1
|
Stone KP, Wanders D, Calderon LF, Spurgin SB, Scherer PE, Gettys TW. Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring) 2015; 23:1836-44. [PMID: 26237535 PMCID: PMC4551572 DOI: 10.1002/oby.21177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Dietary methionine restriction (MR) reduces adiposity and hepatic lipids and increases overall insulin sensitivity in part by reducing lipogenic gene expression in liver, inducing browning of white adipose tissue (WAT), and enhancing the lipogenic and oxidative capacity of the remodeled WAT. METHODS Ob/ob mice have compromised β-adrenergic receptor expression in adipose tissue and were used to test whether MR could ameliorate obesity, insulin resistance, and disordered lipid metabolism. RESULTS In contrast to responses in wild-type mice, MR failed to slow accumulation of adiposity, increase lipogenic and thermogenic gene expression in adipose tissue, reduce serum insulin, or increase serum adiponectin in ob/ob mice. However, MR produced comparable reductions in hepatic lipids and lipogenic gene expression in both genotypes. In addition, MR was fully effective in increasing insulin sensitivity in adiponectin(-/-) mice. CONCLUSIONS These findings show that diet-induced changes in hepatic lipid metabolism are independent of weight loss and remodeling of WAT and are not required for insulin sensitization. In contrast, the failure of ob/ob mice to mount a normal thermogenic response to MR suggests that the compromised responsiveness of adipose tissue to SNS input is an important component of the inability of the diet to correct their obesity and insulin resistance.
Collapse
Affiliation(s)
- Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling; Pennington Biomedical Research Center; Baton Rouge, LA, USA
| | - Desiree Wanders
- Laboratory of Nutrient Sensing and Adipocyte Signaling; Pennington Biomedical Research Center; Baton Rouge, LA, USA
| | - Lucie F. Calderon
- Laboratory of Nutrient Sensing and Adipocyte Signaling; Pennington Biomedical Research Center; Baton Rouge, LA, USA
| | - Stephen B. Spurgin
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, The University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, The University of Texas Southwestern Medical Center; Dallas, TX, USA
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling; Pennington Biomedical Research Center; Baton Rouge, LA, USA
| |
Collapse
|
2
|
Wang ZH, Li YF, Guo YQ. β3-Adrenoceptor activation attenuates atherosclerotic plaque formation in ApoE(-/-) mice through lowering blood lipids and glucose. Acta Pharmacol Sin 2013; 34:1156-63. [PMID: 23892270 DOI: 10.1038/aps.2013.70] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
AIM To examine the effects of β3-adrenoceptor (β3-AR) activation on atherosclerotic plaque development in ApoE(-/-) mice. METHODS Thirty six week-old male ApoE(-/-) mice on a high-fat diet were treated with atorvastatin (10 mg·kg(-1)·d(-1), po), BRL37344 (β3-AR agonist, 1.65 or 3.30 μg/kg, ip, twice a week) or SR52390A (β3-AR antagonist, 50 μg/kg, ip, twice a week) for 12 weeks. Wild-type C57BL/6J mice receiving a normal diet were taken as healthy controls. At the end of the treatments, serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), non-high density lipoprotein cholesterol (nHDL-C), glucose and insulin were measured. The thoracic aortas were dissected out, the area of atherosclerotic plaques and extent of fibrosis in the plaques were examined using HE and Masson's trichome staining, respectively. RESULTS Compared to wild-type mice, ApoE(-/-) mice fed on a high-fat diet exhibited prominent hyperlipidemia and insulin resistance, associated with large area of atherosclerotic plaques and great extent of fibrosis in aortas. Atorvastatin significantly decreased the serum levels of TC and nHDL-C, and reduced the plaque area and collagen content in aortas. BRL37344 significantly decreased the serum levels of TG, TC, nHDL-C, glucose and insulin, and increased HDL-C and the insulin sensitivity, and dose-dependently reduced the plaque area and collagen content in aortas. SR52390A treatment did not affect any parameters studied. CONCLUSION The β3-AR agonist impedes the progression of atherosclerosis in ApoE(-/-) mice, through improvement of the lipid and glucose profiles.
