1
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
3
|
Edwards CM, Kane JF, Smith JA, Grant DM, Johnson JA, Diaz MAH, Vecchi LA, Bracey KM, Omokehinde TN, Fontana JR, Karno BA, Scott HT, Vogel CJ, Lowery JW, Martin TJ, Johnson RW. PTHrP intracrine actions divergently influence breast cancer growth through p27 and LIFR. Breast Cancer Res 2024; 26:34. [PMID: 38409028 PMCID: PMC10897994 DOI: 10.1186/s13058-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR). Induction of p27 by PTHrP lacking the NLS and C-terminus persisted in bone disseminated cells, but did not prevent metastatic outgrowth, in contrast to the primary tumor site. These data suggest that the PTHrP NLS functions as a tumor suppressor, while the PTHrP C-terminus may act as an oncogenic switch to promote tumor progression through differential regulation of p27 signaling.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy F Kane
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jailyn A Smith
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Déja M Grant
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Jasmine A Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria A Hernandez Diaz
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Tolu N Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R Fontana
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Breelyn A Karno
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Halee T Scott
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Carolina J Vogel
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Jonathan W Lowery
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
- Academic Affairs, Marian University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Smith-Cohn MA, Burley NB, Grossman SA. Transient Opening of the Blood-Brain Barrier by Vasoactive Peptides to Increase CNS Drug Delivery: Reality Versus Wishful Thinking? Curr Neuropharmacol 2022; 20:1383-1399. [PMID: 35100958 PMCID: PMC9881081 DOI: 10.2174/1570159x20999220131163504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The blood-brain barrier inhibits the central nervous system penetration of 98% of small molecule drugs and virtually all biologic agents, which has limited progress in treating neurologic disease. Vasoactive peptides have been shown in animal studies to transiently disrupt the blood-brain barrier and regadenoson is currently being studied in humans to determine if it can improve drug delivery to the brain. However, many other vasoactive peptides could potentially be used for this purpose. METHODS We performed a review of the literature evaluating the physiologic effects of vasoactive peptides on the vasculature of the brain and systemic organs. To assess the likelihood that a vasoactive peptide might transiently disrupt the blood-brain barrier, we devised a four-tier classification system to organize the available evidence. RESULTS We identified 32 vasoactive peptides with potential blood-brain barrier permeabilityaltering properties. To date, none of these are shown to open the blood-brain barrier in humans. Twelve vasoactive peptides increased blood-brain barrier permeability in rodents. The remaining 20 had favorable physiologic effects on blood vessels but lacked specific information on permeability changes to the blood-brain barrier. CONCLUSION Vasoactive peptides remain an understudied class of drugs with the potential to increase drug delivery and improve treatment in patients with brain tumors and other neurologic diseases. Dozens of vasoactive peptides have yet to be formally evaluated for this important clinical effect. This narrative review summarizes the available data on vasoactive peptides, highlighting agents that deserve further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Matthew A. Smith-Cohn
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA; ,Address correspondence to these authors at the The Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Health Services, 500 17th Ave, James Tower, Suite 540, Seattle, WA 98122, USA; Tel: 206-320-2300; Fax: 206-320-8149; E-mail: , Sidney Kimmel Cancer Center, Skip Viragh Building, 201 North Broadway, 9th Floor (Mailbox #3), Baltimore, MD 21287, USA; E-mail:
| | - Nicholas B. Burley
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, USA;
| | - Stuart A. Grossman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA,Address correspondence to these authors at the The Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Swedish Health Services, 500 17th Ave, James Tower, Suite 540, Seattle, WA 98122, USA; Tel: 206-320-2300; Fax: 206-320-8149; E-mail: , Sidney Kimmel Cancer Center, Skip Viragh Building, 201 North Broadway, 9th Floor (Mailbox #3), Baltimore, MD 21287, USA; E-mail:
| |
Collapse
|
5
|
Edwards CM, Johnson RW. From Good to Bad: The Opposing Effects of PTHrP on Tumor Growth, Dormancy, and Metastasis Throughout Cancer Progression. Front Oncol 2021; 11:644303. [PMID: 33828987 PMCID: PMC8019909 DOI: 10.3389/fonc.2021.644303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Parathyroid hormone related protein (PTHrP) is a multifaceted protein with several biologically active domains that regulate its many roles in normal physiology and human disease. PTHrP causes humoral hypercalcemia of malignancy (HHM) through its endocrine actions and tumor-induced bone destruction through its paracrine actions. PTHrP has more recently been investigated as a regulator of tumor dormancy owing to its roles in regulating tumor cell proliferation, apoptosis, and survival through autocrine/paracrine and intracrine signaling. Tumor expression of PTHrP in late stages of cancer progression has been shown to promote distant metastasis formation, especially in bone by promoting tumor-induced osteolysis and exit from dormancy. In contrast, PTHrP may protect against further tumor progression and improve patient survival in early disease stages. This review highlights current knowledge from preclinical and clinical studies examining the role of PTHrP in promoting tumor progression as well as skeletal and soft tissue metastasis, especially with regards to the protein as a regulator of tumor dormancy. The discussion will also provide perspectives on PTHrP as a prognostic factor and therapeutic target to inhibit tumor progression, prevent tumor recurrence, and improve patient survival.
Collapse
Affiliation(s)
- Courtney M. Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Bone Biology, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Daley EJ, Khatri A, Dean T, Vilardaga JP, Zaidi SA, Katritch V, Gardella TJ. Ligand-Dependent Effects of Methionine-8 Oxidation in Parathyroid Hormone Peptide Analogues. Endocrinology 2021; 162:6006902. [PMID: 33242090 PMCID: PMC7774776 DOI: 10.1210/endocr/bqaa216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 01/29/2023]
Abstract
LA-PTH is a long-acting parathyroid hormone (PTH) peptide analogue in preclinical development for hypoparathyroidism (HP). Like native PTH, LA-PTH contains a methionine at position 8 (Met8) that is predicted to be critical for function. We assessed the impact of Met oxidation on the functional properties of LA-PTH and control PTH ligands. Oxidation of PTH(1-34) resulted in marked (~20-fold) reductions in binding affinity on the PTH receptor-1 (PTHR1) in cell membranes, similarly diminished potency for 3',5'-cyclic AMP signaling in osteoblastic cell lines (SaOS-2 and UMR106), and impaired efficacy for raising blood calcium in mice. Surprisingly, oxidation of LA-PTH resulted in little or no change in these functional responses. The signaling potency of oxidized-LA-PTH was, however, reduced approximately 40-fold compared to LA-PTH in cells expressing a PTHR1 construct that lacks the N-terminal extracellular domain (ECD). Molecular modeling revealed that while Met8 of both LA-PTH and PTH(1-34) is situated within the orthosteric ligand-binding pocket of the receptor's transmembrane domain bundle (TMD), the Met8 sidechain position is shifted for the 2 ligands so that on Met8 oxidation of PTH(1-34), steric clashes occur that are not seen with oxidized LA-PTH. The findings suggest that LA-PTH and PTH(1-34) engage the receptor differently in the Met8-interaction environment of the TMD bundle, and that this interaction environment can be allosterically influenced by the ECD component of the ligand-receptor complex. The findings should be useful for the future development of novel PTH-based peptide therapeutics for diseases of bone and mineral ion metabolism.
