1
|
Seasonal Variation in the Brain μ-Opioid Receptor Availability. J Neurosci 2021; 41:1265-1273. [PMID: 33361461 PMCID: PMC7888218 DOI: 10.1523/jneurosci.2380-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Seasonal rhythms influence mood and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there is seasonal variation in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socioemotional brain circuits, where MOR availability peaked during spring. In rats, MOR availabilities in the brain neocortex, thalamus, and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone levels. We conclude that cerebral MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.SIGNIFICANCE STATEMENT Seasonal rhythms influence emotion and sociability. The central μ-opioid receptor (MOR) system modulates numerous seasonally varying socioemotional functions, but its seasonal variation remains elusive. Here we used positron emission tomography to show that MOR levels in both human and rat brains show daylength-dependent seasonal variation. The highest MOR availability was observed at intermediate daylengths. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.
Collapse
|
2
|
Ciechanowska M, Łapot M, Paruszewska E, Radawiec W, Przekop F. The influence of dopaminergic system inhibition on biosynthesis of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in anoestrous sheep; hierarchical role of kisspeptin and RFamide-related peptide-3 (RFRP-3). Reprod Fertil Dev 2018; 30:672-680. [DOI: 10.1071/rd16309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/14/2017] [Indexed: 11/23/2022] Open
Abstract
This study aimed to explain how prolonged inhibition of central dopaminergic activity affects the cellular processes governing gonadotrophin-releasing hormone (GnRH) and LH secretion in anoestrous sheep. For this purpose, the study included two experimental approaches: first, we investigated the effect of infusion of sulpiride, a dopaminergic D2 receptor antagonist (D2R), on GnRH and GnRH receptor (GnRHR) biosynthesis in the hypothalamus and on GnRHR in the anterior pituitary using an immunoassay. This analysis was supplemented by analysis of plasma LH levels by radioimmunoassay. Second, we used real-time polymerase chain reaction to analyse the influence of sulpiride on the levels of kisspeptin (Kiss1) mRNA in the preoptic area and ventromedial hypothalamus including arcuate nucleus (VMH/ARC), and RFamide-related peptide-3 (RFRP-3) mRNA in the paraventricular nucleus (PVN) and dorsomedial hypothalamic nucleus. Sulpiride significantly increased plasma LH concentration and the levels of GnRH and GnRHR in the hypothalamic–pituitary unit. The abolition of dopaminergic activity resulted in a significant increase in transcript level of Kiss1 in VMH/ARC and a decrease of RFRP-3 in PVN. The study demonstrates that dopaminergic neurotransmission through D2R is involved in the regulatory pathways of GnRH and GnRHR biosynthesis in the hypothalamic–pituitary unit of anoestrous sheep, conceivably via mechanisms in which Kiss1 and RFRP-3 participate.
Collapse
|
3
|
Ciechanowska M, Łapot M, Mateusiak K, Paruszewska E, Malewski T, Przekop F. Biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in hypothalamic–pituitary unit of anoestrous and cyclic ewes. Can J Physiol Pharmacol 2017; 95:178-184. [DOI: 10.1139/cjpp-2016-0137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was performed to explain how the molecular processes governing the biosynthesis of gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) in the hypothalamic–pituitary unit are reflected by luteinizing hormone (LH) secretion in sheep during anoestrous period and during luteal and follicular phases of the oestrous cycle. Using an enzyme-linked immunosorbent assay (ELISA), we analyzed the levels of GnRH and GnRHR in preoptic area (POA), anterior (AH) and ventromedial hypothalamus (VM), stalk–median eminence (SME), and GnRHR in the anterior pituitary gland (AP). Radioimmunoassay has also been used to define changes in plasma LH concentrations. The study provides evidence that the levels of GnRH in the whole hypothalamus of anoestrous ewes were lower than that in sheep during the follicular phase of the oestrous cycle (POA: p < 0.001, AH: p < 0.001, VM: p < 0.01, SME: p < 0.001) and not always than in luteal phase animals (POA: p < 0.05, SME: p < 0.05). It has also been demonstrated that the GnRHR amount in the hypothalamus–anterior pituitary unit, as well as LH level, in the blood in anoestrous ewes were significantly lower than those detected in animals of both cyclic groups. Our data suggest that decrease in LH secretion during the long photoperiod in sheep may be due to low translational activity of genes encoding both GnRH and GnRHR.