Collapse
|
3
|
Lenard NR, Prpic V, Adamson AW, Rogers RC, Gettys TW. Differential coupling of beta3A- and beta3B-adrenergic receptors to endogenous and chimeric Galphas and Galphai. Am J Physiol Endocrinol Metab 2006; 291:E704-15. [PMID: 16705062 DOI: 10.1152/ajpendo.00048.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chimeric G proteins made by replacing the COOH-terminal heptapeptide of G(alpha)q with the COOH-terminal heptapeptide of G(alpha)s or G(alpha)i were used to assess the relative coupling of beta(3)-adrenergic receptor (beta(3)-AR) splice variants (beta(3A) and beta(3B)) to G(alpha)s and G(alpha)i. The G(alpha)q/s and G(alpha)q/i chimeras transformed the response to receptor activation from regulation of adenylyl cyclase to mobilization of intracellular calcium (Ca(2+)(i)). Complementary high-throughput and single-cell approaches were used to evaluate agonist-induced coupling of the receptor to the G protein chimeras. In cells stably transformed with rat beta(3)-AR, transfected with the G protein chimeras, and evaluated using a scanning fluorometer, beta(3)-AR-induced coupling to G(alpha)q/s produced a rapid eightfold increase in Ca(2+)(i) followed by a slow decay to levels 25% above baseline. G(alpha)q/i also linked rat beta(3)-AR to mobilization of Ca(2+)(i) in a similar time- and agonist-dependent manner, but the net 2.5-fold increase in Ca(2+)(i) was only 30% of the response obtained with G(alpha)q/s. Activation of the rat beta(3)-AR also increased GTP binding to endogenous G(alpha)i threefold in membranes from CHO cells stably transformed with the receptor. A complementary single-cell imaging approach was used to assess the relative coupling of mouse beta(3A)- and beta(3B)-AR to G(alpha)i under conditions established to produce equivalent agonist-dependent coupling of the receptor splice variants to G(alpha)q/s and to increases in intracellular cAMP through endogenous G(alpha)s. The beta(3A)- and beta(3B)-AR coupled equivalently to G(alpha)q/i, but the temporal patterns of Ca(2+)(i) mobilization indicated that coupling was significantly less efficient than coupling to G(alpha)q/s. Collectively, these findings indicate less efficient but equivalent coupling of beta(3A)- and beta(3B)-AR to G(alpha)i vs. G(alpha)s and suggest that differential expression of the splice variants would not produce local differences in signaling networks linked to beta(3)-AR activation.
Collapse
Affiliation(s)
- Natalie R Lenard
- Laboratories of Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
4
|
Zhang Y, Kilroy GE, Henagan TM, Prpic-Uhing V, Richards WG, Bannon AW, Mynatt RL, Gettys TW. Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J 2006; 19:1482-91. [PMID: 16126916 DOI: 10.1096/fj.05-3851com] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse lines with targeted disruption of the cocaine amphetamine-related transcript (CART), melanocortin receptor 3 (MCR3), or melanocortin receptor 4 (MCR4) were used to assess the role of each component in mediating the anorectic and metabolic effects of leptin, and in regulating the partitioning of nutrient energy between fat and protein deposition. Leptin was administered over a 3 day period using either intraperitoneal or intracerebroventricular routes of injection. The absence of MCR4 blocked leptin's ability to increase UCP1 mRNA in both brown and white adipose tissue, but not its ability to reduce food consumption. In contrast, deletion of MCR3 compromised leptin's ability to reduce food consumption, but not its ability to reduce fat deposition or increase UCP1 expression in adipose tissue. Leptin-dependent effects on food consumption and adipocyte gene expression were unaffected by the absence of CART. Repeated measures of body composition over time indicate that the absence of either MCR3 or MCR4, but not CART, increased lipid deposition and produced comparable degrees of adiposity in both lines. Moreover, modest increases in fat content of the diet (4 to 11%) accentuated fat deposition and produced a rapid and comparable 10-12% increase in % body fat in both genotypes. The results indicate that nutrient partitioning, as well as the anorectic and metabolic responses to leptin, are dependent on integrated but separable inputs from the melanocortin 3 and 4 receptor subtypes.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Body Composition/drug effects
- Carrier Proteins/genetics
- Eating/drug effects
- Energy Metabolism/drug effects
- Gene Expression Regulation/drug effects