Collapse
Affiliation(s)
- Eileen J Daley
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ashok Khatri
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas Dean
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Jean-Pierre Vilardaga
- University of Pittsburgh School of Medicine, Department of Pharmacology & Chemical Biology, Laboratory for GPCR Biology, Pittsburgh, PA, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Thomas J Gardella
- Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Correspondence: Thomas J. Gardella, PhD, Endocrine Unit, Massachusetts General Hospital, 50 Blossom St, Thier 10, Boston, MA 02474, USA.
| |
Collapse
|
7
|
Lai NK, Martinez D. Physiological roles of parathyroid hormone-related protein. ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:510-516. [PMID: 31910177 PMCID: PMC7233781 DOI: 10.23750/abm.v90i4.7715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/22/2019] [Indexed: 11/23/2022]
Abstract
Background: Parathyroid hormone related peptide (PTHrP) is widely expressed in a variety of normal fetal and adult tissues. Aim of work: Review of these normal physiologic functions of PTHrP in each of these tissues. Method: Performed literature search on pubmed on articles related to PTHrP and physiologic roles. Results: PTHrP is expressed in wide range of sites in the body with roles including relaxation of vessels and smooth muscle cells, and regulation of development. PTHrP also mediates humoral hypercalcemia of malignancy. PTHrP can be falsely elevated in benign conditions. Lastly, PTHrP has a pharmacological role in osteoporosis treatment. Conclusions: PTHrP has many various physiological roles besides mediating humoral hypercalcemia of malignancy. (www.actabiomedica.it)
Collapse
|
8
|
Poulin A, Bellemare PL, Fortier C, Mac-Way F, Desmeules S, Marquis K, Gaudreault V, Lebel M, Agharazii M. Acute effects of cinacalcet on arterial stiffness and ventricular function in hemodialysis patients: A randomized double-blinded crossover study. Medicine (Baltimore) 2017; 96:e6912. [PMID: 28538380 PMCID: PMC5457860 DOI: 10.1097/md.0000000000006912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Serum calcium concentration (Ca) plays an essential role in a vascular muscle tone and myocardial contractility. Previously, we showed that acutely lowering Ca by hemodialysis reduced arterial stiffness. Cinacalcet is a calcimimetic that lowers Ca and parathyroid hormone (PTH). The aim of the present study was to examine whether acute lowering of Ca by cinacalcet improves vascular stiffness and myocardial diastolic dysfunction. METHOD This is a double-blinded randomized placebo-controlled crossover study that included 21 adult patients with end-stage kidney disease undergoing chronic hemodialysis. Subjects were assigned to placebo-cinacalcet (30 mg) or cinacalcet-placebo sequence. After each treatment period (7 days), aortic, brachial, and carotid stiffness were determined by examining carotid-femoral pulse wave velocity (cf-PWV), carotid-radial PWV (cr-PWV), and carotid distension. A central pulse wave profile was determined by radial artery tonometry and cardiac function was evaluated by echocardiography. RESULTS Cinacalcet reduced PTH (483 [337-748] to 201 [71-498] ng/L, P < .001) and ionized Ca (1.11 [1.08-1.15] to 1.05 [1.00-1.10] mmol/L, P = .04). Cinacalcet did not reduced cf-PWV significantly (12.2 [10.4-15.4] to 12.2 [11.0-14.6] m/s, P = .16). After adjustments for mean blood pressure, sequence, carryover, and treatment effects, cf-PWV was not significantly lowered by cinacalcet (-0.35 m/s, P = .139). There were no significant changes in central blood pressures, brachial and carotid stiffness, and echocardiographic parameters. CONCLUSION In this study, 30 mg daily cinacalcet for 1 week did not have any significant impact on peripheral and central blood pressures, arterial stiffness parameters, or cardiac function (NCT01250405).
Collapse
Affiliation(s)
- Aurélie Poulin
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Pierre-Luc Bellemare
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Catherine Fortier
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Fabrice Mac-Way
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Simon Desmeules
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Karine Marquis
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
| | - Valérie Gaudreault
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marcel Lebel
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Mohsen Agharazii
- CHU de Québec Research Center, L’Hôtel-Dieu de Québec Hospital
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Meziani F, Van Overloop B, Schneider F, Gairard A. Parathyroid Hormone-Related Protein-induced Relaxation of Rat Uterine Arteries: Influence of the Endothelium During Gestation. ACTA ACUST UNITED AC 2016; 12:14-9. [PMID: 15629665 DOI: 10.1016/j.jsgi.2004.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Parathyroid hormone-related protein (PTHrP) has been reported to relax different vessels. We investigated the influence of both endothelium and gestation on the relaxation of uterine arteries (UA), which supply blood to myometrium and placenta. METHODS Small uterine and mesenteric arteries (MA) with (E+) and without endothelium (E-) from day 20 pregnant (P) and nonpregnant (NP) rats were mounted in a myograph, precontracted with phenylephrine (PE) in a physiologic salt solution. Relaxations to PTHrP, acetylcholine, and forskolin were performed and expressed as a percentage of the PE-induced contraction. Blockade of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) was also studied with Nomega-nitro-L-arginine methyl ester (L-NAME) and with charybdotoxin + apamin, respectively. RESULTS Gestation significantly increases maximal vasodilating effect of acetylcholine in UA (68% vs 52%, P < .05) and sensitivity to acetylcholine in small mesenteric vessels (P < .05). PTHrP relaxes uterine (maximal relaxation P: 32%, NP: 46%), as well as small MA (P: 68%, NP: 89%), but the maximal relaxation is significantly greater in NP than in P rats (P: 32%, NP: 46%, P < .01) in both vascular beds. In addition, in the UA of P rats, PTHrP only produces relaxation if functional endothelium is present; nevertheless in the absence of endothelium, forskolin still elicits relaxation (65%, P < .01). L-NAME significantly impairs relaxation of E+ UA (P < .05), and so does the association of charybdotoxin + apamin (P < .05). Thus, NO and EDHF contribute largely to this vasorelaxant effect. CONCLUSION PTHrP induces a relaxation on UA that is strongly endothelium-dependent during gestation, in contrast to what happens simultaneously in MA.
Collapse
Affiliation(s)
- Ferhat Meziani
- Physicochimie des Interactions Cellulaires et Moléculaires, CNRS UMR 7034, Université Louis Pasteur, Strasbourg, France
| | | | | | | |
Collapse
|
10
|
Liu G, Elrashidy RA, Xiao N, Kavran M, Huang Y, Tao M, Powell CT, Kim E, Sadeghi G, Mohamed HE, Daneshgari F. Bladder function in mice with inducible smooth muscle-specific deletion of the manganese superoxide dismutase gene. Am J Physiol Cell Physiol 2015; 309:C169-78. [PMID: 25948732 DOI: 10.1152/ajpcell.00046.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/02/2015] [Indexed: 11/22/2022]
Abstract
Manganese superoxide dismutase (MnSOD) is considered a critical component of the antioxidant systems that protect against oxidative damage. We are interested in the role of oxidative stress in bladder detrusor smooth muscle (SM) in different disease states. In this study, we generated an inducible, SM-specific Sod2(-/-) mouse model to investigate the effects of MnSOD depletion on the function of the bladder. We crossbred floxed Sod2 (Sod2(lox/lox)) mice with mice containing heterozygous knock-in of a gene encoding a tamoxifen-activated Cre recombinase in the SM22α promoter locus [SM-CreER(T2)(ki)(Cre/+)]. We obtained Sod2(lox/lox),SM-CreER(T2)(ki)(Cre/+) mice and injected 8-wk-old males with 4-hydroxytamoxifen to induce Cre-mediated excision of the floxed Sod2 allele. Twelve weeks later, SM-specific deletion of Sod2 and depletion of MnSOD were confirmed by polymerase chain reaction, immunoblotting, and immunohistochemistry. SM-specific Sod2(-/-) mice exhibited normal growth with no gross abnormalities. A significant increase in nitrotyrosine concentration was found in bladder SM tissue of SM-specific Sod2(-/-) mice compared with both wild-type mice and Sod2(+/+), SM-CreER(T2)(ki)(Cre/+) mice treated with 4-hydroxytamoxifen. Assessment of 24-h micturition in SM-specific Sod2(-/-) mice revealed significantly higher voiding frequency compared with both wild-type and SM-specific Cre controls. Conscious cystometry revealed significantly shorter intercontraction intervals and lower functional bladder capacity in SM-specific Sod2(-/-) mice compared with wild-type mice. This novel model can be used for exploring the mechanistic role of oxidative stress in organs rich in SM in different pathological conditions.