Collapse
Affiliation(s)
- M.O. Ciechanowska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - M. Łapot
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - K. Mateusiak
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - E. Paruszewska
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - T. Malewski
- The Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland
| | - F. Przekop
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Department of Neuroendocrinology, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
4
|
Tortonese DJ. Intrapituitary mechanisms underlying the control of fertility: key players in seasonal breeding. Domest Anim Endocrinol 2016; 56 Suppl:S191-203. [PMID: 27345316 PMCID: PMC5380791 DOI: 10.1016/j.domaniend.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that, in conjunction with dynamic changes in the secretion of GnRH from the hypothalamus, paracrine interactions within the pituitary gland play an important role in the regulation of fertility during the annual reproductive cycle. Morphological studies have provided evidence for close associations between gonadotropes and lactotropes and gap junction coupling between these cells in a variety of species. The physiological significance of this cellular interaction was supported by subsequent studies revealing the expression of prolactin receptors in both the pars distalis and pars tuberalis regions of the pituitary. This cellular interaction is critical for adequate gonadotropin output because, in the presence of dopamine, prolactin can negatively regulate the LH response to GnRH. Receptor signaling studies showed that signal convergence at the level of protein kinase C and phospholipase C within the gonadotrope underlies the resulting inhibition of LH secretion. Although this is a conserved mechanism present in all species studied so far, in seasonal breeders such as the sheep and the horse, this mechanism is regulated by photoperiod, as it is only apparent during the long days of spring and summer. At this time of year, the nonbreeding season of the sheep coincides with the breeding season of the horse, indicating that this inhibitory system plays different roles in short- and long-day breeders. Although in the sheep, it contributes to the complete suppression of the reproductive axis, in the horse, it is likely to participate in the fine-tuning of gonadotropin output by preventing gonadotrope desensitization. The photoperiodic regulation of this inhibitory mechanism appears to rely on alterations in the folliculostellate cell population. Indeed, electron microscopic studies have recently shown increased folliculostellate cell area together with upregulation of their adherens junctions during the spring and summer. The association between gonadotropes and lactotropes could also underlie an interaction between the gonadotropic and prolactin axes in the opposite direction. In support of this alternative, a series of studies have demonstrated that GnRH stimulates prolactin secretion in sheep through a mechanism that does not involve the mediatory actions of LH or FSH and that this stimulatory effect of GnRH on the prolactin axis is seasonally regulated. Collectively, these findings highlight the importance of intercellular communications within the pituitary in the control of gonadotropin and prolactin secretion during the annual reproductive cycle in seasonal breeders.
Collapse
Affiliation(s)
- D J Tortonese
- Centre for Comparative and Clinical Anatomy, Faculty of Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Ciechanowska M, Łapot M, Mateusiak K, Paruszewska E, Malewski T, Krawczyńska A, Przekop F. The Central Effect of β
-Endorphin and Naloxone on The Biosynthesis of GnRH and GnRH Receptor (GnRHR) in The Hypothalamic-Pituitary Unit of Follicular-Phase Ewes. Reprod Domest Anim 2016; 51:555-61. [DOI: 10.1111/rda.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Affiliation(s)
- M Ciechanowska
- Department of Pharmacology and Toxicology; The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology; Warsaw Poland
| | - M Łapot
- Department of Pharmacology and Toxicology; The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology; Warsaw Poland
| | - K Mateusiak
- Department of Pharmacology and Toxicology; The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology; Warsaw Poland
| | - E Paruszewska
- Department of Pharmacology and Toxicology; The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology; Warsaw Poland
| | - T Malewski
- Polish Academy of Sciences; The Museum and Institute of Zoology; Warsaw Poland
| | - A Krawczyńska
