cellular aggregates called embryoid bodies. While mouse trophoblast stem cells (TSC) have been isolated from blastocyst outgrowths, mouse ESC do not spontaneously differentiate into trophoblast cells. In this review, we focus on addressing the similarities and differences between mouse TSC differentiation and hESC-derived trophoblast differentiation. We discuss the functional and mechanistic diversity that is found in different species models. Of central importance are the unique signaling events that trigger downstream gene expression that create specific cellular fate decisions. We support the idea that we must understand the nuances that hESC differentiation models display so that investigators can choose the appropriate model system to fit experimental needs.
Collapse
Affiliation(s)
- M Giakoumopoulos
- Wisconsin National Primate Research Center, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, 1223 Capitol Court, Madison, Wisconsin 53715-1299, USA
| | | |
Collapse
|
12
|
Abstract
Tissue angiotensin generation depends on the uptake of circulating (kidney-derived) renin and/or its precursor prorenin [together denoted as (pro)renin]. Since tissue renin levels are usually somewhat higher than expected based upon the amount of (renin-containing) blood in tissue, an active uptake mechanism has been proposed. Several candidates have been evaluated in the past three decades, including a renin-binding protein, the mannose 6-phosphate/insulin-like growth factor II receptor and the (pro)renin receptor. Although the latter seemed the most promising, its nanomolar affinity for renin and prorenin is several orders of magnitude above their actual (picomolar) levels in blood, raising doubt on whether (pro)renin–(pro)renin receptor interaction will ever occur in vivo. A wide range of in vitro studies have now demonstrated (pro)renin-receptor-induced effects at nanomolar renin and prorenin concentrations, resulting in a profibrotic phenotype. In addition, beneficial in vivo effects of the putative (pro)renin receptor blocker HRP (handle region peptide) have been observed, particularly in diabetic animal models. Despite these encouraging results, many other studies have reported either no or even contrasting effects of HRP, and (pro)renin-receptor-knockout studies revealed lethal consequences that are (pro)renin-independent, most probably due to the fact that the (pro)renin receptor co-localizes with vacuolar H+-ATPase and possibly determines the stability of this vital enzyme. The present review summarizes all of the recent findings on the (pro)renin receptor and its blockade, and critically compares it with the other candidates that have been proposed to mediate (pro)renin uptake from blood. It ends with the conclusion that the (pro)renin–(pro)renin receptor interaction, if it occurs in vivo, is limited to (pro)renin-synthesizing organs such as the kidney.
Collapse
|
13
|
Yang X, Qiao D, Meyer K, Pier T, Keles S, Friedl A. Angiogenesis induced by signal transducer and activator of transcription 5A (STAT5A) is dependent on autocrine activity of proliferin. J Biol Chem 2011; 287:6490-502. [PMID: 22199350 DOI: 10.1074/jbc.m111.254631] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple secreted factors induce the formation of new blood vessels (angiogenesis). The signal transduction events that orchestrate the numerous cellular activities required for angiogenesis remain incompletely understood. We have shown previously that STAT5 plays a pivotal role in angiogenesis induced by FGF2 and FGF8b. To delineate the signaling pathway downstream of STAT5, we expressed constitutively active (CA) or dominant-negative (DN) mutant STAT5A in mouse brain endothelial cells (EC). We found that the conditioned medium from CA-STAT5A but not from dominant-negative STAT5A overexpressing EC is sufficient to induce EC invasion and tube formation, indicating that STAT5A regulates the secretion of autocrine proangiogenic factors. Conversely, CA-STAT5A-induced conditioned medium had no effect on EC proliferation. Using a comparative genome-wide transcription array screen, we identified the prolactin family member proliferin (PLF1 and PLF4) as a candidate autocrine factor. The CA-STAT5A-dependent transcription and secretion of PLF by EC was confirmed by quantitative RT-PCR and Western blotting, respectively. CA-STAT5A binds to the PLF1 promoter region, suggesting a direct transcriptional regulation. Knockdown of PLF expression by shRNA or by blocking of PLF activity with neutralizing antibodies removed the CA-STAT5A-dependent proangiogenic activity from the conditioned medium of EC. Similarly, the ability of concentrated conditioned medium from CA-STAT5A transfected EC to induce angiogenesis in Matrigel plugs in vivo was abolished when PLF was depleted from the medium. These observations demonstrate a FGF/STAT5/PLF signaling cascade in EC and implicate PLF as autocrine regulator of EC invasion and tube formation.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | | | | | | | | |
Collapse
|
14
|
De Luisi A, Ferrucci A, Coluccia AML, Ria R, Moschetta M, de Luca E, Pieroni L, Maffia M, Urbani A, Di Pietro G, Guarini A, Ranieri G, Ditonno P, Berardi S, Caivano A, Basile A, Cascavilla N, Capalbo S, Quarta G, Dammacco F, Ribatti D, Vacca A. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res 2011; 17:1935-46. [PMID: 21307145 DOI: 10.1158/1078-0432.ccr-10-2381] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To determine the in vivo and in vitro antiangiogenic power of lenalidomide, a "lead compound" of IMiD immunomodulatory drugs in bone marrow (BM) endothelial cells (EC) of patients with multiple myeloma (MM) in active phase (MMEC). EXPERIMENTAL DESIGN The antiangiogenic effect in vivo was studied using the chorioallantoic membrane (CAM) assay. Functional studies in vitro (angiogenesis, "wound" healing and chemotaxis, cell viability, adhesion, and apoptosis) were conducted in both primary MMECs and ECs of patients with monoclonal gammopathies (MGUS) of undetermined significance (MGEC) or healthy human umbilical vein endothelial cells (HUVEC). Real-time reverse transcriptase PCR, Western blotting, and differential proteomic analysis were used to correlate morphologic and biological EC features with the lenalidomide effects at the gene and protein levels. RESULTS Lenalidomide exerted a relevant antiangiogenic effect in vivo at 1.75 μmol/L, a dose reached in interstitial fluids of patients treated with 25 mg/d. In vitro, lenalidomide inhibited angiogenesis and migration of MMECs, but not of MGECs or control HUVECs, and had no effect on MMEC viability, apoptosis, or fibronectin- and vitronectin-mediated adhesion. Lenalidomide-treated MMECs showed changes in VEGF/VEGFR2 signaling pathway and several proteins controlling EC motility, cytoskeleton remodeling, and energy metabolism pathways. CONCLUSIONS This study provides information on the molecular mechanisms associated with the antimigratory and antiangiogenic effects of lenalidomide in primary MMECs, thus giving new avenues for effective endothelium-targeted therapies in MM.