Collapse
Affiliation(s)
- Guiming Liu
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rania A Elrashidy
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Faculty of Pharmacy, Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Nan Xiao
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China; and
| | - Michael Kavran
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yexiang Huang
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mingfang Tao
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - C Thomas Powell
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Edward Kim
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ghazal Sadeghi
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Hoda E Mohamed
- Faculty of Pharmacy, Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Firouz Daneshgari
- Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio;
| |
Collapse
|
11
|
|
12
|
Raison D, Coquard C, Hochane M, Steger J, Massfelder T, Moulin B, Karaplis AC, Metzger D, Chambon P, Helwig JJ, Barthelmebs M. Knockdown of parathyroid hormone related protein in smooth muscle cells alters renal hemodynamics but not blood pressure. Am J Physiol Renal Physiol 2013; 305:F333-42. [PMID: 23720345 DOI: 10.1152/ajprenal.00503.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) belongs to vasoactive factors that regulate blood pressure and renal hemodynamics both by reducing vascular tone and raising renin release. PTHrP is expressed in systemic and renal vasculature. Here, we wanted to assess the contribution of vascular smooth muscle cell endogenous PTHrP to the regulation of cardiovascular and renal functions. We generated a mouse strain (SMA-CreERT2/PTHrPL2/L2 or premutant PTHrPSM-/-), which allows temporally controlled, smooth muscle-targeted PTHrP knockdown in adult mice. Tamoxifen treatment induced efficient recombination of PTHrP-floxed alleles and decreased PTHrP expression in vascular and visceral smooth muscle cells of PTHrPSM-/- mice. Blood pressure remained unchanged in PTHrPSM-/- mice, but plasma renin concentration and creatinine clearance were reduced. Renal hemodynamics were further analyzed during clearance measurements in anesthetized mice. Conditional knockdown of PTHrP decreased renal plasma flow and glomerular filtration rate with concomitant reduction in filtration fraction. Similar measurements were repeated during acute saline volume expansion. Saline volume expansion induced a rise in renal plasma flow and reduced filtration fraction; both were blunted in PTHrPSM-/- mice leading to impaired diuresis. These findings show that endogenous vascular smooth muscle PTHrP controls renal hemodynamics under basal conditions, and it is an essential factor in renal vasodilation elicited by saline volume expansion.
Collapse
Affiliation(s)
- Denis Raison
- Institut National de la Santé et de la Recherche Médicale (INSERM), U682, Equipe Cancer du rein et Physiopathologie rénale, Faculté de Médecine, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Bone never forms without vascular interactions. This simple statement of fact does not adequately reflect the physiological and pharmacological implications of the relationship. The vasculature is the conduit for nutrient exchange between bone and the rest of the body. The vasculature provides the sustentacular niche for development of osteoblast progenitors and is the conduit for egress of bone marrow cell products arising, in turn, from the osteoblast-dependent haematopoietic niche. Importantly, the second most calcified structure in humans after the skeleton is the vasculature. Once considered a passive process of dead and dying cells, vascular calcification has emerged as an actively regulated form of tissue biomineralization. Skeletal morphogens and osteochondrogenic transcription factors are expressed by cells within the vessel wall, which regulates the deposition of vascular calcium. Osteotropic hormones, including parathyroid hormone, regulate both vascular and skeletal mineralization. Cellular, endocrine and metabolic signals that flow bidirectionally between the vasculature and bone are necessary for both bone health and vascular health. Dysmetabolic states including diabetes mellitus, uraemia and hyperlipidaemia perturb the bone-vascular axis, giving rise to devastating vascular and skeletal disease. A detailed understanding of bone-vascular interactions is necessary to address the unmet clinical needs of an increasingly aged and dysmetabolic population.
Collapse
Affiliation(s)
- Bithika Thompson
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Campus Box 8127, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | | |
Collapse
|
14
|
Zhao X, Gong P, Lin Y, Wang J, Yang X, Cai X. Characterization of α-smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells. Cell Prolif 2012; 45:259-65. [PMID: 22487297 DOI: 10.1111/j.1365-2184.2012.00818.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/22/2012] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Dental pulp tissue contains stem cells that can differentiate into multiple lineages under specific culture conditions; the origin of these dental pulp stem cells, however, is still unknown. MATERIALS AND METHODS Here we have utilized an α-SMA-GFP transgenic mouse model to characterize expression of a-smooth muscle actin (SMA)-GFP in subpassages of pulp-tissue-derived dental pulp cells, as perivascular cells express α-SMA. RESULTS During subculturing, percentages of cells expressing a-SMA increased significantly from passage 1 to 3. α-SMA-GFP-positive cells expanded faster than α-SMA-GFP-negative cells. The dental pulp cells at passage 3 were induced towards osteogenic, adipogenic or chondrogenic differentiation. All three differentiated cell lines expressed high levels of α-SMA (mineralized nodules, lipid droplets and chondrocyte pellets). GFP expression colocalized with differentiated osteoblasts, adipocytes and chondrocytes. Co-culturing the α-SMA-GFP-positive cells with human endothelial cells promoted formation of tube-like structures and robust vascular networks, in 3-D culture. CONCLUSIONS Taken together, the a-SMA-GFP-positive cells were shown to have multilieange differentiation ability and to promote vascularization in a co-culture system with endothelial cells.
Collapse
Affiliation(s)
- X Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
15
|
Cheng SL, Shao JS, Halstead LR, Distelhorst K, Sierra O, Towler DA. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res 2010; 107:271-82. [PMID: 20489161 DOI: 10.1161/circresaha.110.219899] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Vascular fibrosis and calcification contribute to diabetic arteriosclerosis, impairing Windkessel physiology necessary for distal tissue perfusion. Wnt family members, upregulated in arteries by the low-grade inflammation of "diabesity," stimulate type I collagen expression and osteogenic mineralization of mesenchymal progenitors via beta-catenin. Conversely, parathyroid hormone (PTH) inhibits aortic calcification in low-density lipoprotein receptor (LDLR)-deficient mice fed high fat diabetogenic diets (HFD). OBJECTIVE We sought to determine the impact of vascular PTH receptor (PTH1R) activity on arteriosclerotic Wnt/beta-catenin signaling in vitro and in vivo. We generated SM-caPTH1R transgenic mice, a model in which the constitutively active PTH1R variant H223R (caPTH1R) is expressed only in the vasculature. METHODS AND RESULTS The caPTH1R inhibited Wnt/beta-catenin signaling, collagen production, and vascular smooth muscle cell proliferation and calcification in vitro. Transgenic SM-caPTH1R;LDLR(+/-) mice fed HFD develop diabesity, with no improvements in fasting serum glucose, cholesterol, weight, body composition, or bone mass versus LDLR(+/-) siblings. SM-caPTH1R downregulated aortic Col1A1, Runx2, and Nox1 expression without altering TNF, Msx2, Wnt7a/b, or Nox4. The SM-caPTH1R transgene decreased aortic beta-catenin protein accumulation and signaling in diabetic LDLR(+/-) mice. Levels of aortic superoxide (a precursor of peroxide that activates pro-matrix metalloproteinase 9 and osteogenic signaling in vascular smooth muscle cells) were suppressed by the SM-caPTH1R transgene. Aortic calcification, collagen accumulation, and wall thickness were concomitantly reduced, enhancing vessel distensibility. CONCLUSIONS Cell-autonomous vascular smooth muscle cell PTH1R activity inhibits arteriosclerotic Wnt/beta-catenin signaling and reduces vascular oxidative stress, thus limiting aortic type I collagen and calcium accrual in diabetic LDLR-deficient mice.