- Department of Neuroendocrinology; Polish Academy of Sciences; The Kielanowski Institute of Animal Physiology and Nutrition; Jabłonna Poland
| | - F Przekop
- Department of Neuroendocrinology; Polish Academy of Sciences; The Kielanowski Institute of Animal Physiology and Nutrition; Jabłonna Poland
| |
Collapse
|
6
|
Hodson DJ, Henderson HL, Townsend J, Tortonese DJ. Photoperiodic modulation of the suppressive actions of prolactin and dopamine on the pituitary gonadotropin responses to gonadotropin-releasing hormone in sheep. Biol Reprod 2012; 86:122. [PMID: 22302689 DOI: 10.1095/biolreprod.111.096909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In a variety of species, the LH-secretory response to gonadotropin-releasing hormone (GnRH) is completely suppressed by the combined actions of prolactin (PRL) and dopamine (DA). In sheep, this effect is only observed under long days (nonbreeding season [NBS]). To investigate the level at which these mechanisms operate, we assessed the effects of PRL and bromocriptine (Br), a DA agonist, on the gonadotropin-secretory and mRNA responses to GnRH in pituitary cell cultures throughout the ovine annual reproductive cycle. As expected, the LH-secretory response to GnRH was only abolished during the NBS following combined PRL and Br application. Conversely, the LHB subunit response to GnRH was reduced during both the BS and NBS by the combined treatment and Br alone. Similar results were obtained in pars distalis-only cultures, indicating that the effects are pars tuberalis (PT)- independent. Further signaling studies revealed that PRL and Br alter the LH response to GnRH via convergence at the level of PLC and PKC. Results for FSH generally reflected those for LH, except during the BS where removal of the PT allowed PRL and Br to suppress the FSH-secretory response to GnRH. These data show that suppression of the LH-secretory response to GnRH by PRL and DA is accompanied by changes in mRNA synthesis, and that the photoperiodic modulation of this inhibition operates primarily at the level of LH release through alterations in PKC and PLC. Furthermore, the suppressive effects of PRL and DA on the secretion of FSH are photoperiodically regulated in a PT-dependent manner.
Collapse
Affiliation(s)
- David J Hodson
- Department of Anatomy, University of Bristol, Bristol, England, United Kingdom
| | | | | | | |
Collapse
|
7
|
Hodson DJ, Townsend J, Gregory SJ, Walters C, Tortonese DJ. Role of prolactin in the gonadotroph responsiveness to gonadotrophin-releasing hormone during the equine annual reproductive cycle. J Neuroendocrinol 2010; 22:509-17. [PMID: 20236228 DOI: 10.1111/j.1365-2826.2010.01986.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combined suppressive effect of prolactin (PRL) and dopamine on the secretion of luteinising hormone (LH) at the level of the pituitary gland has been identified in sheep, a short-day breeder. However, little is known about the role of PRL in the intra-pituitary regulation of the gonadotrophic axis in long-day breeders. In the present study, we investigated the effects of PRL on LH and follicle-stimulating hormone (FSH) secretion during the equine annual reproductive cycle. Horse pituitaries were obtained during the breeding season (BS) and nonbreeding season (NBS). Cells were dispersed, plated to monolayer cultures and assigned to one of the following specific treatments: (i) medium (Control); (ii) rat PRL (rPRL); (iii) thyrotrophin-releasing hormone (TRH); (iv) bromocriptine (Br); and (v) Br + rPRL. Gonadotrophin-releasing hormone (GnRH) dose-dependently stimulated LH release during the BS and NBS. During the BS, neither rPRL nor TRH affected the LH response to GnRH, but Br significantly (P < 0.01) enhanced both basal and GnRH-stimulated LH release through a mechanism that did not involve alterations in the concentrations of PRL. However, rPRL prevented the Br-induced increase in basal and GnRH-stimulated LH output, and suppressed LH below basal values (P < 0.05). Conversely, during the NBS, no significant effects of treatments were observed. Interestingly, at this time of year, the incidence of pituitary gap junctions within the pars distalis decreased by 50% (P < 0.01). By contrast to the effects on LH, no treatment effects were detected on the FSH response to GnRH, which was only apparent during the NBS. These results reveal no direct effects of PRL but an interaction between PRL and dopamine in the inhibitory regulation of LH, but not FSH, release at the level of the pituitary in the horse, and a modulatory role of season/photoperiod associated with alterations in folliculostellate cell-derived gap junctions.