Collapse
Affiliation(s)
- Annunziata De Luisi
- Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Herington JL, Bany BM. Do molecular signals from the conceptus influence endometrium decidualization in rodents? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:797-816. [PMID: 19551814 PMCID: PMC2844778 DOI: 10.1002/jez.b.21308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A critical period in establishing pregnancy occurs after the onset of implantation but before placental development. Evidence strongly suggests that abnormalities occurring during this period can result in pregnancy termination or in pre-eclampsia; the latter may lead to small-for-gestational-weight offspring that are likely to be unhealthy. Clearly, events occurring in the endometrium during the implantation process are crucial for proper fetal development and for optimal offspring health. In several mammalian species bi-directional communication between the conceptus and endometrium during implantation is required for successful pregnancy. Although different implantation and placentation modes occur in different mammalian species, common aspects of this bi-directional signaling may exist. The molecular signals from the trophoblast cells of the conceptus, which direct endometrial changes during implantation progression, are well known in some nonrodent species. Currently, we know little about such signaling in rodents during implantation progression, when the endometrium undergoes decidualization. This review focuses on data that support the hypothesis that paracrine signals from the rodent conceptus influence decidualization. Where possible, these findings are compared and contrasted with information currently known in other species that exhibit different implantation modes.
Collapse
Affiliation(s)
- Jennifer L. Herington
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Brent M. Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA,
| |
Collapse
|
16
|
Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability. Proc Natl Acad Sci U S A 2009; 106:16657-62. [PMID: 19805353 DOI: 10.1073/pnas.0903775106] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositol requiring enzyme-1 (IRE1), a protein located on the endoplasmic reticulum (ER) membrane, is highly conserved from yeast to humans. This protein is activated during ER stress and induces cellular adaptive responses to the stress. In mice, IRE1alpha inactivation results in widespread developmental defects, leading to embryonic death after 12.5 days of gestation. However, the cause of this embryonic lethality is not fully understood. Here, by using in vivo imaging analysis and conventional knockout mice, respectively, we showed that IRE1alpha was activated predominantly in the placenta and that loss of IRE1alpha led to reduction in vascular endothelial growth factor-A and severe dysfunction of the labyrinth in the placenta, a highly developed tissue of blood vessels. We also used a conditional knockout strategy to demonstrate that IRE1alpha-deficient embryos supplied with functionally normal placentas can be born alive. Fetal liver hypoplasia thought to be responsible for the embryonic lethality of IRE1alpha-null mice was virtually absent in rescued IRE1alpha-null pups. These findings reveal that IRE1alpha plays an essential function in extraembryonic tissues and highlight the relationship of physiological ER stress and angiogenesis in the placenta during pregnancy in mammals.
Collapse
|
17
|
Mitchell K, Szekeres C, Milano V, Svenson KB, Nilsen-Hamilton M, Kreidberg JA, DiPersio CM. Alpha3beta1 integrin in epidermis promotes wound angiogenesis and keratinocyte-to-endothelial-cell crosstalk through the induction of MRP3. J Cell Sci 2009; 122:1778-87. [PMID: 19435806 DOI: 10.1242/jcs.040956] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During cutaneous wound healing, epidermal keratinocytes play essential roles in the secretion of factors that promote angiogenesis. However, specific cues in the wound microenvironment that trigger the production of pro-angiogenic factors by keratinocytes, and the cellular receptors that mediate this response, remain unclear. In this study, we exploited a model of conditional integrin knockout to demonstrate impaired wound angiogenesis in mice that lack alpha3beta1 integrin in epidermis. In addition, we used genetic and shRNA approaches to determine that alpha3beta1-integrin deficiency in keratinocytes leads to reduced mRNA and protein expression of the pro-angiogenic factor mitogen-regulated protein 3 (MRP3; also known as PRL2C4), and to demonstrate that this regulation provides a mechanism of keratinocyte-to-endothelial-cell crosstalk that promotes endothelial-cell migration. Finally, we showed that the impaired wound angiogenesis in epidermis-specific alpha3-integrin-knockout mice is correlated with reduced expression of MRP3 in wounded epidermis. These findings identify a novel role for alpha3beta1 integrin in promoting wound angiogenesis through a mechanism of crosstalk from epidermal to endothelial cells, and they implicate MRP3 in this integrin-dependent crosstalk. Such a mechanism represents a novel paradigm for integrin-mediated regulation of wound angiogenesis that extends beyond traditional roles for integrins in cell adhesion and migration.
Collapse
Affiliation(s)
- Kara Mitchell
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood 2008; 113:233-43. [PMID: 18832656 DOI: 10.1182/blood-2008-06-162891] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Homing of endothelial progenitor cells (EPCs) to the neovascular zone is now considered to be an essential step in the formation of vascular networks during embryonic development and also for neovascularization in postnatal life. We report here the prominent role of the insulin-like growth factor 2 (IGF2)/IGF2 receptor (IGF2R) system in promoting EPC homing. With high-level expression of IGF2R in EPCs, IGF2-induced hypoxic conditions stimulated multiple steps of EPC homing in vitro and promoted both EPC recruitment and incorporation into the neovascular area, resulting in enhanced angiogenesis in vivo. Remarkably, all IGF2 actions were exerted predominantly through IGF2R-linked G(i) protein signaling and required intracellular Ca(2+) mobilization induced by the beta2 isoform of phospholipase C. Together, these findings indicate that locally generated IGF2 at either ischemic or tumor sites may contribute to postnatal vasculogenesis by augmenting the recruitment of EPCs. The utilization of the IGF2/IGF2R system may therefore be useful for the development of novel means to treat angiogenesis-dependent diseases.
Collapse
|
19
|
Glazer RI, Wang XY, Yuan H, Yin Y. Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 2008; 7:2635-9. [PMID: 18719393 DOI: 10.4161/cc.7.17.6522] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
One of the earliest genes identified with stem and early progenitor cells is the RNA-binding protein, Musashi1 (Msi1). Through gene profiling of mammary epithelial cells transduced with Msi1, a unique autocrine signaling pathway was identified that activates both the Wnt and Notch pathways. This process was associated with increased secretion of the growth factor, PLF1 and inhibition of the secreted Wnt pathway inhibitor, DKK3. Identification of PLF1 as an effector of these pathways in the absence of the DKK3 tumor suppressor provides a new avenue for investigating differences between normal and malignant tissues, and potentially targeting tumor stem cells.
Collapse
Affiliation(s)
- Robert I Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
20
|
Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 2008; 28:3589-99. [PMID: 18362162 DOI: 10.1128/mcb.00040-08] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The RNA-binding protein Musashi1 (Msi1) is a positive regulator of Notch-mediated transcription in Drosophila melanogaster and neural progenitor cells and has been identified as a putative human breast stem cell marker. Here we describe a novel functional role for Msi1: its ability to drive progenitor cell expansion along the luminal and myoepithelial lineages. Expression of Msi1 in mammary epithelial cells increases the abundance of CD24(hi) Sca-1(+), CD24(hi) CD29(+), CK19, CK6, and double-positive CK14/CK18 progenitor cells. Proliferation is associated with increased proliferin-1 (PLF1) and reduced Dickkopf-3 (DKK3) secretion into the conditioned medium from Msi-expressing cells, which is associated with increased colony formation and extracellular signal-regulated kinase (ERK) phosphorylation. Treatment with the MEK inhibitor U0126 inhibits ERK activation and decreases Notch and beta-catenin/T-cell factor (TCF) reporter activity resulting from Msi1 expression. Reduction of DKK3 in control cells with a short hairpin RNA (shRNA) increases Notch and beta-catenin/TCF activation, whereas reduction of PLF1 with a shRNA in Msi1-expressing cells inhibits these pathways. These results identify Msi1 as a key determinant of the mammary lineage through its ability to coordinate cell cycle entry and activate the Notch and Wnt pathways by a novel autocrine process involving PLF1 and DKK3.