- Ion Channels
- Leptin/pharmacology
- Male
- Membrane Proteins/genetics
- Mice
- Mitochondrial Proteins
- Nerve Tissue Proteins/physiology
- RNA, Messenger/analysis
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/physiology
- Receptors, Leptin
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Yubin Zhang
- Division of Experimental Obesity, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bowers RR, Gettys TW, Prpic V, Harris RBS, Bartness TJ. Short photoperiod exposure increases adipocyte sensitivity to noradrenergic stimulation in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1354-60. [PMID: 15821285 DOI: 10.1152/ajpregu.00792.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Siberian hamsters (Phodopus sungorus) exhibit a naturally occurring, reversible seasonal obesity with body fat peaking in long "summerlike" days (LDs) and reaching a nadir in short "winterlike" days (SDs). These SD-induced decreases in adiposity are mediated largely via sympathetic nervous system (SNS) innervation of white adipose tissue (WAT), as indicated by increased WAT norepinephrine (NE) turnover. We examined whether SDs also increase sensitivity to NE-stimulated lipolysis. This was accomplished by measuring NE- and beta3-adrenoceptor (beta3-AR) agonist (BRL-37344)-induced lipolysis (glycerol release) as well as NE-induced cAMP accumulation by inguinal, epididymal, and retroperitoneal WAT (IWAT, EWAT, and RWAT) in isolated adipocytes of LD- and SD-housed hamsters. SDs increased potency/efficacy of NE-triggered lipolysis in a temporally and fat pad-specific manner. Thus when WAT pad mass decreased most rapidly (5 wk of SDs), potency (sensitivity/EC50) and efficacy (maximal response asymptote) of NE-stimulated lipolysis were increased for all WAT pads and also at 10 wk for IWAT compared with their LD counterparts. SD enhancement of lipolysis was similar for NE and BRL-37344 in IWAT adipocytes. These results, coupled with our previous demonstration that SDs upregulate WAT beta3-AR mRNA expression, suggest that increased beta3-ARs mediated the SD-induced increased NE sensitivity. NE-stimulated adipocyte accumulation of cAMP was greater after 5 wk of SDs for IWAT and EWAT and after 10 wk of SDs for IWAT compared with LDs, with no photoperiod effect for RWAT. Therefore, the SD-induced increase in SNS drive to WAT and increased sensitivity to this drive may work together to increase lipolysis in SDs.
Collapse
Affiliation(s)
- Robert R Bowers
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, USA
| | | | | | | | | |
Collapse
|
6
|
Jeong KH, Sakihara S, Widmaier EP, Majzoub JA. Impaired leptin expression and abnormal response to fasting in corticotropin-releasing hormone-deficient mice. Endocrinology 2004; 145:3174-81. [PMID: 15033910 DOI: 10.1210/en.2003-1558] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin has been postulated to comprise part of an adipostat, whereby during states of excessive energy storage, elevated levels of the hormone prevent further weight gain by inhibiting appetite. A physiological role for leptin in this regard remains unclear because the presence of excessive food, and therefore the need to restrain overeating under natural conditions, is doubtful. We have previously shown that CRH-deficient (Crh(-/-)) mice have glucocorticoid insufficiency and lack the fasting-induced increase in glucocorticoid, a hormone important in stimulating leptin synthesis and secretion. We hypothesized that these mice might have low circulating leptin. Indeed, Crh(-/-) mice exhibited no diurnal variation of leptin, whereas normal littermates showed a clear rhythm, and their leptin levels were lower than their counterparts. A continuous peripheral CRH infusion to Crh(-/-) mice not only restored corticosterone levels, but it also increased leptin expression to normal. Surprisingly, 36 h of fasting elevated leptin levels in Crh(-/-) mice, rather than falling as in normal mice. This abnormal leptin change during fasting in Crh(-/-) mice was corrected by corticosterone replacement. Furthermore, Crh(-/-) mice lost less body weight during 24 h of fasting and ate less food during refeeding than normal littermates. Taken together, we conclude that glucocorticoid insufficiency in Crh(-/-) mice results in impaired leptin production as well as an abnormal increase in leptin during fasting, and propose that the fast-induced physiological reduction in leptin may play an important role to stimulate food intake during the recovery from fasting.