Collapse
Affiliation(s)
- D J Hodson
- Department of Anatomy, University of Bristol, Bristol, England, UK
| | | | | | | | | |
Collapse
|
8
|
Haritou SJA, Zylstra R, Ralli C, Turner S, Tortonese DJ. Seasonal changes in circadian peripheral plasma concentrations of melatonin, serotonin, dopamine and cortisol in aged horses with Cushing's disease under natural photoperiod. J Neuroendocrinol 2008; 20:988-96. [PMID: 18540997 PMCID: PMC2658710 DOI: 10.1111/j.1365-2826.2008.01751.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equine pituitary pars intermedia dysfunction (PPID) is a common and serious condition that gives rise to Cushing's disease. In the older horse, it results in hyperadrenocorticism and disrupted energy metabolism, the severity of which varies with the time of year. To gain insight into the mechanism of its pathogenesis, 24-h profiles for peripheral plasma melatonin, serotonin, dopamine and cortisol concentrations were determined at the winter and summer solstices, and the autumn and spring equinoxes in six horses diagnosed with Cushing's disease and six matched controls. The nocturnal rises in plasma melatonin concentrations, although different across seasons, were broadly of the same duration and similar amplitude in both groups of animals (P > 0.05). The plasma concentrations of cortisol did not show seasonal variation and were different in diseased horses only in the summer when they were higher across the entire 24-h period (P < 0.05). Serotonin concentrations were not significantly affected by time of year but tended to be lower in Cushingoid horses (P = 0.07). By contrast, dopamine output showed seasonal variation and was significantly lower in the Cushing's group in the summer and autumn (P < 0.05). The finding that the profiles of circulating melatonin are similar in Cushingoid and control horses reveals that the inability to read time of year by animals suffering from Cushing's syndrome is an unlikely reason for the disease. In addition, the results provide evidence that alterations in the dopaminergic and serotoninergic systems may participate in the pathogenesis of PPID.
Collapse
Affiliation(s)
- S J A Haritou
- Pegasus Equine Diagnostics Ltd, BioCity Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
9
|
Scott CJ, Clarke IJ, Tilbrook AJ. The effect of testosterone and season on prodynorphin messenger RNA expression in the preoptic area-hypothalamus of the ram. Domest Anim Endocrinol 2008; 34:440-50. [PMID: 18308503 DOI: 10.1016/j.domaniend.2008.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/08/2008] [Accepted: 01/08/2008] [Indexed: 11/27/2022]
Abstract
Testosterone and season influence mRNA expression for the opioid, enkephalin, in the preoptic area and hypothalamus of rams. Dynorphin is another opioid which has been shown to play a role in the control of reproductive function in females. We now report effects of season and testosterone on the expression of prodynorphin mRNA in the hypothalamus of the ram. Castrated adult Romney Marsh rams (5/group) received vehicle or testosterone propionate (i.m.) during either the 'breeding' season or 'non-breeding' season. Prodynorphin mRNA expression was quantified in the hypothalami by in situ hybridisation. Testosterone treatment increased prodynorphin mRNA expression in the supraoptic nucleus and the bed nucleus of the stria terminalis in the breeding season but not during the non-breeding season. Prodynorphin mRNA expression was also higher in the breeding season than in the non-breeding season in the caudal preoptic area, paraventricular nucleus and accessory supraoptic nucleus, irrespective of treatment. No effects of treatment were observed in any other regions of the hypothalamus. We conclude that testosterone and season regulate prodynorphin mRNA expression in a region-specific manner, which may influence seasonal changes in reproductive function.