Collapse
Affiliation(s)
- Su-Li Cheng
- Department of Medicine, Washington University, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
16
|
Parathyroid Hormone and Parathyroid Hormone–Related Peptide in the Regulation of Calcium Homeostasis and Bone Development. Endocrinology 2010. [DOI: 10.1016/b978-1-4160-5583-9.00056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Landa MS, García SI, Liberjen L, Schuman ML, Finkielman S, Pirola CJ. Parathyroid Hormone-Related Protein Overexpression Decreases Blood Pressure in Spontaneously Hypertensive Rats. Clin Exp Hypertens 2009. [DOI: 10.1081/ceh-57435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
San Miguel SM, Fatahi MR, Li H, Igwe JC, Aguila HL, Kalajzic I. Defining a visual marker of osteoprogenitor cells within the periodontium. J Periodontal Res 2009; 45:60-70. [PMID: 19453851 DOI: 10.1111/j.1600-0765.2009.01201.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Cells with osteoprogenitor potential are present within periodontal tissues during development and in postnatal life. To identify an osteoprogenitor population, this study utilized a transgenic model in which an alpha-smooth muscle actin (alphaSMA) promoter directed green fluorescent protein (GFP) expression. MATERIAL AND METHODS Observation of GFP expression was complemented with analysis of osteogenic differentiation by determining the expression of RNA of bone markers, by histochemical staining for alkaline phosphatase and by the detection of mineralized nodules using xylenol orange. Flow cytometry was utilized to determine the proliferative potential and cell-surface phenotype of cultured alphaSMA-positive cells. RESULTS alphaSMA-GFP expression was detected within the dental follicle and in the apical region of the root (i.e. areas rich in vascularization) but not in mature bone. alphaSMA-GFP expression was observed during the early stages of primary cultures derived from the dental follicle and periodontal ligament and was diminished in areas undergoing mineralization. Intense alkaline phosphatase activity and the presence of mineralized nodules was observed 2 wk after osteogenic induction. Consequently, the expression of bone sialoprotein, osteocalcin and dentin matrix protein-1 was increased. Flow cytometry revealed that in vitro expansion enriched for an alphaSMA-GFP-positive population in which 55-65% of cells expressed the cell-surface markers Thy1(+) and Sca1(+). The alphaSMA-GFP-positive population exhibited high proliferative and osteogenic potentials when compared with an alphaSMA-GFP-negative population. CONCLUSION Our data indicate that the alphaSMA promoter can be used to identify a population of osteoprogenitor cells residing within the dental follicle and periodontal ligament that can differentiate into mature osteoblasts.
Collapse
Affiliation(s)
- S M San Miguel
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kalajzic Z, Li H, Wang LP, Jiang X, Lamothe K, Adams DJ, Aguila HL, Rowe DW, Kalajzic I. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone 2008; 43:501-10. [PMID: 18571490 PMCID: PMC2614133 DOI: 10.1016/j.bone.2008.04.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/25/2022]
Abstract
Identification of a reliable marker of skeletal precursor cells within calcified and soft tissues remains a major challenge for the field. To address this, we used a transgenic model in which osteoblasts can be eliminated by pharmacological treatment. Following osteoblast ablation a dramatic increase in a population of alpha-smooth muscle actin (alpha-SMA) positive cells was observed. During early recovery phase from ablation we have detected cells with the simultaneous expression of alpha-SMA and a preosteoblastic 3.6GFP marker, indicating the potential for transition of alpha-SMA+ cells towards osteoprogenitor lineage. Utilizing alpha-SMAGFP transgene, alpha-SMAGFP+ positive cells were detected in the microvasculature and in the osteoprogenitor population within bone marrow stromal cells. Osteogenic and adipogenic induction stimulated expression of bone and fat markers in the alpha-SMAGFP+ population derived from bone marrow or adipose tissue. In adipose tissue, alpha-SMA+ cells were localized within the smooth muscle cell layer and in pericytes. After in vitro expansion, alpha-SMA+/CD45-/Sca1+ progenitors were highly enriched. Following cell sorting and transplantation of expanded pericyte/myofibroblast populations, donor-derived differentiated osteoblasts and new bone formation was detected. Our results show that cells with a pericyte/myofibroblast phenotype have the potential to differentiate into functional osteoblasts.
Collapse
Affiliation(s)
- Zana Kalajzic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Haitao Li
- Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Li-Ping Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Xi Jiang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Katie Lamothe
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Douglas J. Adams
- Department of Orthopaedic Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Hector L. Aguila
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - David W. Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06032, USA
| |
Collapse
|
20
|
Fiaschi-Taesch N, Sicari BM, Ubriani K, Bigatel T, Takane KK, Cozar-Castellano I, Bisello A, Law B, Stewart AF. Cellular mechanism through which parathyroid hormone-related protein induces proliferation in arterial smooth muscle cells: definition of an arterial smooth muscle PTHrP/p27kip1 pathway. Circ Res 2006; 99:933-42. [PMID: 17023675 DOI: 10.1161/01.res.0000248184.21644.20] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) is present in vascular smooth muscle (VSM), is markedly upregulated in response to arterial injury, is essential for normal VSM proliferation, and also markedly accentuates neointima formation following rat carotid angioplasty. PTHrP contains a nuclear localization signal (NLS) through which it enters the nucleus and leads to marked increases in retinoblastoma protein (pRb) phosphorylation and cell cycle progression. Our goal was to define key cell cycle molecules upstream of pRb that mediate cell cycle acceleration induced by PTHrP. The cyclin D/cdk-4,-6 system and its upstream regulators, the inhibitory kinases (INKs), are not appreciably influenced by PTHrP. In striking contrast, cyclin E/cdk-2 kinase activity is markedly increased by PTHrP, and this is a result of a specific, marked, PTHrP-induced proteasomal degradation of p27(kip1). Adenoviral restoration of p27(kip1) fully reverses PTHrP-induced cell cycle progression, indicating that PTHrP mediates its cell cycle acceleration in VSM via p27(kip1). In confirmation, adenoviral delivery of PTHrP to murine primary vascular smooth muscle cells (VSMCs) significantly decreases p27(kip1) expression and accelerates cell cycle progression. p27(kip1) is well known to be a central cell cycle regulatory molecule involved in both normal and pathological VSM proliferation and is a target of widely used drug-eluting stents. The current observations define a novel "PTHrP/p27(kip1) pathway" in the arterial wall and suggest that this pathway is important in normal arterial biology and a potential target for therapeutic manipulation of the arterial response to injury.
Collapse
|
21
|
Welsch S, Schordan E, Coquard C, Massfelder T, Fiaschi-Taesch N, Helwig JJ, Barthelmebs M. Abnormal renovascular parathyroid hormone-1 receptor in hypertension: Primary defect or secondary to angiotensin ii type 1 receptor activation? Endocrinology 2006; 147:4384-91. [PMID: 16728497 DOI: 10.1210/en.2005-1517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that PTHrP-induced renal vasodilation is impaired in mature spontaneously hypertensive rats (SHR) through down-regulation of the type 1 PTH/PTHrP receptor (PTH1R), a feature that contributes to the high renal vascular resistance in SHR. Here we asked whether this defect represents a prime determinant in genetic hypertension or whether it is secondary to angiotensin II (Ang II) and/or the mechanical forces exerted on the vascular wall. We found that the treatment of SHR with established hypertension by the Ang II type 1 receptor antagonist, losartan, reversed the down-regulation of PTH1R expression in intrarenal small arteries and restored PTHrP-induced vasodilation in ex vivo perfused kidneys. In contrast, the PTH1R deregulation was not found in intrarenal arteries isolated from prehypertensive SHR. Moreover, this defect, which is not seen in extrarenal vessels (aorta, mesenteric arteries) from mature SHR appeared kidney specific in accordance with the acknowledged enrichment of interstitial Ang II in this organ and its enhancement in SHR. In deoxycorticosterone-acetate-salt rats, an Ang II-independent model of hypertension, renovascular PTH1R expression and related vasodilation were not altered. In SHR-derived renovascular smooth muscle cells (RvSMCs), the PTH1R was spontaneously down-regulated and its transcript destabilized, compared with Wistar RvSMCs, both effects being antagonized by losartan. Exogenous Ang II elicited down-regulation of PTH1R mRNA in RvSMCs from Wistar rats. Together, these data demonstrate that Ang II acts via the Ang II type 1 receptor to destabilize PTH1R mRNA in the renal vessel in the SHR model of genetic hypertension. This process is kidney specific and independent from blood pressure increase.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Arteries/chemistry
- Arteries/metabolism
- Cells, Cultured
- Desoxycorticosterone
- Down-Regulation/drug effects
- Hypertension/chemically induced
- Hypertension/drug therapy
- Hypertension/genetics
- Kidney/blood supply
- Losartan/therapeutic use
- Male
- Parathyroid Hormone-Related Protein/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Inbred SHR
- Rats, Wistar
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Sandra Welsch
- Institut National de la Santé et de la Recherche Médicale, Unité 727, Strasbourg F-67085 France
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In this review, we outline the application and contribution of transgenic technology to establishing the genetic basis of blood pressure regulation and its dysfunction. Apart from a small number of examples where high blood pressure is the result of single gene mutation, essential hypertension is the sum of interactions between multiple environmental and genetic factors. Candidate genes can be identified by a variety of means including linkage analysis, quantitative trait locus analysis, association studies, and genome-wide scans. To test the validity of candidate genes, it is valuable to model hypertension in laboratory animals. Animal models generated through selective breeding strategies are often complex, and the underlying mechanism of hypertension is not clear. A complementary strategy has been the use of transgenic technology. Here one gene can be selectively, tissue specifically, or developmentally overexpressed, knocked down, or knocked out. Although resulting phenotypes may still be complicated, the underlying genetic perturbation is a starting point for identifying interactions that lead to hypertension. We recognize that the development and maintenance of hypertension may involve many systems including the vascular, cardiac, and central nervous systems. However, given the central role of the kidney in normal and abnormal blood pressure regulation, we intend to limit our review to models with a broadly renal perspective.