Collapse
Affiliation(s)
- Kyeong-Hoon Jeong
- Division of Endocrinology, Children's Hospital, Harvard Medical School, Enders 416, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
7
|
Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW. Differential mechanisms and development of leptin resistance in A/J versus C57BL/6J mice during diet-induced obesity. Endocrinology 2003; 144:1155-63. [PMID: 12639896 DOI: 10.1210/en.2002-220835] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Changes in the biological efficacy of leptin were evaluated in obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice at weaning and after consuming a high-fat (HF) diet for 4 and 8 wk. There was no evidence of leptin resistance in either strain at the start of the study, but after 4 and 8 wk on the HF diet, C57BL/6J mice became unresponsive to ip leptin. C57BL/6J mice responded to intracerebroventricular leptin at these time points but developed peripheral resistance to sympathetic stimulation of retroperitoneal white adipose tissue. In contrast, intracerebroventricular leptin was fully effective in A/J mice, reproducing the complete profile of responses observed in weanling mice. A/J mice were also partially responsive to ip leptin at both time points, increasing uncoupling protein 1 mRNA expression in brown adipose tissue and decreasing leptin mRNA in white adipose tissue. The findings indicate that retention of leptin responsiveness is an important component of the ability of A/J mice to mount a robust adaptive thermogenic response and resist diet-induced obesity.
Collapse
Affiliation(s)
- Veronica Prpic
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | |
Collapse
|
8
|
Prpic V, Watson PM, Frampton IC, Sabol MA, Jezek GE, Gettys TW. Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet-induced obesity. J Nutr 2002; 132:3325-32. [PMID: 12421846 DOI: 10.1093/jn/132.11.3325] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity-prone (AKR/J) and obesity-resistant (SWR/J) mice were weaned onto low (LF) or high fat (HF) diets to identify adaptive changes in adipocyte gene expression that are associated with differences between the strains in fat deposition. Food consumption was monitored at weekly intervals and all mice were evaluated after consuming their respective diets for 4 wk for analysis of mRNA levels of selected metabolic genes. Despite similar food consumption, body weight and fat deposition were significantly greater in AKR/J than in SWR/J mice, and this difference was greatly accentuated by the HF diet. The HF diet produced distinct differences between strains in gene expression patterns among fat depots. In AKR/J mice, UCP1 mRNA was decreased 10-fold in interscapular brown adipose tissue (BAT) and four- to fivefold in retroperitoneal and inguinal white adipose tissue (WAT). The HF diet also decreased PGC-1 and beta(3)-adrenergic receptor mRNA by two- and ninefold in BAT from AKR/J mice. In contrast, the HF diet either increased uncoupling protein (UCP)1 in BAT or had no effect on expression of these genes in adipose tissues from SWR/J mice. UCP2 mRNA was fourfold higher in WAT from AKR/J compared with SWR/J mice and increased by an additional twofold in WAT from AKR/J mice fed the HF diet. UCP2 was unaffected by diet in SWR/J mice. These studies show that the diet-induced obesity of AKR/J mice is characterized by increased metabolic efficiency and is associated with changes in adipocyte gene expression that limit the adaptive thermogenic response to increased energy density.