Collapse
Affiliation(s)
- Christopher J Scott
- Department of Physiology, Monash University, Vic., Australia; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | | | | |
Collapse
|
10
|
Henderson HL, Hodson DJ, Gregory SJ, Townsend J, Tortonese DJ. Gonadotropin-releasing hormone stimulates prolactin release from lactotrophs in photoperiodic species through a gonadotropin-independent mechanism. Biol Reprod 2007; 78:370-7. [PMID: 18094358 DOI: 10.1095/biolreprod.107.064063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previous studies have provided evidence for a paracrine interaction between pituitary gonadotrophs and lactotrophs. Here, we show that GnRH is able to stimulate prolactin (PRL) release in ovine primary pituitary cultures. This effect was observed during the breeding season (BS), but not during the nonbreeding season (NBS), and was abolished by the application of bromocriptine, a specific dopamine agonist. Interestingly, GnRH gained the ability to stimulate PRL release in NBS cultures following treatment with bromocriptine. In contrast, thyrotropin-releasing hormone, a potent secretagogue of PRL, stimulated PRL release during both the BS and NBS and significantly enhanced the PRL response to GnRH during the BS. These results provide evidence for a photoperiodically modulated functional interaction between the GnRH/gonadotropic and prolactin axes in the pituitary gland of a short day breeder. Moreover, the stimulation of PRL release by GnRH was shown not to be mediated by the gonadotropins, since immunocytochemical, Western blotting, and PCR studies failed to detect pituitary LH or FSH receptor protein and mRNA expressions. Similarly, no gonadotropin receptor expression was observed in the pituitary gland of the horse, a long day breeder. In contrast, S100 protein, a marker of folliculostellate cells, which are known to participate in paracrine mechanisms within this tissue, was detected throughout the pituitaries of both these seasonal breeders. Therefore, an alternative gonadotroph secretory product, a direct effect of GnRH on the lactotroph, or another cell type, such as the folliculostellate cell, may be involved in the PRL response to GnRH in these species.
Collapse
Affiliation(s)
- Helen L Henderson
- Department of Anatomy, University of Bristol, Bristol BS2 8EJ, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Gregory SJ, Townsend J, McNeilly AS, Tortonese DJ. Effects of Prolactin on the Luteinizing Hormone Response to Gonadotropin-Releasing Hormone in Primary Pituitary Cell Cultures During the Ovine Annual Reproductive Cycle. Biol Reprod 2004; 70:1299-305. [PMID: 14695904 DOI: 10.1095/biolreprod.103.022806] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the sheep pituitary, the localization of prolactin (PRL) receptors in gonadotrophs and the existence of gonadotroph-lactotroph associations have provided morphological evidence for possible direct effects of PRL on gonadotropin secretion. Here, we investigated whether PRL can readily modify the LH response to GnRH throughout the ovine annual reproductive cycle. Cell populations were obtained from sheep pituitaries during the breeding season (BS) and the nonbreeding season (NBS), plated to monolayer cultures for 7 days, and assigned to receive one of the following treatments: 1) nil (control), 2) acute (90- min) bromocriptine (ABr), 3) chronic (7-day) bromocriptine (CBr), 4) ABr and PRL, 5) CBr and PRL, 6) PRL alone, or 7) thyrotropin-releasing hormone. Cells were treated as described above, with the aim of decreasing or increasing the concentrations of PRL in the culture, and simultaneously treated with GnRH for 90 min. The LH concentrations in the medium were then determined by RIA. GnRH stimulated LH in a dose-dependent manner during both stages of the annual reproductive cycle. During the NBS, single treatments did not significantly affect the LH response to GnRH. However, when PRL was combined with bromocriptine, either acutely or chronically, GnRH failed to stimulate LH release at all doses tested (P < 0.01). In contrast, during the BS, the LH response to GnRH was not affected by any of the experimental treatments. These results reveal no apparent effects of PRL alone, but an interaction between PRL and dopamine in the regulation of LH secretion within the pituitary gland, and a seasonal modulation of this mechanism.
Collapse
Affiliation(s)
- Susan J Gregory
- Department of Anatomy, University of Bristol, Bristol BS2 8EJ, England, United Kingdom
| | | | | | | |
Collapse
|
12
|
Jansen HT, Cutter C, Hardy S, Lehman MN, Goodman RL. Seasonal plasticity within the gonadotropin-releasing hormone (GnRH) system of the ewe: changes in identified GnRH inputs and glial association. Endocrinology 2003; 144:3663-76. [PMID: 12865349 DOI: 10.1210/en.2002-0188] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The annual reproductive cycle in sheep may reflect a functional remodeling within the GnRH system. Specifically, changes in total synaptic input and association with the polysialylated form of neural cell adhesion molecule have been observed. Whether seasonal changes in a specific subset(s) of GnRH inputs occur or whether glial cells specifically play a role in this remodeling is not clear. We therefore examined GnRH neurons of breeding season (BS) and nonbreeding season (anestrus) ewes and tested the hypotheses that specific (i.e. gamma-aminobutyric acid, catecholamine, neuropeptide Y, or beta-endorphin) inputs to GnRH neurons change seasonally, and concomitant with any changes in neural inputs is a change in glial apposition. Using triple-label immunofluorescent visualization of GnRH, glial acidic fibrillary protein and neuromodulator/neural terminal markers combined with confocal microscopy and optical sectioning techniques, we confirmed that total numbers of neural inputs to GnRH neurons vary with season and demonstrated that specific inputs contribute to these overall changes. Specifically, neuropeptide Y and gamma-aminobutyric acid inputs to GnRH neurons increased during BS and beta-endorphin inputs were greater during either anestrus (GnRH somas) or BS (GnRH dendrites). Associated with the changes in GnRH inputs were seasonal changes in glial apposition, glial acidic fibrillary protein density, and the thickness of glial fibrils. These findings are interpreted to suggest an increase in net stimulatory inputs to GnRH neurons during the BS contributes to the seasonal changes in GnRH neurosecretion and that this increased innervation is perhaps stabilized by glial processes.