Collapse
Affiliation(s)
- Linda J Mullins
- Molecular Physiology Laboratory, Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
23
|
Zhang A, Liu X, Cogan JG, Fuerst MD, Polikandriotis JA, Kelm RJ, Strauch AR. YB-1 coordinates vascular smooth muscle alpha-actin gene activation by transforming growth factor beta1 and thrombin during differentiation of human pulmonary myofibroblasts. Mol Biol Cell 2005; 16:4931-40. [PMID: 16093352 PMCID: PMC1243245 DOI: 10.1091/mbc.e05-03-0216] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Profibrotic regulatory mechanisms for tissue repair after traumatic injury have developed under strong evolutionary pressure to rapidly stanch blood loss and close open wounds. We have examined the roles played by two profibrotic mediators, transforming growth factor beta1 (TGFbeta1) and thrombin, in directing expression of the vascular smooth muscle alpha-actin (SMalphaA) gene, an important determinant of myofibroblast differentiation and early protein marker for stromal cell response to tissue injury. TGFbeta1 is a well known transcriptional activator of the SMalphaA gene in myofibroblasts. In contrast, thrombin independently elevates SMalphaA expression in human pulmonary myofibroblasts at the posttranscriptional level. A common feature of SMalphaA up-regulation mediated by thrombin and TGFbeta1 is the involvement of the cold shock domain protein YB-1, a potent repressor of SMalphaA gene transcription in human fibroblasts that also binds mRNA and regulates translational efficiency. YB-1 dissociates from SMalphaA enhancer DNA in the presence of TGFbeta1 or its Smad 2, 3, and 4 coregulatory mediators. Thrombin does not effect SMalphaA gene transcription but rather displaces YB-1 from SMalphaA exon 3 coding sequences previously shown to be required for mRNA translational silencing. The release of YB-1 from promoter DNA coupled with its ability to bind RNA and shuttle between the nucleus and cytoplasm is suggestive of a regulatory loop for coordinating SMalphaA gene output in human pulmonary myofibroblasts at both the transcriptional and translational levels. This loop may help restrict organ-destructive remodeling due to excessive myofibroblast differentiation.
Collapse
Affiliation(s)
- Aiwen Zhang
- Department of Physiology and Cell Biology, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kobayashi T, Kronenberg HM, Foley J. Reduced expression of the PTH/PTHrP receptor during development of the mammary gland influences the function of the nipple during lactation. Dev Dyn 2005; 233:794-803. [PMID: 15880431 DOI: 10.1002/dvdy.20406] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Signaling by the parathyroid hormone/parathyroid hormone-related protein receptor (Ppr) is necessary for mammary gland development beyond the early induction stage in mice. We used a series of murine models of reduced Ppr expression to determine how diminished receptor signaling influences mammary development. Reduction of Ppr expression to very low levels prevented mammary gland development. A less-severe reduction in Ppr expression permitted progression of mammary gland development beyond the induction stage, but the nipples of these mice were dramatically smaller than those of controls, with altered epidermis and connective tissue. Mothers with reduced expression of Ppr could not successfully nurse pups; however, the lactating glands did produce milk but could not efficiently deliver it. This finding was associated with reduced levels of matrix metalloproteinase-2 and an absence of pregnancy-associated remodeling of connective tissue matrix in the nipple. Reduced smooth muscle appears to underlie the majority of nipple deficiencies in mice with lower levels of the Ppr expression.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
25
|
Ohhashi T, Mizuno R, Ikomi F, Kawai Y. Current topics of physiology and pharmacology in the lymphatic system. Pharmacol Ther 2004; 105:165-88. [PMID: 15670625 DOI: 10.1016/j.pharmthera.2004.10.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
We have reviewed physiological significance of rhythmical spontaneous contractions of collecting lymph vessels, which play a pivotal role in lymph transport and seem to control lymph formation through changing the pacemaker sites of the rhythmic contractions and contractile patterns of the lymphangions. A characteristic feature that the rhythmic pump activity works in vivo physiologically under the specific environment of lower oxygen tension in lymph (25-40 mm Hg) has been evaluated. With the characteristic feature, generation of endogenous nitric oxide (NO) from lymphatic endothelial cells and/or activation of ATP-sensitive potassium channels (K(ATP)) are reviewed to play crucial roles in the regulation of lymph transport at physiological or pathophysiological conditions. Chemical substances released from malignant tumor cells and tumor-derived parathyroid hormone-related peptide (PTHr-P) are also shown to cause a significant reduction of lymphatic pump activity through generation of endogenous NO and activation of K(ATP) channels. Finally, we have discussed physiological significance and roles of the lower oxygen tension in lymph, generation of endogenous NO, and activation of K(ATP) in lymph formation, lymph transport, and the functions of lymph nodes.
Collapse
Affiliation(s)
- Toshio Ohhashi
- Department of Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | |
Collapse
|
26
|
Subramanian SV, Polikandriotis JA, Kelm RJ, David JJ, Orosz CG, Strauch AR. Induction of vascular smooth muscle alpha-actin gene transcription in transforming growth factor beta1-activated myofibroblasts mediated by dynamic interplay between the Pur repressor proteins and Sp1/Smad coactivators. Mol Biol Cell 2004; 15:4532-43. [PMID: 15282343 PMCID: PMC519147 DOI: 10.1091/mbc.e04-04-0348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mouse vascular smooth muscle alpha-actin (SMA) gene enhancer is activated in fibroblasts by transforming growth factor beta1 (TGFbeta1), a potent mediator of myofibroblast differentiation and wound healing. The SMA enhancer contains tandem sites for the Sp1 transcriptional activator protein and Puralpha and beta repressor proteins. We have examined dynamic interplay between these divergent proteins to identify checkpoints for possible control of myofibroblast differentiation during chronic inflammatory disease. A novel element in the SMA enhancer named SPUR was responsible for both basal and TGFbeta1-dependent transcriptional activation in fibroblasts and capable of binding Sp1 and Pur proteins. A novel Sp1:Pur:SPUR complex was dissociated when SMA enhancer activity was increased by TGFbeta1 or Smad protein overexpression. Physical association of Pur proteins with Smad2/3 was observed as was binding of Smads to an upstream enhancer region that undergoes DNA duplex unwinding in TGFbeta1-activated myofibroblasts. Purbeta repression of the SMA enhancer could not be relieved by TGFbeta1, whereas repression mediated by Puralpha was partially rescued by TGFbeta1 or overexpression of Smad proteins. Interplay between Pur repressor isoforms and Sp1 and Smad coactivators may regulate SMA enhancer output in TGFbeta1-activated myofibroblasts during episodes of wound repair and tissue remodeling.
Collapse
Affiliation(s)
- Sukanya V Subramanian
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
27
|
Fiaschi-Taesch N, Takane KK, Masters S, Lopez-Talavera JC, Stewart AF. Parathyroid-hormone-related protein as a regulator of pRb and the cell cycle in arterial smooth muscle. Circulation 2004; 110:177-85. [PMID: 15210588 DOI: 10.1161/01.cir.0000134483.30849.b7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Parathyroid hormone-related protein (PTHrP), a normal product of arterial vascular smooth muscle (VSM), contains a nuclear localization signal (NLS) and at least 2 translational initiation sites, one that generates a conventional signal peptide and one that disrupts the signal peptide. These unusual features allow PTHrP either to be secreted in a paracrine/autocrine fashion, and thereby to inhibit arterial smooth muscle proliferation, or to be retained within the cytosol and to translocate into the nucleus, thereby serving as an intracrine stimulator of smooth muscle proliferation. METHODS AND RESULTS Here, we demonstrate 2 important findings. First, PTHrP dramatically increases the percentage of VSM cells in the S and in G2/M phases of the cell cycle. These effects require critical serine and threonine residues at positions Ser119, Ser130, Thr132, and Ser138 in the carboxy-terminus of PTHrP and are associated with the phosphorylation of the key cell cycle checkpoint regulator retinoblastoma protein, pRb. Second, because PTHrP devoid of the NLS serves as an inhibitor of VSM proliferation, we hypothesized that local delivery of NLS-deleted PTHrP to the arterial wall at the time of angioplasty might prevent neointimal hyperplasia. As hypothesized, using a rat carotid angioplasty model, adenoviral delivery of NLS-deleted PTHrP completely abolished the development of the neointima after angioplasty. CONCLUSIONS PTHrP interacts with key cell cycle regulatory pathways within the arterial wall. Moreover, NLS-deleted PTHrP delivered to the arterial wall at the time of angioplasty seems to have promise as an agent that could reduce or eliminate the neointimal response to angioplasty.