Collapse
|
21
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
22
|
Shields SK, Nicola C, Chakraborty C. Rho guanosine 5'-triphosphatases differentially regulate insulin-like growth factor I (IGF-I) receptor-dependent and -independent actions of IGF-II on human trophoblast migration. Endocrinology 2007; 148:4906-17. [PMID: 17640993 DOI: 10.1210/en.2007-0476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both IGF-I and IGF-II stimulate migration of human extravillous trophoblast (EVT) cells. Although IGF-I is known to signal through IGF type 1 receptor (IGF1R), IGF-II signals through IGF1R as well as in an IGF1R-independent manner. The purpose of this study was to investigate the roles of Rho GTPases in IGF1R-independent and -dependent actions of IGF-II on EVT cell migration. To distinguish IGF1R-dependent and -independent actions, we used picropodophyllin, a selective inhibitor of IGF1R tyrosine kinase, and IGF analogs with differential affinities for IGF1R, IGF-II/cation-independent mannose 6-phosphate receptor, and IGF-binding proteins. IGF1R-dependent actions of IGF-II were confirmed by showing the effects of IGF1R-selective agonist Des1-3 IGF-I. We used pharmacological inhibitors or selective small interfering RNAs to investigate the roles of RhoA, RhoC, Rac1, Cdc42, and Rho effector kinases called ROCK-I and -II in IGF-induced EVT cell migration. Although basal migration of EVT cells required each member of the Rho GTPase family studied, IGF1R-dependent and -independent EVT cell migration exhibited differential requirements for these enzymes. IGF1R-mediated EVT cell migration was found to depend on RhoA and RhoC but not on Rac1 or Cdc42. However, IGF1R-independent effect of IGF-II on EVT cell migration required ROCKs but not RhoA, RhoC, Rac1, or Cdc42. Most importantly, IGF1R-independent action of IGF-II was found to be exaggerated when RhoA or RhoC was down-regulated. Thus, different members of the Rho GTPase family regulate IGF-II-mediated EVT cell migration differentially, depending upon whether it signals through IGF1R or in an IGF1R-independent manner.
Collapse
Affiliation(s)
- Sarah-Kim Shields
- Department of Pathology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
23
|
El-Shewy HM, Lee MH, Obeid LM, Jaffa AA, Luttrell LM. The Insulin-like Growth Factor Type 1 and Insulin-like Growth Factor Type 2/Mannose-6-phosphate Receptors Independently Regulate ERK1/2 Activity in HEK293 Cells. J Biol Chem 2007; 282:26150-7. [PMID: 17620336 DOI: 10.1074/jbc.m703276200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor types 1 and 2 (IGF-1; IGF-2) and insulin-like peptides are all members of the insulin superfamily of peptide hormones but bind to several distinct classes of membrane receptor. Like the insulin receptor, the IGF-1 receptor is a heterotetrameric receptor tyrosine kinase, whereas the IGF-2/ mannose 6-phosphate receptor is a single transmembrane domain protein that is thought to function primarily as clearance receptors. We recently reported that IGF-1 and IGF-2 stimulate the ERK1/2 cascade by triggering sphingosine kinase-dependent "transactivation" of G protein-coupled sphingosine-1-phosphate receptors. To determine which IGF receptors mediate this effect, we tested seven insulin family peptides, IGF-1, IGF-2, insulin, and insulin-like peptides 3, 4, 6, and 7, for the ability to activate ERK1/2 in HEK293 cells. Only IGF-1 and IGF-2 potently activated ERK1/2. Although IGF-2 was predictably less potent than IGF-1 in activating the IGF-1 receptor, they were equipotent stimulators of ERK1/2. Knockdown of IGF-1 receptor expression by RNA interference reduced the IGF-1 response to a greater extent than the IGF-2 response, suggesting that IGF-2 did not signal exclusively via the IGF-1 receptor. In contrast, IGF-2 receptor knockdown markedly reduced IGF-2-stimulated ERK1/2 phosphorylation, with no effect on the IGF-1 response. As observed previously, both the IGF-1 and the IGF-2 responses were sensitive to pertussis toxin and the sphingosine kinase inhibitor, dimethylsphingosine. These data indicate that endogenous IGF-1 and IGF-2 receptors can independently initiate ERK1/2 signaling and point to a potential physiologic role for IGF-2 receptors in the cellular response to IGF-2.
Collapse
Affiliation(s)
- Hesham M El-Shewy
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
24
|
Kim SR, Bae SK, Choi KS, Park SY, Jun HO, Lee JY, Jang HO, Yun I, Yoon KH, Kim YJ, Yoo MA, Kim KW, Bae MK. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun 2007; 357:150-6. [PMID: 17408594 DOI: 10.1016/j.bbrc.2007.03.105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/17/2007] [Indexed: 11/17/2022]
Abstract
Adipose tissue is highly vascularized and requires the angiogenic properties for its mass growth. Visfatin has been recently characterized as a novel adipokine, which is preferentially produced by adipose tissue. In this study, we report that visfatin potently stimulates in vivo neovascularization in chick chorioallantoic membrane and mouse Matrigel plug. We also demonstrate that visfatin activates migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, visfatin evokes activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) in endothelial cells, which is closely linked to angiogenesis. Inhibition of ERK activation markedly decreases visfatin-induced tube formation of HUVECs and visfatin-stimulated endothelial cell sprouting from rat aortic rings. Taken together, these results demonstrate that visfatin promotes angiogenesis via activation of mitogen-activated protein kinase ERK-dependent pathway and suggest that visfatin may play important roles in various pathophysiological angiogenesis including adipose tissue angiogenesis.
Collapse
Affiliation(s)
- Su-Ryun Kim
- School of Dentistry, Pusan National University, Pusan 602-739, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
El-Shewy HM, Johnson KR, Lee MH, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84052-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
26
|
Danser AHJ, Saris JJ. 77th Scientific Sessions of the American Heart Association. Expert Opin Investig Drugs 2006; 14:203-7. [PMID: 15757397 DOI: 10.1517/13543784.14.2.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nearly 4000 abstracts were selected for presentation at the 77th Scientific Sessions of the American Heart Association, held in New Orleans, Louisiana, USA. The sessions were divided into basic, clinical and population science. The abstracts have been published in a supplement to Circulation (2004) 110(7).