Collapse
Affiliation(s)
- Heiko T Jansen
- Department of Veterinary and Comparative Anatomy, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-6520, USA.
| | | | | | | | | |
Collapse
|
13
|
Scott CJ, Clarke IJ, Tilbrook AJ. Neuronal inputs from the hypothalamus and brain stem to the medial preoptic area of the ram: neurochemical correlates and comparison to the ewe. Biol Reprod 2003; 68:1119-33. [PMID: 12606458 DOI: 10.1095/biolreprod.102.010595] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The retrograde tracer, FluoroGold, was used to trace the neuronal inputs from the septum, hypothalamus, and brain stem to the region of the GnRH neurons in the rostral preoptic area of the ram and to compare these imputs with those in the ewe. Sex differences were found in the number of retrogradely labeled cells in the dorsomedial and ventromedial nuclei. Retrogradely labeled cells were also observed in the lateral septum, preoptic area, organum vasculosum of the lamina terminalis, bed nucleus of the stria terminalis, stria terminalis, subfornical organ, periventricular nucleus, anterior hypothalamic area, lateral hypothalamus, arcuate nucleus, and posterior hypothalamus. These sex differences may partially explain sex differences in how GnRH secretion is regulated. Fluorescence immunohistochemistry was used to determine the neurochemical identity of some of these cells in the ram. Very few tyrosine hydroxylase-containing neurons in the A14 group (<1%), ACTH-containing neurons (<1%), and neuropeptide Y-containing neurons (1-5%) in the arcuate nucleus contained FluoroGold. The ventrolateral medulla and parabrachial nucleus contained the main populations of FluoroGold-containing neurons in the brain stem. Retrogradely labeled neurons were also observed in the nucleus of the solitary tract, dorsal raphe nucleus, and periaqueductal gray matter. Virtually all FluoroGold-containing cells in the ventrolateral medulla and about half of these cells in the nucleus of the solitary tract also stained for dopamine beta-hydroxylase. No other retrogradely labeled cells in the brain stem were noradrenergic. Although dopamine, beta-endorphin, and neuropeptide Y have been implicated in the regulation of GnRH secretion in males, it is unlikely that these neurotransmitters regulate GnRH secretion via direct inputs to GnRH neurons.
Collapse
|
14
|
Aurich C, Gerlach T, Aurich JE, Hoppen HO, Lange J, Parvizi N. Dopaminergic and opioidergic regulation of gonadotropin and prolactin release in stallions. Reprod Domest Anim 2002; 37:335-40. [PMID: 12464071 DOI: 10.1046/j.1439-0531.2002.00370.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the non-breeding season, LH release is reduced via dopaminergic systems in the ram. On the other hand, our previous studies demonstrated an opioidergic inhibition of LH release in stallions outside the breeding season. Thus, in the present study we investigated the dopaminergic regulation of LH and prolactin secretion in stallions, considering interactions between dopamine and opioids. To achieve this, stallions (n=8) were treated with the dopamine antagonist sulpiride (0.6 mg/kg), the opioid antagonist naloxone (0.5 mg/kg), sulpiride plus naloxone or saline in December, March and June. Two hours after the respective treatments, they received a GnRH agonist. Sulpiride induced a significant prolactin release which was most pronounced in December, indicating seasonal variations in the inhibition of prolactin secretion by dopaminergic systems. Prolactin concentrations were not changed by naloxone. Neither during nor outside the breeding season, a dopaminergic regulation of LH release could be demonstrated. In contrast, naloxone caused a significant (p < 0.05) LH release, confirming an opioidergic inhibition of LH release. In conclusion, opioidergic regulation of LH and dopaminergic inhibition of prolactin secretion undergo seasonal changes. Neither during nor outside the breeding season, dopaminergic effects on LH release exist in the stallion.