Collapse
Affiliation(s)
- Veronica Prpic
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
9
|
Commins SP, Watson PM, Levin N, Beiler RJ, Gettys TW. Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. J Biol Chem 2000; 275:33059-67. [PMID: 10938091 DOI: 10.1074/jbc.m006328200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three known subtypes of beta-adrenoreceptors (beta(1)-AR, beta(2)-AR, and beta(3)-AR) are differentially expressed in brown and white adipose tissue and mediate peripheral responses to central modulation of sympathetic outflow by leptin. To assess the relative roles of the beta-AR subtypes in mediating leptin's effects on adipocyte gene expression, mice with a targeted disruption of the beta(3)-adrenoreceptor gene (beta(3)-AR KO) were treated with vehicle or the beta(1)/beta(2)-AR selective antagonist, propranolol (20 microgram/g body weight/day) prior to intracerebroventricular (ICV) injections of leptin (0.1 microgram/g body weight/day). Leptin produced a 3-fold increase in UCP1 mRNA in brown adipose tissue of wild type (FVB/NJ) and beta(3)-AR KO mice. The response was unaltered by propranolol in wild type mice, but was completely blocked by this antagonist in beta(3)-AR KO mice. In contrast, ICV leptin had no effect on leptin mRNA in either epididymal or retroperitoneal white adipose tissue (WAT) from beta(3)-AR KOs. Moreover, propranolol did not block the ability of exogenous leptin to reduce leptin mRNA in either WAT depot site of wild type mice. These results demonstrate that the beta(3)-AR is required for leptin-mediated regulation of ob mRNA expression in WAT, but is interchangeable with the beta(1)/beta(2)-ARs in mediating leptin's effect on UCP1 mRNA expression in brown adipose tissue.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Adipose Tissue, Brown/metabolism
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Carrier Proteins/genetics
- Cell Membrane/drug effects
- Cell Membrane/physiology
- Cerebral Ventricles/drug effects
- Cerebral Ventricles/physiology
- Gene Expression Regulation/physiology
- Imidazoles/pharmacology
- Injections, Intraventricular
- Ion Channels
- Leptin/administration & dosage
- Leptin/genetics
- Leptin/pharmacology
- Male
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Mice, Knockout
- Mitochondrial Proteins
- Propanolamines/pharmacology
- Propranolol/pharmacology
- RNA, Messenger/genetics
- Receptors, Adrenergic, beta-3/deficiency
- Receptors, Adrenergic, beta-3/genetics
- Receptors, Adrenergic, beta-3/physiology
- Receptors, Leptin
- Transcription, Genetic
- Uncoupling Protein 1
Collapse
Affiliation(s)
- S P Commins
- Departments of Medicine and Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
10
|
Watson PM, Commins SP, Beiler RJ, Hatcher HC, Gettys TW. Differential regulation of leptin expression and function in A/J vs. C57BL/6J mice during diet-induced obesity. Am J Physiol Endocrinol Metab 2000; 279:E356-65. [PMID: 10913036 DOI: 10.1152/ajpendo.2000.279.2.e356] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity-resistant (A/J) and obesity-prone (C57BL/6J) mice were weaned onto low-fat (LF) or high-fat (HF) diets and studied after 2, 10, and 16 wk. Despite consuming the same amount of food, A/J mice on the HF diet deposited less carcass lipid and gained less weight than C57BL/6J mice over the course of the study. Leptin mRNA was increased in white adipose tissue (WAT) in both strains on the HF diet but to significantly higher levels in A/J compared with C57BL/6J mice. Uncoupling protein 1 (UCP1) and UCP2 mRNA were induced by the HF diet in brown adipose tissue (BAT) and WAT of A/J mice, respectively, but not in C57BL/6J mice. UCP1 mRNA was also significantly higher in retroperitoneal WAT of A/J compared with C57BL/6J mice. The ability of A/J mice to resist diet-induced obesity is associated with a strain-specific increase in leptin, UCP1, and UCP2 expression in adipose tissue. The findings indicate that the HF diet does not compromise leptin-dependent regulation of adipocyte gene expression in A/J mice and suggest that maintenance of leptin responsiveness confers resistance to diet-induced obesity.