Collapse
Affiliation(s)
- A H Jan Danser
- Erasmus MC, Department of Pharmacology, Room EE1418b, Dr Molewaterplein 50, 3015GE Rotterdam, The Netherlands.
| | | |
Collapse
|
27
|
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
28
|
Zhuge X, Murayama T, Arai H, Yamauchi R, Tanaka M, Shimaoka T, Yonehara S, Kume N, Yokode M, Kita T. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005; 331:1295-300. [PMID: 15883016 DOI: 10.1016/j.bbrc.2005.03.200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Indexed: 11/16/2022]
Abstract
CXCL16 is a unique chemokine with characteristics as a receptor for phosphatidylserine and oxidized low density lipoproteins in macrophages, and is involved in the accumulation of cellular cholesterol during atherosclerotic lesion development. In this study, we report a new function of CXCL16 as a novel angiogenic factor in human umbilical vein endothelial cells (HUVEC). CXCL16 stimulated proliferation and chemotaxis of HUVEC in a dose-dependent manner, reaching a maximum at 1 nM. CXCL16 also significantly induced tube formation of HUVEC on Matrigel. Further, exposure of HUVEC to CXCL16 led to a time- and dose-dependent activation of mitogen-activated protein kinase (ERK1/2), which was completely inhibited by a mitogen-activated protein kinase kinase inhibitor, PD98059. Proliferation and tube formation in response to CXCL16 were also blocked by the pretreatment with PD98059, but not CXCL16-induced chemotaxis. Thus, our data indicate that CXCL16 may act as a novel angiogenic factor for HUVEC and that ERK is involved as an important signaling molecule to mediate its angiogenic effects.
Collapse
Affiliation(s)
- Xin Zhuge
- Department of Clinical Innovative Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
MASSA PE, LI X, HANIDU A, SIAMAS J, PARIALI M, PAREJA J, SAVITT AG, Catron KM, LI J, MARCU KB. Gene expression profiling in conjunction with physiological rescues of IKKalpha-null cells with wild type or mutant IKKalpha reveals distinct classes of IKKalpha/NF-kappaB-dependent genes. J Biol Chem 2005; 280:14057-69. [PMID: 15695520 PMCID: PMC1226413 DOI: 10.1074/jbc.m414401200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular responses to stress-like stimuli require the IkappaB kinase (IKK) signalsome (IKKalpha, IKKbeta, and NEMO/IKKgamma) to activate NF-kappaB-dependent genes. IKKbeta and NEMO/IKKgamma are required to release NF-kappaB p65/p50 heterodimers from IkappaBalpha, resulting in their nuclear migration and sequence-specific DNA binding; but IKKalpha was found to be dispensable for this initial phase of canonical NF-kappaB activation. Nevertheless, IKKalpha-/- mouse embryonic fibroblasts (MEFs) fail to express NF-kappaB targets in response to proinflammatory stimuli, uncovering a nuclear role for IKKalpha in NF-kappaB activation. However, it remains unknown whether the global defect in NF-kappaB-dependent gene expression of IKKalpha-/- cells is caused by the absence of IKKalpha kinase activity. We show by gene expression profiling that rescue of near physiological levels of wild type IKKalpha in IKKalpha-/- MEFs globally restores expression of their canonical NF-kappaB target genes. To prove that the kinase activity of IKKalpha was required on a genomic scale, the same physiological rescue was performed with a kinase-dead, ATP binding domain IKKalpha mutant (IKKalpha(K44M)). Remarkably, the IKKalpha(K44M) protein rescued approximately 28% of these genes, albeit in a largely stimulus-independent manner with the notable exception of several genes that also acquired tumor necrosis factor-alpha responsiveness. Thus the IKKalpha-containing signalsome unexpectedly functions in the presence and absence of extracellular signals in both kinase-dependent and -independent modes to differentially modulate the expression of five distinct classes of IKKalpha/NF-kappaB-dependent genes.
Collapse
Affiliation(s)
- Paul E. MASSA
- Genetics Graduate Program
- Depts of Biochemistry and Cell Biology and
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Xiang LI
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Adedayo HANIDU
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | | | - Milena PARIALI
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| | - Jessica PAREJA
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | - Anne G. SAVITT
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | - Katrina M. Catron
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Jun LI
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Kenneth B. MARCU
- Genetics Graduate Program
- Depts of Biochemistry and Cell Biology and
- Microbiology, Institute for Cell and Developmental Biology, SUNY @ Stony Brook, Stony Brook, NY 11794-5215
- Center for Applied Biomedical Research, San Orsola Hospital, University of Bologna, Via Massarenti 9, Bologna 40138, Italy
| |
Collapse
|
30
|
Zygmunt M, McKinnon T, Herr F, Lala PK, Han VKM. HCG increases trophoblast migration in vitro via the insulin-like growth factor-II/mannose-6 phosphate receptor. ACTA ACUST UNITED AC 2005; 11:261-7. [PMID: 15749784 DOI: 10.1093/molehr/gah160] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that both HCG and insulin-like growth factor-II (IGF-II) stimulate trophoblastic invasion. Furthermore, the invasion-promoting function of IGF-II resulted from IGF-II mannose 6-phosphate receptor (IGF-II/M6PR) activation. Since HCG and IGF-II did not have an additive effect on cell migration of extravillous trophoblast (EVT) cell line, HTR-8 SVneo, we hypothesized that HCG actions are mediated via alterations in the expression and/or function of IGF-II axis. HCG treatment (50-50,000 mU/ml) of the HTR-8/SVneo cells did not alter the expression of either insulin-like growth factor-I or IGF-II mRNA or peptide synthesis, but caused (i) an increase in the (125)I-IGF-II binding to EVT cells, and (ii) an increase in the externalization rate of the IGF-II binding sites without affecting their internalization. This effect was due to the increase in the number of IGF-II binding sites in the plasma membrane without any change in the IGF-II binding affinity. Although HCG did not influence the abundance of IGF-II/M6PR mRNA or protein, anti-IGF-II/M6PR antibody decreased HCG-induced migration of EVT, supporting the hypothesis that HCG might stimulate EVT migration by increasing IGF-II binding to the plasma membrane and subsequently by increasing the IGF-II effect probably mediated via the IGF-II/M6PR.
Collapse
Affiliation(s)
- M Zygmunt
- MRC Group in Fetal and Neonatal Health and Development, The Lawson Research Institute and The Child Health Research Institute, London, Ontario, Canada.
| | | | | | | | | |
Collapse
|
31
|
Kreiling JL, Byrd JC, MacDonald RG. Domain interactions of the mannose 6-phosphate/insulin-like growth factor II receptor. J Biol Chem 2005; 280:21067-77. [PMID: 15799974 DOI: 10.1074/jbc.m412971200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) forms oligomeric structures important for optimal function in binding and internalization of Man-6-P-bearing extracellular ligands as well as lysosomal biogenesis and growth regulation. However, neither the mechanism of inter-receptor interaction nor the dimerization domain has yet been identified. We hypothesized that areas near the ligand binding domains of the receptor would contribute preferentially to oligomerization. Two panels of minireceptors were constructed that involved truncations of either the N- or C-terminal regions of the M6P/IGF2R encompassing deletions of various ligand binding domains. alpha-FLAG or alpha-Myc-based immunoprecipitation assays showed that all of the minireceptors tested were able to associate with a full-length, Myc-tagged M6P/IGF2R (WT-M). In the alpha-FLAG but not alpha-Myc immunoprecipitation assays, the degree of association of a series of C-terminally truncated minireceptors with WT-M showed a positive trend with length of the minireceptor. In contrast, length did not seem to affect the association of the N-terminally truncated minireceptors with WT-M, except that the 12th extracytoplasmic repeat appeared exceptionally important in dimerization in the alpha-FLAG assays. The presence of mutations in the ligand-binding sites of the minireceptors had no effect on their ability to associate with WT-M. Thus, association within the heterodimers was not dependent on the presence of functional ligand binding domains. Heterodimers formed between WT-M and the minireceptors demonstrated high affinity IGF-II and Man-6-P-ligand binding, suggesting a functional association. We conclude that there is no finite M6P/IGF2R dimerization domain, but rather that interactions between dimer partners occur all along the extracytoplasmic region of the receptor.