Collapse
MESH Headings
- Adenoviridae/genetics
- Angioplasty, Balloon/adverse effects
- Animals
- Aorta, Thoracic
- Carotid Artery Injuries/therapy
- Carotid Artery, Common
- Cell Cycle/drug effects
- Cell Cycle/physiology
- Cell Division
- Cell Line/cytology
- Cell Line/drug effects
- DNA, Complementary/genetics
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Genetic Vectors/therapeutic use
- Male
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Parathyroid Hormone-Related Protein/chemistry
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/physiology
- Peptide Fragments/physiology
- Phosphorylation
- Phosphoserine/analysis
- Phosphothreonine/analysis
- Protein Processing, Post-Translational
- Protein Transport
- Rats
- Rats, Sprague-Dawley
- Retinoblastoma Protein/physiology
- Transfection
Collapse
Affiliation(s)
- Nathalie Fiaschi-Taesch
- Division of Endocrinology and Metabolism, BST E-1140, Endocrinology, University of Pittsburgh School of Medicine, 3550 Terrace St, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
28
|
Isotani E, Zhi G, Lau KS, Huang J, Mizuno Y, Persechini A, Geguchadze R, Kamm KE, Stull JT. Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse. Proc Natl Acad Sci U S A 2004; 101:6279-84. [PMID: 15071183 PMCID: PMC395960 DOI: 10.1073/pnas.0308742101] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) initiates smooth muscle contraction and regulates actomyosin-based cytoskeletal functions in nonmuscle cells. The net extent of RLC phosphorylation is controlled by MLCK activity relative to myosin light chain phosphatase activity. We have constructed a CaM-sensor MLCK where Ca(2+)-dependent CaM binding increases the catalytic activity of the kinase domain, whereas coincident binding to the biosensor domain decreases fluorescence resonance energy transfer between two fluorescent proteins. We have created transgenic mice expressing this construct specifically in smooth muscle cells to perform real-time evaluations of the relationship between smooth muscle contractility and MLCK activation in intact tissues and organs. Measurements in intact bladder smooth muscle demonstrate that MLCK activation increases rapidly during KCl-induced contractions but is not maximal, consistent with a limiting amount of cellular CaM. Carbachol treatment produces the same amount of force development and RLC phosphorylation, with much smaller increases in [Ca(2+)](i) and MLCK activation. A Rho kinase inhibitor suppresses RLC phosphorylation and force but not MLCK activation in carbachol-treated tissues. These observations are consistent with a model in which the magnitude of an agonist-mediated smooth muscle contraction depends on a rapid but limited Ca(2+)/CaM-dependent activation of MLCK and Rho kinase-mediated inhibition of myosin light chain phosphatase activity. These studies demonstrate the feasibility of producing transgenic biosensor mice for investigations of signaling processes in intact systems.
Collapse
Affiliation(s)
- Eiji Isotani
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Noonan WT, Qian J, Stuart WD, Clemens TL, Lorenz JN. Altered renal hemodynamics in mice overexpressing the parathyroid hormone (PTH)/PTH-related peptide type 1 receptor in smooth muscle. Endocrinology 2003; 144:4931-8. [PMID: 12960101 DOI: 10.1210/en.2003-0351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH-related protein (PTHrP) is an autocrine/paracrine peptide expressed in renal tubules and vasculature and may play an important role in regulating overall renal function. To evaluate the potential role of endogenous PTHrP in the control of renal hemodynamics, we performed clearance measurements in transgenic (TG) mice in which the SMP8 alpha-actin promoter was used to drive overexpression of the PTH/PTHrP type 1 receptor in smooth muscle. In protocol I, responses to acute saline volume expansion (SVE, 0.75 microl/min.g body weight) were measured in TG and nontransgenic (NTG) mice. Mean arterial pressure was significantly lower in TG mice throughout the experiment, and it decreased comparably in both groups in response to SVE. SVE significantly increased effective renal plasma flow in both groups of mice, but the increase was greater in TG than in NTG. Glomerular filtration rate decreased in response to SVE in NTG but did not change in TG animals. In protocol II, renal responses to angiotensin II (ANG II) infusion were determined (0.5 ng/min.g body weight). Baseline arterial pressure was again significantly lower in TG, compared with NTG mice, and TG mice had a blunted pressor response to ANG II. Also, ANG II decreased effective renal plasma flow and glomerular filtration rate in both groups of animals, but the reductions were less in TG than in NTG mice. Our findings indicate that smooth-muscle-specific overexpression of the PTH/PTHrP type 1 receptor resulted in augmentation of the vasodilatory response to SVE and attenuation of the vasoconstrictor response to ANG II. We conclude that endogenous PTHrP can act as an endogenous vasorelaxant factor to modulate renal responses to vasoactive stimuli.
Collapse
Affiliation(s)
- William T Noonan
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0576
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Bakre MM, Zhu Y, Yin H, Burton DW, Terkeltaub R, Deftos LJ, Varner JA. Parathyroid hormone-related peptide is a naturally occurring, protein kinase A-dependent angiogenesis inhibitor. Nat Med 2002; 8:995-1003. [PMID: 12185361 DOI: 10.1038/nm753] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis is a highly regulated process that results from the sequential actions of naturally occurring stimulators and inhibitors. Here, we show that parathyroid hormone-related peptide, a peptide hormone derived from normal and tumor cells that regulates bone metabolism and vascular tone, is a naturally occurring angiogenesis inhibitor. Parathyroid hormone-related peptide or a ten-amino-acid peptide from its N terminus inhibits endothelial cell migration in vitro and angiogenesis in vivo by activating endothelial cell protein kinase A. Activation of protein kinase A inhibits cell migration and angiogenesis by inhibiting the small GTPase Rac. In contrast, inhibition of protein kinase A reverses the anti-migratory and anti-angiogenic properties of parathyroid hormone-related peptide. These studies show that parathyroid hormone-related peptide is a naturally occurring angiogenesis inhibitor that functions by activation of protein kinase A.
Collapse
Affiliation(s)
- Manjiri M Bakre
- University of California, San Diego Comprehensive Cancer Center, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Clemens TL, Cormier S, Eichinger A, Endlich K, Fiaschi-Taesch N, Fischer E, Friedman PA, Karaplis AC, Massfelder T, Rossert J, Schlüter KD, Silve C, Stewart AF, Takane K, Helwig JJ. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol 2001; 134:1113-36. [PMID: 11704631 PMCID: PMC1573066 DOI: 10.1038/sj.bjp.0704378] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Accepted: 09/10/2001] [Indexed: 11/09/2022] Open
Abstract
The cloning of the so-called 'parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify its therapeutic potential in a number of diseases.