Collapse
Affiliation(s)
- P M Watson
- Departments of Medicine and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
11
|
Hutchinson DS, Evans BA, Summers RJ. beta(3)-adrenoceptor regulation and relaxation responses in mouse ileum. Br J Pharmacol 2000; 129:1251-9. [PMID: 10725275 PMCID: PMC1571941 DOI: 10.1038/sj.bjp.0703160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. This study examines the relationship between beta(3a)- and beta(3b)-adrenoceptor (AR) mRNA levels, beta(3)-AR binding and changes in ileum responses in mice treated with the beta(3)-AR agonist (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]-propyl]1, 3-benzodioxole-2,2-dicarboxylate (CL316243), or the beta(3)-AR antagonist 3-(2-ethylphenoxy)-1-[(1S)-1,2,3, 4-tetrahydronapth-1-ylamino]-2S-2-propanol oxalate (SR59230A), or dexamethasone or forskolin. 2. Levels of beta(3a)- and beta(3b)-AR mRNA and the maximum number of binding sites (B(max)) in ileum were unaffected following CL316243 treatment, although responses to CL316243 were reduced by 50% following 4 and 24 h treatment, indicating another desensitization mechanism not involving changes in receptor expression or number. beta(3a)-AR mRNA levels were reduced in both brown (BAT) and white adipose tissue (WAT) but beta(3b)-AR mRNA levels were significantly reduced only in WAT. Levels of beta(3a)- and beta(3b)-mRNA returned towards normal with continued treatment. 3. SR59230A treatment markedly increased beta(3)-AR mRN levels in ileum and BAT but not in WAT. The increase in beta(3)-AR mRNA levels in ileum was associated with increased B(max) levels in binding analysis and increased responses to CL316243, suggesting these as the cause of sensitization. 4. Treatment with forskolin (4 h) or dexamethasone (4 h) significantly reduced beta(3a)-AR mRNA levels in BAT and WAT but did not alter levels in ileum. Responses to CL316243 in ileum were unaffected by either treatment. 5. In summary, the beta(3)-AR is differently regulated in adipose tissue and ileum: Treatment with SR59230A increased beta(3)-AR number, mRNA and responsiveness in ileum, whereas treatment with CL316243 reduced responses without affecting beta(3)-AR number or mRNA levels.
Collapse
MESH Headings
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Colforsin/pharmacology
- Dexamethasone/pharmacology
- Dioxoles/pharmacology
- Ileum/drug effects
- Ileum/metabolism
- Ileum/physiology
- In Vitro Techniques
- Male
- Mice
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- Propanolamines/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Receptors, Adrenergic, beta-3
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Dana S Hutchinson
- Molecular Pharmacology Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Molecular Pharmacology Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Roger J Summers
- Molecular Pharmacology Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Author for correspondence:
| |
Collapse
|
12
|
Commins SP, Watson PM, Padgett MA, Dudley A, Argyropoulos G, Gettys TW. Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology 1999; 140:292-300. [PMID: 9886838 DOI: 10.1210/endo.140.1.6399] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deposition of excess body fat occurs when energy intake chronically exceeds energy expenditure. In ob/ob mice, the absence of leptin affects both components of the energy balance equation, and the mice become morbidly obese after weaning. Treatment of ob/ob mice with exogenous leptin reduces body weight by decreasing food intake and stimulating energy utilization, but even when saline- and leptin-injected ob/ob mice are pair-fed, mice receiving leptin lose significantly more weight. Therefore, the purpose of the present study was to test the hypotheses that uncoupling protein-1 (UCP1) expression is reduced in adipose tissue from ob/ob mice and is restored by treatment with exogenous leptin. Lean and ob/ob mice (5-6 weeks old) were housed at 23 C and treated with leptin (20 microg/g BW x day) for 3 days before they were killed. Compared with levels in lean littermates, UCP1 messenger RNA (mRNA) and protein levels were lower in brown adipose tissue (BAT) and retroperitoneal white adipose tissue (WAT) from ob/ob mice. Treatment of ob/ob mice with leptin reduced body weight and produced a 4- to 5-fold increase in UCP1 mRNA levels in both interscapular BAT and retroperitoneal WAT. The increases in UCP1 mRNA were accompanied by comparable increases in UCP1 protein in mitochondrial preparations from each tissue. Given that the sole known function of UCP1 is to uncouple oxidative phosphorylation, the present results are consistent with the conclusion that leptin stimulates energy utilization in ob/ob mice by increasing thermogenic activity and capacity (UCP1). In addition, the present results suggest that decreased UCP1 expression in BAT and WAT of ob/ob mice is in part responsible for their increased metabolic efficiency and propensity to become obese.
Collapse
Affiliation(s)
- S P Commins
- Department of Medicine, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | |
Collapse
|