Collapse
Affiliation(s)
- Jodi L Kreiling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | |
Collapse
|
32
|
Soares MJ. The prolactin and growth hormone families: pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod Biol Endocrinol 2004; 2:51. [PMID: 15236651 PMCID: PMC471570 DOI: 10.1186/1477-7827-2-51] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 07/05/2004] [Indexed: 11/17/2022] Open
Abstract
The prolactin (PRL) and growth hormone (GH) gene families represent species-specific expansions of pregnancy-associated hormones/cytokines. In this review we examine the structure, expression patterns, and biological actions of the pregnancy-specific PRL and GH families.
Collapse
Affiliation(s)
- Michael J Soares
- Institute of Maternal-Fetal Biology, Division of Cancer & Developmental Biology, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| |
Collapse
|
33
|
Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 2003; 4:202-12. [PMID: 12612639 DOI: 10.1038/nrm1050] [Citation(s) in RCA: 794] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The two mannose 6-phosphate (M6P) receptors were identified because of their ability to bind M6P-containing soluble acid hydrolases in the Golgi and transport them to the endosomal-lysosomal system. During the past decade, we have started to understand the structural features of these receptors that allow them to do this job, and how the receptors themselves are sorted as they pass through various membrane-bound compartments. But trafficking of acid hydrolases is only part of the story. Evidence is emerging that one of the receptors can regulate cell growth and motility, and that it functions as a tumour suppressor.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
34
|
LI X, MASSA PE, HANIDU A, PEET GW, ARO P, Savitt A, MISCHE S, LI J, MARCU KB. IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program. J Biol Chem 2002; 277:45129-40. [PMID: 12221085 PMCID: PMC1201411 DOI: 10.1074/jbc.m205165200] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The IKKbeta and NEMO/IKKgamma subunits of the NF-kappaB-activating signalsome complex are known to be essential for activating NF-kappaB by inflammatory and other stress-like stimuli. However, the IKKalpha subunit is believed to be dispensable for the latter responses and instead functions as an in vivo mediator of other novel NF-kappaB-dependent and -independent functions. In contrast to this generally accepted view of IKKalpha's physiological functions, we demonstrate in mouse embryonic fibroblasts (MEFs) that, akin to IKKbeta and NEMO/IKKgamma, IKKalpha is also a global regulator of tumor necrosis factor alpha- and IL-1-responsive IKK signalsome-dependent target genes including many known NF-kappaB targets such as serum amyloid A3, C3, interleukin (IL)-6, IL-11, IL-1 receptor antagonist, vascular endothelial growth factor, Ptx3, beta(2)-microglobulin, IL-1alpha, Mcp-1 and -3, RANTES (regulated on activation normal T cell expressed and secreted), Fas antigen, Jun-B, c-Fos, macrophage colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Only a small number of NF-kappaB-dependent target genes were preferentially dependent on IKKalpha or IKKbeta. Constitutive expression of a trans-dominant IkappaBalpha superrepressor (IkappaBalphaSR) in wild type MEFs confirmed that these signalsome-dependent target genes were also dependent on NF-kappaB. A subset of NF-kappaB target genes were IKK-dependent in the absence of exogenous stimuli, suggesting that the signalsome was also required to regulate basal levels of activated NF-kappaB in established MEFs. Overall, a sizable number of novel NF-kappaB/IKK-dependent genes were identified including Secreted Frizzled, cadherin 13, protocadherin 7, CCAAT/enhancer-binding protein-beta and -delta, osteoprotegerin, FOXC2 and FOXF2, BMP-2, p75 neurotrophin receptor, caspase-11, guanylate-binding proteins 1 and 2, ApoJ/clusterin, interferon (alpha and beta) receptor 2, decorin, osteoglycin, epiregulin, proliferins 2 and 3, stromal cell-derived factor, and cathepsins B, F, and Z. SOCS-3, a negative effector of STAT3 signaling, was found to be an NF-kappaB/IKK-induced gene, suggesting that IKK-mediated NF-kappaB activation can coordinately illicit negative effects on STAT signaling.
Collapse
Affiliation(s)
- Xiang LI
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Paul E. MASSA
- Genetics Graduate Program
- Biochemistry and Cell Biology Depts., SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | - Adedayo HANIDU
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Gregory W. PEET
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Patrick ARO
- Biochemistry and Cell Biology Depts., SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| | | | - Sheenah MISCHE
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Jun LI
- Department of Biology, Boehringer Ingelheim Pharmaceuticals, 900 Ridgebury Rd., P.O. Box 368, Ridgefield, CT 06877-0368
| | - Kenneth B. MARCU
- Genetics Graduate Program
- Microbiology
- Biochemistry and Cell Biology Depts., SUNY @ Stony Brook, Stony Brook, NY 11794-5215
| |
Collapse
|
35
|
Abstract
Interference with locally generated angiotensin II most likely underlies the beneficial effects of renin-angiotensin system blockers in cardiac disorders. Since renin is not synthesized in the heart, this enzyme must be sequestered from the circulation in order to allow angiotensin generation at cardiac tissue sites. This review addresses the various ways through which circulating (i.e., kidney-derived) renin may reach cardiac tissue sites, considering in particular the possibility that prorenin, the inactive precursor of renin, is involved in cardiac angiotensin generation, as the plasma concentrations of prorenin are tenfold higher than those of renin. Renin and prorenin diffuse into the cardiac interstitial space and bind to cardiac (pro)renin receptors/renin-binding proteins. One of these receptors is the mannose 6-phosphate/insulin-like growth factor II receptor. This receptor not only binds mannose 6-phosphate-containing ligands like renin and prorenin, it also internalizes these enzymes, and activates prorenin intracellularly. This process possibly represents (pro)renin clearance, since intracellular angiotensin generation could not be demonstrated following (pro)renin uptake by cardiomyocytes. Angiotensin II-mediated myocyte proliferation did occur when incubating cardiomyocytes with prorenin plus angiotensionogen. The effects of prorenin plus angiotensinogen were comparable to those of 100nmol/l angiotensin II, although the angiotensin II levels in the medium during exposure of the cells to prorenin plus angiotensinogen were <1nmol/l. This suggests that cardiac angiotensin II generation by circulating renin occurs predominantly on the cell surface. The presence of ACE and/or renin on the cell membrane, in the microenvironment of angiotensin receptors, would allow maximal efficiency of local angiotensin II generation, i.e., immediate binding of angiotensin II to its receptors with minimal loss into the extracellular space.