Collapse
Affiliation(s)
- Thomas L Clemens
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, U.S.A
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, U.S.A
| | - Sarah Cormier
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Anne Eichinger
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Karlhans Endlich
- Institut für Anatomie und Zellbiologie 1, Universität Heidelberg, Heidelberg, Germany
| | - Nathalie Fiaschi-Taesch
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Evelyne Fischer
- Department of Nephrology, University Hospital of Strasbourg, Strasbourg, France
| | - Peter A Friedman
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | | | - Thierry Massfelder
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| | - Jérôme Rossert
- INSERM U489 and Departments of Nephrology and Pathology, Paris VI University, France
| | | | - Caroline Silve
- INSERM U 426 and Institut Federatif de Recherche ‘Cellules Epitheliales', Faculte de Medecine Xavier Bichat, Paris, France
| | - Andrew F Stewart
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Karen Takane
- Division of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, PA 15213, U.S.A
| | - Jean-Jacques Helwig
- Section of Renovascular Pharmacology and Physiology, INSERM E0015-ULP, University Louis Pasteur School of Medicine, Strasbourg, France
| |
Collapse
|
33
|
Funk JL, Trout CR, Wei H, Stafford G, Reichlin S. Parathyroid hormone-related protein (PTHrP) induction in reactive astrocytes following brain injury: a possible mediator of CNS inflammation. Brain Res 2001; 915:195-209. [PMID: 11595209 DOI: 10.1016/s0006-8993(01)02850-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTHrP, a peptide induced in parenchymal organs during endotoxemia and in the synovium in rheumatoid arthritis, has recently been shown to be expressed in immature or transformed human astrocytes, but not in normal cells. This finding has led us to postulate that PTHrP might also be induced in reactive astrocytes in inflamed brain and, thus, act as a mediator of CNS inflammation. To test this hypothesis, PTHrP expression was examined following cortical stab wound injury in rats, a classical model of reactive gliosis. To determine whether PTHrP was induced in glia by TNF-alpha, a known mediator of inflammation in brain and of PTHrP induction in peripheral tissues, and to determine whether PTHrP, in turn, mediated inflammatory changes in glia, in vitro studies with rat astrocytes and glial-enriched mixed brain cells were also undertaken. Consistent with previous reports of PTHrP expression in normal brain, neurons were the primary site of immunoreactive PTHrP expression in the injured cortex 1 day after stab wound injury. Over the subsequent 3 days, specific immunostaining for PTHrP and for GFAP, a marker of reactive astrocytes, appeared in reactive astrocytes at the wound edge and in perivascular astrocytes, reaching a maximum level of expression at the last time point examined (day 4). TNF-alpha induced PTHrP expression in astrocyte and glial-enriched brain cells in vitro, suggesting that this pro-inflammatory peptide was a possible mediator of PTHrP expression in CNS inflammation. PTHrP(1-34) acted in an additive fashion with TNF-alpha to induced astrocyte expression of IL-6, a cytokine with demonstrated neuroprotective effects. Astrocyte proliferation was inhibited by PTHrP(1-34) and PTHrP(1-141), acting via a PTH/PTHrP receptor cAMP signaling pathway. These studies suggest that PTHrP, analogous to its regulatory functions in other non-CNS models of inflammation, may be an important mediator of the inflammatory response in brain.
Collapse
Affiliation(s)
- J L Funk
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|
34
|
Santos S, Bosch RJ, Ortega A, Largo R, Fernández-Agulló T, Gazapo R, Egido J, Esbrit P. Up-regulation of parathyroid hormone-related protein in folic acid-induced acute renal failure. Kidney Int 2001; 60:982-95. [PMID: 11532093 DOI: 10.1046/j.1523-1755.2001.060003982.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Parathyroid hormone (PTH)-related protein (PTHrP) is present in many normal tissues, including the kidney. Current evidence supports that PTHrP is involved in renal pathophysiology, although its role on the mechanisms of renal damage and/or repair is unclear. Our present study examined the changes in PTHrP and the PTH/PTHrP receptor (type 1) in folic acid-induced acute renal failure in rats. The possible role of PTHrP on the process of renal regeneration following folic acid administration, and potential interaction between angiotensin II (Ang II) and endothelin-1, and PTHrP, were examined in this animal model. METHODS PTHrP, PTH/PTHrP receptor, ACE, and preproendothelin-1 (preproET-1) mRNA levels in the rat kidney were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and/or RNase protection assay. Immunohistochemistry also was performed for PTHrP, the PTH/PTHrP receptor, and Ang II in the renal tissue of folic acid-injected rats. The role of PTHrP on tubular cell proliferation following folic acid injury was investigated in vitro in rat renal epithelial cells (NRK 52E). PTHrP secretion in the medium conditioned by these cells was measured by an immunoradiometric assay specific for the 1-36 sequence. RESULTS Using RT-PCR, PTHrP mRNA was rapidly (1 hour) and maximally increased (3-fold) in the rat kidney after folic acid, decreasing after six hours. At 72 hours, renal function was maximally decreased in these rats, associated with an increased PTHrP immunostaining in both renal tubules and glomeruli. In contrast, the PTH/PTHrP receptor mRNA (RNase protection assay) decreased shortly after folic acid administration. Moreover, PTH/PTHrP receptor immunostaining dramatically decreased in renal tubular cell membranes after folic acid. A single subcutaneous administration of PTHrP (1-36), 3 or 50 microg/kg body weight, shortly after folic acid injection increased the number of tubular cells staining for proliferating cell nuclear antigen by 30% (P < 0.05) or 50% (P < 0.01), respectively, in these rats at 24 hours, without significant changes in either renal function or calcemia. On the other hand, this peptide failed to modify the increase (2-fold over control) in ACE mRNA, associated with a prominent Ang II staining into tubular cell nuclei, in the kidney of folic acid-treated rats at this time period. The addition of 10 mmol/L folic acid to NRK 52E cells caused a twofold increase in PTHrP mRNA at six hours, without significant changes in the PTH/PTHrP receptor mRNA. The presence of two anti-PTHrP antibodies, with or without folic acid, in the cell-conditioned medium decreased (40%, P < 0.01) cell growth. CONCLUSIONS Renal PTHrP was rapidly and transiently increased in rats with folic acid-induced acute renal failure, featuring as an early response gene. In addition, changes in ACE and Ang II expression were also found in these animals. PTHrP induces a mitogenic response in folic acid-damaged renal tubular cells both in vivo and in vitro. Our results support the notion that PTHrP up-regulation participates in the regenerative process in this model of acute renal failure and is a common event associated with the mechanisms of renal injury and repair.
Collapse
Affiliation(s)
- S Santos
- Bone and Mineral Metabolism Laboratory, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
de Miguel F, Fiaschi-Taesch N, López-Talavera JC, Takane KK, Massfelder T, Helwig JJ, Stewart AF. The C-terminal region of PTHrP, in addition to the nuclear localization signal, is essential for the intracrine stimulation of proliferation in vascular smooth muscle cells. Endocrinology 2001; 142:4096-105. [PMID: 11517189 DOI: 10.1210/endo.142.9.8388] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTHrP is secreted by most cell types. In addition to a paracrine/autocrine role, PTHrP has "intracrine" actions, entering the nuclear compartment under the direction of a classic bipartite nuclear localization signal. In vascular smooth muscle cells, nuclear entry stimulates mitogenesis. In the current study, we sought to more precisely define the regions of PTHrP required for the activation of mitogenesis in vascular smooth muscle cells. PTHrP deletion mutants missing large regions [i.e. the signal peptide, N terminus (1--36), mid region (38--86), nuclear localization signal, C terminus (108--139), or combinations of the above] were expressed in A-10 vascular smooth muscle cells. The consequences on nuclear localization and proliferation were examined. Deletion of the nuclear localization signal prevented nuclear entry and slowed proliferation. Deletion of the highly conserved N terminus or mid region had no impact on nuclear localization or on proliferation. Deletion of the C terminus had no deleterious effect on nuclear localization but dramatically reduced proliferation. Thus, the nuclear localization signal is both necessary and sufficient for nuclear localization of PTHrP. In contrast, activation of proliferation in vascular smooth muscle cells requires both an intact nuclear localization signal and an intact C terminus. Whereas the nuclear localization signal is required for nuclear entry, the C terminus may serve a trans-activating function to stimulate mitogenesis once inside the nucleus of vascular smooth muscle cells.