Collapse
Affiliation(s)
- C Aurich
- Centre for Artificial Insemination and Embryo Transfer, University of Veterinary Sciences, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
15
|
Tilbrook AJ, Clarke IJ. Negative feedback regulation of the secretion and actions of gonadotropin-releasing hormone in males. Biol Reprod 2001; 64:735-42. [PMID: 11207186 DOI: 10.1095/biolreprod64.3.735] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This minireview considers the state of knowledge regarding the interactions of testicular hormones to regulate the secretion and actions of GnRH in males, with special focus on research conducted in rams and male rhesus monkeys. In these two species, LH secretion is under the negative feedback regulation of testicular steroids that act predominantly within the central nervous system to suppress GnRH secretion. The extent to which these actions of testicular steroids result from the direct actions of testosterone or its primary metabolites, estradiol or dihydrotestosterone, is unclear. Because GnRH neurons do not contain steroid receptors, the testicular steroids must influence GnRH neurons via afferent neurons, which are largely undefined. The feedback regulation of FSH is controlled by inhibin acting directly at the pituitary gland. In male rhesus monkeys, the feedback regulation of FSH secretion is accounted for totally by the physiologically relevant form of inhibin, which appears to be inhibin B. In rams, the feedback regulation of FSH secretion involves the actions of inhibin and testosterone and interactions between these hormones, but the physiologically relevant form of inhibin has not been determined. The mechanisms of action for inhibin are not known.
Collapse
Affiliation(s)
- A J Tilbrook
- Department of Physiology, Monash University, Victoria 3800, Australia. Prince Henry's Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | | |
Collapse
|
16
|
Clarke IJ, Scott CJ, Rao A, Pompolo S, Barker-Gibb ML. Seasonal changes in the expression of neuropeptide Y and pro-opiomelanocortin mRNA in the arcuate nucleus of the ovariectomized ewe: relationship to the seasonal appetite and breeding cycles. J Neuroendocrinol 2000; 12:1105-11. [PMID: 11069126 DOI: 10.1046/j.1365-2826.2000.00570.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sheep experience well-documented seasonal changes in reproductive activity and voluntary food intake (VFI). Within the hypothalamus, neurones that express neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) have been implicated in the regulation of reproduction and appetite. In this study, we aimed to determine the extent to which the expression of these two neuronal systems is linked to the seasonal reproductive cycle and/or the seasonal appetite cycle. VFI in our sheep reaches a nadir in August with no difference occurring between December and February. We examined the brains of ovariectomized (OVX) female sheep (n=5-7) that were killed during the breeding season (February) or during the early or late nonbreeding season (August and December, respectively). The brains of these animals were perfused with paraformaldehyde and processed for in situ hybridization histochemistry, using ribonucleotide probes labelled with 35S. The number of NPY and POMC cells and the number of silver grains per cell were counted using an image analysis system. For NPY, the number of cells counted in the arcuate nucleus/median eminence region and the number of silver grains per cell was significantly lower in animals killed during August than in animals killed in February or December. The number of grains per cell over NPY cells was also significantly lower in animals killed during August. For POMC, the number of cells was lower in February than in August and December. Similarly, the number of grains per cell for POMC were lower in February than in August and December. VFI was significantly lower in animals during August than at other times of the year. We conclude that in OVX ewes: (i) NPY gene expression is lower at the time of the year when VFI is reduced and (ii) POMC gene expression is greater at the time of the nonbreeding season than during the breeding season. Because these results were obtained in OVX animals, the changes appear to be independent of alterations in the secretion and/or action of ovarian steroids. Thus, the activity of NPY neurones appears to relate to changes in appetite whereas changes in POMC expression may be relevant to the seasonal breeding cycle.
Collapse
Affiliation(s)
- I J Clarke
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|