Collapse
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
| | | |
Collapse
|
36
|
Kim YM, Kim YM, Lee YM, Kim HS, Kim JD, Choi Y, Kim KW, Lee SY, Kwon YG. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J Biol Chem 2002; 277:6799-805. [PMID: 11741951 DOI: 10.1074/jbc.m109434200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is an essential step for many physiological and pathological processes. Tumor necrosis factor (TNF) superfamily cytokines are increasingly recognized as key modulators of angiogenesis. In this study, we tested whether TNF-related activation-induced cytokine (TRANCE), a new member of the TNF superfamily, possesses angiogenic activity in vitro and in vivo. TRANCE stimulated DNA synthesis, chemotactic motility, and capillary-like tube formation in primary cultured human umbilical vein endothelial cells (HUVECs). Both Matrigel plug assay in mice and chick chorioallantoic membrane assay revealed that TRANCE potently induced neovascularization in vivo. TRANCE had no effect on vascular endothelial growth factor (VEGF) expression in HUVECs and TRANCE-induced angiogenic activity was not suppressed by VEGF-neutralizing antibody, implying that TRANCE-induced angiogenesis may be the result of its direct action on endothelial cells. TRANCE evoked a time- and dose-dependent activation of the mitogen-activated protein kinases ERK1/2 and focal adhesion kinase p125(FAK) in HUVECs, which are closely linked to angiogenesis. These signaling events were blocked by the Src inhibitor PP1 or the phospholipase C (PLC) inhibitor. Furthermore, these inhibitors and the Ca(2+) chelator BAPTA-AM suppressed TRANCE-induced HUVEC migration. These results indicate that the angiogenic activity of TRANCE is mediated through the Src-PLC-Ca(2+) signaling cascade upon receptor engagement in endothelial cells, suggesting the role of TRANCE in neovessel formation under physiological and pathological conditions.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Saris JJ, van den Eijnden MMED, Lamers JMJ, Saxena PR, Schalekamp MADH, Danser AHJ. Prorenin-induced myocyte proliferation: no role for intracellular angiotensin II. Hypertension 2002; 39:573-7. [PMID: 11882610 DOI: 10.1161/hy0202.103002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiomyocytes bind, internalize, and activate prorenin, the inactive precursor of renin, via a mannose 6-phosphate receptor (M6PR)--dependent mechanism. M6PRs couple directly to G-proteins. To investigate whether prorenin binding to cardiomyocytes elicits a response, and if so, whether this response depends on angiotensin (Ang) II, we incubated neonatal rat cardiomyocytes with 2 nmol/L prorenin and/or 150 nmol/L angiotensinogen, with or without 10 mmol/L M6P, 1 micromol/L eprosartan, or 1 micromol/L PD123319 to block M6P and AT(1) and AT(2) receptors, respectively. Protein and DNA synthesis were studied by quantifying [(3)H]-leucine and [(3)H]-thymidine incorporation. For comparison, studies with 100 nmol/L Ang II were also performed. Neither prorenin alone, nor angiotensinogen alone, affected protein or DNA synthesis. Prorenin plus angiotensinogen increased [(3)H]-leucine incorporation (+21 +/- 5%, mean +/- SEM, P<0.01), [(3)H]-thymidine incorporation (+29 +/- 6%, P<0.01), and total cellular protein (+14 +/- 3%, P<0.01), whereas Ang II increased DNA synthesis only (+34 +/- 7%, P<0.01). Eprosartan, but not PD123319 or M6P, blocked the effects of prorenin plus angiotensinogen as well as the effects of Ang II. Medium Ang II levels during prorenin and angiotensinogen incubation were <1 nmol/L. In conclusion, prorenin binding to M6PRs on cardiomyocytes per se does not result in enhanced protein or DNA synthesis. However, through Ang II generation, prorenin is capable of inducing myocyte hypertrophy and proliferation. Because this generation occurs independently of M6PRs, it most likely depends on the catalytic activity of intact prorenin in the medium (because of temporal prosegment unfolding) rather than its intracellular activation. Taken together, our results do not support the concept of Ang II generation in cardiomyocytes following intracellular prorenin activation.
Collapse
Affiliation(s)
- Jasper J Saris
- Cardiovascular Research Institute COEUR, Department of Pharmacology, Erasmus University Medical Center Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The placenta is the first organ to form during mammalian embryogenesis. Problems in its formation and function underlie many aspects of early pregnancy loss and pregnancy complications in humans. Because the placenta is critical for survival, it is very sensitive to genetic disruption, as reflected by the ever-increasing list of targeted mouse mutations that cause placental defects. Recent studies of mouse mutants with disrupted placental development indicate that signalling interactions between the placental trophoblast and embryonic cells have a key role in placental morphogenesis. Furthering our understanding of mouse trophoblast development should provide novel insights into human placental function.
Collapse
Affiliation(s)
- J Rossant
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5.
| | | |
Collapse
|
39
|
Karihaloo A, O'Rourke DA, Nickel C, Spokes K, Cantley LG. Differential MAPK pathways utilized for HGF- and EGF-dependent renal epithelial morphogenesis. J Biol Chem 2001; 276:9166-73. [PMID: 11118451 DOI: 10.1074/jbc.m009963200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells derived from the inner medullary collecting duct undergo in vitro branching tubulogenesis to both the c-met receptor ligand hepatocyte growth factor (HGF) as well as epidermal growth factor (EGF) receptor ligands. In contrast, many other cultured renal epithelial cells respond in this manner only to HGF, suggesting that these two receptors may use independent signaling pathways during morphogenesis. We have therefore compared the signaling pathways for mIMCD-3 cell morphogenesis in response to EGF and HGF. Inhibition of the p42/44 mitogen-activated protein kinase (MAPK) pathway with the mitogen-activated protein kinase kinase (MKK1) inhibitor PD98059 (50 microm) markedly inhibits HGF-induced cell migration with only partial inhibition of EGF-induced cell motility. Similarly, HGF-dependent, but not EGF-dependent, branching morphogenesis was more greatly inhibited by the MKK1 inhibitor. Examination of EGF-stimulated cells demonstrated that extracellular-regulated kinase 5 (ERK5) was activated in response to EGF but not HGF, and that activation of ERK5 was only 60% inhibited by 50 microm PD98059. In contrast, the MKK inhibitor U0126 markedly inhibited both ERK1/2 and ERK5 activation and completely prevented HGF- and EGF-dependent migration and branching process formation. Expression of dominant negative ERK5 (dnBMK1) likewise inhibited EGF-dependent branching process formation, but did not affect HGF-dependent branching process formation. Our results indicate that activation of the ERK1/ERK2 signaling pathway is critical for HGF-induced cell motility/morphogenesis in mIMCD-3 cells, whereas ERK5 appears to be required for EGF-dependent morphogenesis.
Collapse
Affiliation(s)
- A Karihaloo
- School of Medicine, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Microchemotaxis chambers were used to investigate whether one aspect of ciliary neurotrophic factor CNTF's role as a lesion factor might be to promote the initial early recruitment of macrophages, which express the signal transducing receptor components, gp130 and LIFRbeta. CNTFRalpha alone, or in combination with CNTF, elicited concentration-dependent macrophage chemotaxis that was inhibited by a neutralizing gp 130 antibody. IL-6, but not LIF, similarly promoted gp 130-dependent macrophage chemotaxis. Stimulation of macrophages with either CNTFRalpha in combination with CNTF or IL-6 alone resulted in tyrosine phosphorylation of an approximately 130 kD protein, presumed to be gp130. Macrophage chemotaxis induced by the combination of CNTFRalpha and CNTF was inhibited in a dose-dependent fashion by wortmannin, LY294002 or PD98059, suggesting the involvement of the phosphoinositide-3 kinase and mitogen-activated protein kinase signaling proteins. As CNTFRalpha and CNTF are present, or have immediate access to nerves after injury, these data point to the possibility that this soluble receptor alone or in combination with its ligand may promote the initial early recruitment of macrophages in vivo.