Collapse
Affiliation(s)
- F de Miguel
- Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Mizuno R, Ono N, Ohhashi T. Parathyroid hormone-related protein-(1-34) inhibits intrinsic pump activity of isolated murine lymph vessels. Am J Physiol Heart Circ Physiol 2001; 281:H60-6. [PMID: 11406469 DOI: 10.1152/ajpheart.2001.281.1.h60] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) was originally found as a tumor-derived vasoactive factor and has also been known to produce significant relaxation of vascular smooth muscles. Thus effects of PTHrP-(1-34), a PTH receptor-binding domain, on spontaneous lymphatic pump activity was investigated in isolated pressurized lymph vessels of mice. Low concentrations (1 x 10(-10) and 3 x 10(-10) M) of PTHrP-(1-34) dilated lymph vessels and reduced the frequency of pump activity, whereas high concentrations (1 x 10(-9) to 1 x 10(-8) M) of PTHrP-(1-34) caused dilation with cessation of the lymphatic pump activity. N(omega)-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-5) M) but not indomethacin (1 x 10(-5) M) significantly reduced the PTHrP-(1-34)-induced inhibitory responses of the lymphatic pump activity. In the presence of L-NAME (3 x 10(-5) M) and L-arginine (1 x 10(-3) M), the L-NAME-induced inhibition in the PTHrP-(1-34)-mediated responses was significantly reduced. Glibenclamide (1 x 10(-6) M) significantly suppressed the inhibitory responses of the lymphatic pump activity induced by PTHrP-(1-34) and S-nitroso-N-acetyl-penicillamine. The PTHrP-(1-34)-mediated inhibitory responses were significantly reduced by treatment with PTHrP-(7-34) (1 x 10(-7) M). These results suggest that PTHrP-(1-34) inhibits spontaneous pump activity of the isolated lymph vessels via PTH receptors and that production and release of endogenous nitric oxide and activation of ATP-sensitive K(+) channels in the lymph vessels contribute to the PTHrP-(1-34)-mediated inhibitory responses of the lymphatic pump activity.
Collapse
Affiliation(s)
- R Mizuno
- First Department of Physiology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | |
Collapse
|
37
|
Slattery MM, O'leary MJ, Morrison JJ. Effect of parathyroid hormone-related peptide on human and rat myometrial contractility in vitro. Am J Obstet Gynecol 2001; 184:625-9. [PMID: 11262463 DOI: 10.1067/mob.2001.110695] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aims of this study were primarily to investigate the effects of parathyroid hormone-related peptide (human fragment 1-34) on human nonpregnant and pregnant (nonlabor and labor) myometrial contractility in vitro and secondarily to compare these effects with those of parathyroid hormone-related peptide on rat myometrial contractility. STUDY DESIGN Isometric tension recording was performed under physiologic conditions in isolated myometrial strips obtained at hysterectomy and cesarean delivery and from Sprague-Dawley rats. The effect of cumulative additions of parathyroid hormone-related peptide (1, 10, and 100 nmol/L) on myometrial contractility was measured and the significance of results was assessed by 2-way analysis of variance. RESULTS Parathyroid hormone-related peptide exerted a statistically significant net relaxant effect on myometrial contractility in human nonpregnant myometrium (34.71%; P<.01), in human pregnant myometrium obtained before (18.27%; P <.05) but not after (10.32%; P>.05) the onset of labor, and in rat tissue (31.60%; P<.01). CONCLUSIONS Parathyroid hormone-related peptide exerts a relaxant effect on human and rat myometrial tissue. In human myometrium, sensitivity to parathyroid hormone-related peptide is reduced in pregnancy and abolished by the onset of labor.
Collapse
Affiliation(s)
- M M Slattery
- Department of Obstetrics and Gynaecology, National University of Ireland Galway, and the Clinical Science Institute, University College Hospital Galway, Ireland
| | | | | |
Collapse
|
38
|
Smithies O, Kim HS, Takahashi N, Edgell MH. Importance of quantitative genetic variations in the etiology of hypertension. Kidney Int 2000; 58:2265-80. [PMID: 11115061 DOI: 10.1046/j.1523-1755.2000.00411.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent progress has been remarkable in identifying mutations which cause diseases (mostly uncommon) that are inherited simply. Unfortunately, the common diseases of humankind with a strong genetic component, such as those affecting cardiovascular function, have proved less tractable. Their etiology is complex with substantial environmental components and strong indications that multiple genes are implicated. In this article, we consider the genetic etiology of essential hypertension. After presenting the distribution of blood pressures in the population, we propose the hypothesis that essential hypertension is the consequence of different combinations of genetic variations that are individually of little consequence. The candidate gene approach to finding relevant genes is exemplified by studies that identified potentially causative variations associated with quantitative differences in the expression of the angiotensinogen gene (AGT). Experiments to test causation directly are possible in mice, and we describe their use to establish that blood pressures are indeed altered by genetic changes in AGT expression. Tests of differences in expression of the genes coding for the angiotensin-converting enzyme (ACE) and for the natriuretic peptide receptor A are also considered, and we provide a tabulation of all comparable experiments in mice. Computer simulations are presented that resolve the paradoxical finding that while ACE inhibitors are effective, genetic variations in the expression of the ACE gene do not affect blood pressure. We emphasize the usefulness of studying animals heterozygous for an inactivating mutation and a wild-type allele, and briefly discuss a way of establishing causative links between complex phenotypes and single nucleotide polymorphisms.
Collapse
Affiliation(s)
- O Smithies
- Departments of Pathology and Microbiology, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- R A Nissenson
- Endocrine Unit, San Francisco VA Medical Center, Departments of Medicine and Physiology, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
40
|
Affiliation(s)
- F M Faraci
- Departments of Internal Medicine, Pharmacology, and Physiology and Biophysics, Cardiovascular Center, University of Iowa College of Medicine, Iowa City 52242-1081, USA
| | | |
Collapse
|
41
|
Massfelder T, Helwig JJ. Parathyroid hormone-related protein in cardiovascular development and blood pressure regulation. Endocrinology 1999; 140:1507-10. [PMID: 10098481 DOI: 10.1210/endo.140.4.6740] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Qian J, Lorenz JN, Maeda S, Sutliff RL, Weber C, Nakayama T, Colbert MC, Paul RJ, Fagin JA, Clemens TL. Reduced blood pressure and increased sensitivity of the vasculature to parathyroid hormone-related protein (PTHrP) in transgenic mice overexpressing the PTH/PTHrP receptor in vascular smooth muscle. Endocrinology 1999; 140:1826-33. [PMID: 10098521 DOI: 10.1210/endo.140.4.6645] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PTH-related protein (PTHrP) is produced in vascular smooth muscle, where it is postulated to exert vasorelaxant properties by activation of the PTH/PTHrP type 1 receptor. As a model for studying the actions of locally produced PTHrP in vascular smooth muscle in vivo, we developed transgenic mice that overexpress the PTH/PTHrP receptor (PTHrP-R) in smooth muscle. Oocyte injection with a SMP8-PTHrP-R fusion construct yielded six founder mice. F1 offspring were viable and demonstrated selective overexpression of the SMP8-PTHP-R messenger RNA in smooth muscle-rich tissues. Baseline blood pressure measured in conscious mice by tail sphygmomanometry was significantly lower in the receptor-overexpressing mice than that in controls (117 +/- 4 vs. 133 +/- 3 mm Hg; P < 0.05). In anesthetized animals, iv infusion of PTHrP-(1-34)NH2 caused a significantly greater reduction in blood pressure and total peripheral resistance in transgenic mice than in control animals. Vascular contractility was studied in paired, isometrically mounted aortas from 9-week-old transgenic and wild-type mice. The force of contraction in response to phenlyephrine was not significantly different between transgenic and wild-type mice. However, PTHrP-(1-34) NH2 relaxed aortic vessel preparations from transgenic mice to a greater extent than in controls (77.1 +/- 3% vs. 38.4 +/- 4%; P < 0.001). To determine the impact of overexpression of PTH/PTHrP type 1 receptor and its ligand on the development of the cardiovascular system, double transgenic mice were created by crossing SMP8-PTHrP-R transgenic mice with mice overexpressing PTHrP (SMP8-PTHrP). Double transgenic mice died around day E9 with abnormalities in the developing heart. In conclusion, overexpression of PTH/PTHrP type 1 receptor in vascular smooth muscle of transgenic mice reduces blood pressure, probably through sustained activation of the receptor by endogenous ligand. The cardiovascular defects observed in mice overexpressing both PTHrP and its receptor suggest that PTHrP may play a role in the normal development of the cardiovascular system.
Collapse
Affiliation(s)
- J Qian
- Department of Medicine, University of Cincinnati, Ohio 45267-0547, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|