Collapse
Affiliation(s)
- H Kobayashi
- Department of Pathology, School of Medicine, University of California, San Diego 92093-0612, USA
| | | |
Collapse
|
41
|
Tsuruta JK, Eddy EM, O'Brien DA. Insulin-like growth factor-II/cation-independent mannose 6-phosphate receptor mediates paracrine interactions during spermatogonial development. Biol Reprod 2000; 63:1006-13. [PMID: 10993821 DOI: 10.1095/biolreprod63.4.1006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-II/cation-independent mannose 6-phosphate (IGF-II/M6P) receptor transduces signals after binding IGF-II or M6P-bearing growth factors. We hypothesized that this receptor relays paracrine signals between Sertoli cells and spermatogonia in the basal compartment of the seminiferous epithelium. For these studies spermatogonia were isolated from 8-day-old mice with purity >95% and viability >85% after overnight culture. The IGF-II/M6P receptors were present on the surface of spermatogonia, as detected by indirect immunofluorescence. We determined that both IGF-II and M6P-glycoproteins in Sertoli cell conditioned medium (SCM) modulate gene expression in isolated spermatogonia. The IGF-II produced dose-dependent increases in both rRNA and c-fos mRNA. These effects were mediated specifically by IGF-II/M6P receptors, as shown by studies using IGF-II analogues that are specific agonists for either IGF-I or IGF-II receptors. The SCM treatment also induced dose-dependent increases in rRNA levels, and M6P competition showed that this response required interaction with IGF-II/M6P receptors. The M6P-glycoproteins isolated from SCM by IGF-II/M6P receptor affinity chromatography increased spermatogonial rRNA levels at much lower concentrations than required by SCM treatment, providing further evidence for the paracrine activity of Sertoli M6P-glycoproteins. These results demonstrate that Sertoli cells secrete paracrine factors that modulate spermatogonial gene expression after interacting with cell-surface IGF-II/M6P receptors.
Collapse
Affiliation(s)
- J K Tsuruta
- The Laboratories for Reproductive Biology, Departments of Pediatrics and Cell Biology & Anatomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
42
|
Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 2000; 18:304-8. [PMID: 10700146 DOI: 10.1038/73753] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A new microtubule-binding molecule, myoseverin, was identified from a library of 2,6,9-trisubstituted purines in a morphological differentiation screen. Myoseverin induces the reversible fission of multinucleated myotubes into mononucleated fragments. Myotube fission promotes DNA synthesis and cell proliferation after removal of the compound and transfer of the cells to fresh growth medium. Transcriptional profiling and biochemical analysis indicate that myoseverin alone does not reverse the biochemical differentiation process. Instead, myoseverin affects the expression of a variety of growth factor, immunomodulatory, extracellular matrix-remodeling, and stress response genes, consistent with the activation of pathways involved in wound healing and tissue regeneration.
Collapse
Affiliation(s)
- G R Rosania
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., San Diego, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Siddiqui RA, English D. Phosphatidylinositol 3'-kinase-mediated calcium mobilization regulates chemotaxis in phosphatidic acid-stimulated human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:161-73. [PMID: 10601705 DOI: 10.1016/s1388-1981(99)00172-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 3'-kinase (PI 3'-kinase) plays an important role in the migration of hepatocytes, endothelial cells and neoplastic cells to agonists which activate cellular tyrosine kinases. We examined the PI 3'-kinase-dependent chemotactic responses of neutrophilic leukocytes induced by phosphatidic acid (PA) in order to clarify mechanisms by which the enzyme potentially influences cellular migration. Western analysis of immunoprecipitates indicated that PA induced the tyrosine phosphorylation of three distinct proteins involved in functional activation which co-immunoprecipitated in PA-stimulated cells. These proteins were identified as lyn, syk and the 85 kDa regulatory subunit of PI 3'-kinase. Chemotactic responses to PA but not to several other neutrophil agonists were inhibited by the PI 3'-kinase inhibitors wortmannin and LY294002. Chemotactic inhibition resulted from upstream inhibition of calcium mobilization. Chelation of extracellular calcium by ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) did not affect the PA-induced chemotaxis, whereas chelation of intracellular calcium by 1, 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) attenuated this response. Thus, changes in intracellular Ca(2+) levels that can be effected by Ca(2+) mobilized from intracellular stores in the absence of Ca(2+) influx regulate PA-induced chemotaxis. Furthermore, PI 3'-kinase inhibition blunted the agonist-dependent generation of inositol 1,4,5-trisphosphate (IP(3)), suggesting that PI 3'-kinase exerted its effects on calcium mobilization from intracellular sources by mediating activation of phospholipase C (PLC) in PA-stimulated cells. Moreover, the PI 3'-kinase inhibitor LY294002 also inhibited phosphorylation of syk in PA-stimulated cells. We, therefore, propose that products of PI 3'-kinase confined to the inner leaflet of the plasma membrane play a role in activation of syk, calcium mobilization and induction of chemotactic migration.
Collapse
Affiliation(s)
- R A Siddiqui
- Experimental Cell Research Program, The Methodist Research Institute, MPC 1417, 1701 N. Senate Ave., Indianapolis, IN 46202, USA.
| | | |
Collapse
|
44
|
Lee OH, Bae SK, Bae MH, Lee YM, Moon EJ, Cha HJ, Kwon YG, Kim KW. Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br J Cancer 2000; 82:385-91. [PMID: 10646893 PMCID: PMC2363289 DOI: 10.1054/bjoc.1999.0931] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor II (IGF-II), highly expressed in a number of human tumours, has been recently known to promote neovascularization in vivo. Yet, the detailed mechanism by which IGF-II induces angiogenesis has not been well defined. In the present study, we explored an angiogenic activity of IGF-II in in vitro angiogenesis model. Human umbilical vein endothelial cells (HUVECs) treated with IGF-II rapidly aligned and formed a capillary-like network on Matrigel. In chemotaxis assay, IGF-II remarkably increased migration of HUVECs. A rapid and transient activation of p38 mitogen-activated protein kinase (p38 MAPK) and p125 focal adhesion kinase (p125FAK) phosphorylation was detected in HUVECs exposed to IGF-II. IGF-II also stimulated invasion of HUVECs through a polycarbonate filter coated with Matrigel. Quantitative gelatin-based zymography identified that matrix metalloproteinase-2 (MMP-2) activity generated from HUVECs was increased by IGF-II. This induction of MMP-2 activity was correlated with Northern blot analysis, showing in HUVECs that IGF-II increased the expression of MMP-2 mRNA, while it did not affect that of TIMP-2, a tissue inhibitor of MMP-2. These results provide the evidence that IGF-II directly induces angiogenesis by stimulating migration and morphological differentiation of endothelial cells, and suggest that IGF-II may play a crucial role in the progression of tumorigenesis by promoting the deleterious neovascularization.
Collapse
Affiliation(s)
- O H Lee
- Department of Molecular Biology, Pusan National University, Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee OH, Kim YM, Lee YM, Moon EJ, Lee DJ, Kim JH, Kim KW, Kwon YG. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem Biophys Res Commun 1999; 264:743-50. [PMID: 10544002 DOI: 10.1006/bbrc.1999.1586] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite abundantly stored in platelets and released upon platelet activation. Recently, S1P has been postulated for its potential roles in angiogenesis. In this study, we provided several lines of evidence showing that S1P has angiogenic activity. In vitro, S1P stimulated DNA synthesis and chemotactic motility of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, reaching a near maximum at 1 microM. S1P also significantly induced tube formation of HUVECs on Matrigel. Matrigel plug assay in mice revealed that S1P promotes angiogenesis in vivo. In addition, exposure of HUVECs to S1P led to rapid activation of extracellular signal-regulated kinases (ERKs) and p38 mitogen-activated protein kinase (p38 MAPK) in a pertussis toxin (PTX)-sensitive manner. Notably, HUVEC migration and tube formation in response to S1P were completely blocked by pretreatment with PTX. Further, the MEK inhibitor U0126 markedly inhibited S1P-induced tube formation but S1P-induced migration was not affected by inhibition of ERK and p38 MAPK. Taken together, these results indicate that S1P induces angiogenesis predominantly via G(i) protein-coupled receptors in endothelial cells and suggest that S1P may act as an important modulator of platelet-induced angiogenesis.
Collapse
Affiliation(s)
- O H Lee
- Institute of Environmental and Life Science, the Hallym Academy of Science, Hallym University, Chunchon, Kangwon-Do, 200-702, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Blanchard F, Duplomb L, Raher S, Vusio P, Hoflack B, Jacques Y, Godard A. Mannose 6-Phosphate/Insulin-like growth factor II receptor mediates internalization and degradation of leukemia inhibitory factor but not signal transduction. J Biol Chem 1999; 274:24685-93. [PMID: 10455136 DOI: 10.1074/jbc.274.35.24685] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a multifunctional cytokine belonging to the interleukin-6 subfamily of helical cytokines, all of which use the glycoprotein (gp) 130 subunit for signal transduction. The specific receptor for LIF, gp190, binds this cytokine with low affinity and is also required for signal transduction. We have recently reported that glycosylated LIF produced by transfected Chinese hamster ovary cells also binds to a lectin-like receptor, mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGFII-R) (Blanchard, F., Raher, S., Duplomb, L., Vusio, P., Pitard, V., Taupin, J. L., Moreau, J. F., Hoflack, B., Minvielle, S., Jacques, Y., and Godard, A. (1998) J. Biol. Chem. 273, 20886-20893). The present study shows that (i) mannose 6-phosphate-containing LIF is naturally produced by a number of normal and tumor cell lines; (ii) other cytokines in the interleukin-6 family do not bind to Man-6-P/IGFII-R; and (iii) another unrelated cytokine, macrophage-colony-stimulating factor, is also able to bind to Man-6-P/IGFII-R in a mannose 6-phosphate-sensitive manner. No functional effects or signal transductions mediated by this lectin-like receptor were observed in various biological assays after LIF binding, and mannose 6-phosphate-containing LIF was as active as non-glycosylated LIF. However, mannose 6-phosphate-sensitive LIF binding resulted in rapid internalization and degradation of the cytokine on numerous cell lines, which suggests that Man-6-P/IGFII-R plays an important role in regulating the amounts of LIF available in vivo.
Collapse
Affiliation(s)
- F Blanchard
- Groupe de Recherche Cytokines/Récepteurs/Transduction, Unité INSERM 463, Institut de Biologie, 9 Quai Moncousu, 44035 Nantes Cedex 01, France.
| | | | | | | | | | | | | |
Collapse
|
47
|
Blanchard F, Raher S, Duplomb L, Vusio P, Pitard V, Taupin JL, Moreau JF, Hoflack B, Minvielle S, Jacques Y, Godard A. The mannose 6-phosphate/insulin-like growth factor II receptor is a nanomolar affinity receptor for glycosylated human leukemia inhibitory factor. J Biol Chem 1998; 273:20886-93. [PMID: 9694835 DOI: 10.1074/jbc.273.33.20886] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Comparison of the binding properties of non-glycosylated, glycosylated human leukemia inhibitory factor (LIF) and monoclonal antibodies (mAbs) directed at gp190/LIF-receptor beta subunit showed that most of the low affinity (nanomolar) receptors expressed by a variety of cell lines are not due to gp190. These receptors bind glycosylated LIF produced in Chinese hamster ovary cells (CHO LIF) (Kd = 6.9 nM) but not Escherichia coli-derived LIF or CHO LIF treated with endoglycosidase F. CHO LIF binding to these receptors is neither affected by anti-gp190 mAbs nor by anti-gp130 mAbs and is specifically inhibited by low concentrations of mannose 6-phosphate (Man-6-P) (IC50 = 40 microM), suggesting that they could be related to Man-6-P receptors. The identity of this LIF binding component with the Man-6-P/insulin-like growth factor-II receptor (Man-6-P/IGFII-R) was supported by several findings. (i) It has a molecular mass very similar to that of the Man-6-P/IGFII-R (270 kDa); (ii) the complex of LIF cross-linked to this receptor is immunoprecipitated by a polyclonal anti-Man-6-P/IGFII-R antibody; (iii) this antibody inhibits LIF and IGFII binding to the receptor with comparable efficiencies; (iv) soluble Man-6-P/IGFII-R purified from serum binds glycosylated LIF (Kd = 4.3 nM) but not E. coli LIF. The potential role of Man-6-P/IGFII-R in LIF processing and biological activity is discussed.
Collapse
Affiliation(s)
- F Blanchard
- Groupe de Recherche Cytokines/Récepteurs/Transduction, Unité INSERM 463, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kobayashi T, Stang E, Fang KS, de Moerloose P, Parton RG, Gruenberg J. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 1998; 392:193-7. [PMID: 9515966 DOI: 10.1038/32440] [Citation(s) in RCA: 635] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Little is known about the structure and function of membrane domains in the vacuolar apparatus of animal cells. A unique feature of late endosomes, which are part of the pathway that leads to lysosomes, is that they contain a complex system of poorly characterized internal membranes in their lumen. These endosomes are therefore known as multivesicular or multilamellar organelles. Some proteins distribute preferentially within these internal membranes, whereas others are exclusively localized to the organelle's limiting membrane. The composition and function of this membrane system are poorly understood. Here we show that these internal membranes contain large amounts of a unique lipid, and thus form specialized domains within endosomes. These specialized domains are involved in sorting the multifunctional receptor for insulin-like growth factor 2 and ligands bearing mannose-6-phosphate, in particular lysosomal enzymes. We also show that this unique lipid is a specific antigen for human antibodies associated with the antiphospholipid syndrome. These antibodies may act intracellularly by altering the protein-sorting functions of endosomes.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Biochemistry, Sciences II, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|